06-25-1999

+ FORM-PT 2-1596
{Rev 5-99)

RE! U.S. DEPARTMENT OF COMMERCE
. Patent and Trademark Office

101078123

S&H 8/94

82y
<"
To the Honorable CWtents and Trademarks: Please record the attached original documents or copy thereof.

1. Name of conveying partylies):
Paul Erb

3
%? Brian Maclsaac
S
S
&

2. Name and address of receiving partylies):

Mite! Corporation

350 Legget Drive, P.O. Box 13089
Kanata, Ontario

CANADA, K2K 1X3

3. Nature of conveyance:
_X _ Assignment __ Merger
Security Agreement __ Change of Name
___ Other:
Execution Date(s): _May 25, 1998

4, Application number(s) or patent number(s):
This document is being filed together with a new application:
(s} The execution date(s) of the application is/are:
{b) The title is:
* * % OR * % ¥
This document is being filed after Jlling of theg application:
(a} Patent Application No(s) 9 "09/023,610 Xiled February 13, 1998; o

(b) Patent No(s). __ ™ sued
5. Name and address of party to whom correspondence concerning document should be mailed:
STAAS & HALSEY LLP Our Docket: 856.1034

Attention: Kevin R. Spivak
700 Eleventh Street, N.W.
Suite 500

Washington, D.C. 20001

6. Total number of applications and patents involved: 1

7. Total fee (37 CFR 3.41)..cccciiiiiniinnnns $ 40.00
X Enclosed
Authorized to be charged to deposit account.

8. Deposit Account No.: 19- 3935 (Any underpayment is authorized to be charged to this Deposit Account)
(Attach duplicate copy of this page if paying by deposit account)

9. Statement and signature. N o
To the best of my knowledge and belief, the foregoing information is true and correct and any attached

copy is a true copy of the original document.

. K. v Lk _bls/7

e 7 e { Dat

f Person Sigrj Slgnature
Name o N Total number of pages including cover sheet: _4
JRRABSTZ GU000D36 11023610
a0, ‘D DO NOT USE THIS SPACE
PATENT

REEL: 010041 FRAME: 0686

ASSIGNMENT WORLD-WIDE

WHEREAS, 1)Paul Erb and 2) Brian MaclIsaac, residing at 1)
358 Wilbrod Street, Ottawa, Ontario, Canada, KIN 6N5 and 2) 65
Nelson Street, Carleton Place, Ontario, Canada, K7C 3X5, have
invented certain new and useful improvements in a Database
Access Server for PBX for which, an application for United
States Letters Patent will been filed; and

WHEREAS, Mitel Corporation, a company organized and
existing under the laws of the Province of Ontario, having a
place of business at 350 Legget Drive, P.O. Box 13089, Kanata,
Ontario, Canada, K2K 1X3, is desirous of acquiring the full
and exclusive right, title and interest in and to said
application inclusive of any and all priority rights derived
therefrom and the inventions therein disclosed, and in and to
all Letters Patent, both United States and foreign, to be
granted for said inventions;

NOW, THEREFORE, for a valuable consideration, the receipt
whereof is hereby acknowledged, Paul Erb and Brian MacIsaac do
hereby sell, assign, transfer, and set over unto the said
Mitel Corporation, its successors and assigns, the full and
exclusive right, title and interest in and to the aforesaid
application for United States Letters Patent inclusive of any
and all priority rights derived therefrom, and the invention
therein disclosed, and in and to all Letters Patent and
reissues thereof which may be granted upon said application
and in and to all Letters Patent which may be issued upon any
substitutes, divisions, or continuations of said application,
and in any foreign country or countries; the same to be held
and enjoyed by the said Mitel Corporation for its own use and
behoof, and for the use and behoof of its successors and
assigns, to the full end of the term or terms for which said
Letters Patent and reissues thereof may be granted as fully
and entirely as the same would have been held and enjoyed by
Paul Erb and Brian MacIsaac had this assignment and sale not
been made;

AND Paul Erb and Brian MacIsaac hereby agree to execute,
upon request, any and all further papers which may be
necessary or desirable to enable the said , its successors and

PATENT
REEL: 010041 FRAME: 0687

assigns, to file and prosecute said application, and any and
all substitutes, divisions, or continuations thereof, and any
and all reissues of the Letters Patent granted upon said
application, or upon any substitutes, divisions, or
continuations thereof, and any and all applications for the
United States and other foreign Letters Patent on said
invention; and Paul Erb and Brian MacIsaac further agree to
execute any and all further papers which may be necessary or
desirable to vest or perfect the title of Mitel Corporation,
its successors and assigns, in and to said application and the
inventions therein disclosed, and in and to any and all
Letters Patent and reissues thereof, both United States and
foreign, which may be granted upon said application, and any
substitutes, divisions, or continuations thereof, and upon any
foreign applications.

AND Paul Erb and Brian MacIsaac hereby authorize and
request The Commissioner of Patents to issue each and every
Letters Patent to be granted upon the aforesaid application
for United States Letters Patent, and upon any and all
substitutes divisions, and continuations of said application,
and each and every reissue of said Letters Patent, to the said
Mitel Corporation its successors and assigns, as the assignee
of the entire right, title and interest therein, in accordance
with this assignment.

WITNESS my hand at

this24day of %, 19 ‘(g(//%
Ivi,f_b C.V'

Paul Erb

Witness:

WITNESS my hand at
this 1% day of My, 199%

5)
164 C///k/f’ | { /‘f/«t'/‘

Brian Maclsaac

Witness:

PATENT
REEL: 010041 FRAME: 0688

LN]]]§
[LI g][]]

17777
OPIC wpazy C 1P O
OFFICE DE LA PROPRIETE TNy CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA ProPerTY OFFICE

Ay lreretts %

Certification Certification

La présente atteste que les documents

ci-joints, dont la liste figure ci-dessous

sont des copies authegtiques des docu: ' jpies of the documents on file in

ments déposés au Bu nféﬁ reyets. fﬁkg;c.

Specification and Drawmgs,as ongmaily file
2,197,517, on February 13, 1997, by Mi
Brian Maclsaac, for “Database Access

4 A

gent certificateur/ Ceifying Officer

February 20, 1998
Date

Canada
~ PATENT
REEL: 010041 FRAME: 0689

Industrie Industry (CIPO 68)
l*l Canada Canada

CIPO

CANADIAN INTELLECTUAL
ProrerTY OFFICE

OPIC

OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA

Orstawa Hull K1A 0C9

(21) (A1) 2,197,517
(22) 1997/02/13
(43) 1998/08/13

6
(51) Int.Cl. HO4Q 3/545

(19) (CA) APPLICATION FOR CANADIAN PATENT (12)

(54) Database Access Server for Telephony Switch

(72) Erb, Paul - Canada ;
MacIsaac, Brian - Canada ;

(71) Mitel Corporation - Canada ;

(57) 7 Claims

This application is as filed and may therefore contain an

Notice:
incomplete specification.

i+8

l*l Industrie Industry . crom Carlada

Canada Canada

PATENT
REEL: 010041 FRAME: 0690

10

15

20

25

2197517

59

ABSTRACT

A telephony switch configurator to manage and control at least one telephony
switch from a network device, said telephony switch containing a read/writable

storage medium for storing a configuration of said telephony switch and which is

accessible from a computer network through a first data transport protocol handler, the

network device communicating with said network through a second data transport

protocol handler, said configurator comprising:

(a

(b)

(©

(@)

(e)

®

(8)

®)

a command generator within said network device that issues

commands to be executed by said telephony switch;

a first access server within the said network device for managing a

connection to said telephony switch;

a first interface between said command generator and said first access
server for translating said commands between said command generator

to said first access server,

a second interface between said first access server and said data
transport protoco]l handler for translating said commands between said
first access server and said data transport protocol handler;

a second access server within the said telephony switch for managing

a connection to said network device;

a third interface between said second access server and said second
data transport protocol handler for translating said commands between
said second data transport handler and said second access server;

a command executor within said telephony switch that executes said

commands for changing configuration of said telephony switch; and

a fourth interface between said second access server and said command
executor for translating said commands between second access server

and said command executor.

PATENT

REEL: 010041 FRAME: 0691

10

15

20

25

30

35

2197547
DATA ACCESS SERVER FOR PBX

FIELD OF THE INVENTION

This invention relates in general to the field of telephony management and
control and in particular provides an architecture and method to access, configure and
modify the configuration tables and databases on a telephony switch from a local or
remote management or work station. In addition, the invention also provides an
architecture and method to allow local and network applications access to a telephony
switch data base.

BACKGROUND OF THE INVENTION

The architecture of choice for today’s computing environment is called
client/server computing. In this model, the user benefits from the use of an intelligent
terminal and is connected to various applications and services by a local area network
(LAN). The local area network allows access to expensive resources and peripherals.
The client/server model extends sharing to files, data bases and applications and
hardware resources. In doing so, each desk top computer accesses a server to get what
it needs. When the user updates a record, it is usually the server data base that gets
up-dated, so that everybody in a work group is sharing up-to-date information. The
design of client/server applications allow users to set up their screens to match
specific needs and preferences, yet have the benefits of shared information.

The client/server model is especially powerful in its ability to mix and match
machines from different vendors. The user can select the server best suited to a
particular task but choose client machines and devices of differing natures from
different vendor based on the preferred graphical user interface or other personal
parameters such as multi media, ¢t cetera. New servers that are becoming popular
include fax servers, e-mail server, voice mail services. Telephony switches are
traditionally not designed to fit into the client/server model

Hardware on both the workstation and the server is controlled by a layer of
software called an operating system (O/S). The operating system isolates the
application from having to know the details of the hardware, and provides a consistent
infrastructure on which all applications will run.

One of the key elements of modern application development and design is the
concept of an application programmer’s interface (API). The API provides a defined
interface between various devices or software layers in the computing model so that
software developers can focus on their application. In order to achieve this focus,

PATENT

REEL: 010041 FRAME: 0692

10

15

20

25

30

35

2197517

they are provided with the necessary commzands that control the device or other
applications, without having to know how they work. APIs are relevant to both desk
top computer applications as well as server applications. APIs are also an important
concept with regard to programming of telephony servers. Most PBXs today support
some form of software application programming interfaces (APIs).

In medium size and large businesses, internal telephone calls are handled
through a private telephone switch or PBX. While the PBX is in essence a digital
clectronic device, a natural evolution toward computer telephony integration (CTI)
has resulted in the need for connection of PBXs to local area networks so as to
function as a network accessible device.

The model used to describe telephone network architectures is quite simple.
Users with a terminal device (i.e. a telephone) are connected to a telephony switch
which offers a number of services.

The telephone is easily the most recognizable terminal device. It can be
analogue or digital, have buttons, displays and can also be wireless. Terminal devices
also include fax machines, modems, video phones, alarm systems, LAN equipment
and multi media boards for PCs. A terminal device is any piece of hardware that can
be attached to the network and can gain access to the PBX. New terminal devices can
be added to the network at any time and have immediate access to the range of
services with which they are compatible. New services are usually introduced in
conjunction with terminal devices design to make the devices easy to use.

The hardware of the PBX is also controlled by an operating system layer of
software. The telecom environment has special needs requiring multi user, real time,
fault tolerant operating systems. Even the most modern business telephone is a
“dumb” set, relaying which button to pushed to the host and turning of the displays as
directed.

The heart of a modern switching system is a set of software applications
known collectively as call processing. This software provides all of the functionality
experienced by the user, from basic call set up to delivering caller ID. The software
also provides user features such as call forwarding, enhanced network services such as
least call routing and specialized call handling such as ACD for call centres. Call
processing is the critical element in designing flexible, configurable, maintainable
communication networks.

It is therefore necessary to have software running within the PBX or switch
that gives an outside application some control over what is going on. Modemn PBX
systems provide over two hundred features to improve call handling, although the
majority of users never use more than four of them. To offer this, commands are

PATENT

REEL: 010041 FRAME: 0693

10

15

20

25

30

35

2197517

available which activate, suspend or turn o?f features within the switch. Features
include integrated voice response (IVR), voice mail/automated attendant and others.

Moves and changes to the profile of a telephony switch as a result of
movements of people within a organization remain difficult to manage. Addressing is
complex, with every network element needing to be taken down and re-programmed
to change its class of service and class of restriction. One of the goals of modern
telecommunications is to provide 2 PBX system which is not required to be brought
“down” every month to make such changes.

For most organizations having large campus environments or complex sites,
an architecture is typically implemented that features muitiple PBX components
distributed throughout the campus or site. These PBX components may be outfitted
with network adapter cards and can be connected together over a LAN backbone
infrastructure.

One of the existing problems for large sites containing multiple PBXs is
management of the components. Many PBXs have custom languages and operating
systems. Many telephony switches are not connected to the computer network and
even those that are not easy to manage. They are not designed to fit into the client
server model. This requires that an administrator be familiar with the switch and
switch management interface in order to perform maintenance of features on the
switch. In addition, it is common for PBXs to be configured with respect to their
internal operation using tables with information regarding the specific features and
operations of the switch (i.e. extension numbers, features of the extension, routing, et
cetera). An administrator must be familiar with the layout of the features, not only for
different versions of the same switch, but also different brands of switches. Moving
people and features from one switch to another involves re-programming and in many
cases physically visiting or logging on to the switch. There are also difficulties
encountered in providing back-up for the switch.

SUMMARY OF THE INVENTION

In one aspect of the invention, there is provided an architecture to manage and
control one or more telephony switches and enable and support moves and changes of
information stored in telephony switches. According to an additional aspect of the
invention that there is provided an architecture to support subsequent applications and
uses of information on a telephony switch. In a further aspect of the invention, there
is provided generic access to telephony switch databases and views that is compatible
with previous versions of telephony switches. A further aspect of the invention
provides access to a telephony switch in a protocol independent manner. In a further

PATENT

REEL: 010041 FRAME: 0694

10

15

20

25

30

2197517

aspect of the invention, access is provided fn a generic manner for search, read, write,
add, delete, first, next, previous and last operations. In a further aspect of the
invention access to a telephony switch is provided in a manner which allows for
transaction management. In a further aspect, there is provided a mechanism for a
telephony switch to communicate back to other network devices, including other
telephony switches. In a further aspect of the invention switch database prograniming
verification is provided and switch database engineering rules are followed.
' Therefore, in accordance with a preferred embodiment of the invention, an
application programming interface (AP]) is provided which is independent of different
versions of operating systems and switches that is enabled within the switch to
communicate with the network control server management station. The network
control server management station can access and delete information from a custom
database in the switch and can install such information in another database. This
feature simplifies the addition of new features in the switch.

According to one aspect of the present invention, there is provided a telephony
switch configurator to manage and control one or more telephony switches from a
network device, each of the telephony switches containing a read/writable storage
medium for storing configuration of the telephony switch and being accessible from a
computer network through the data transport protocol handler, the network device
communicating with the network through the data transport protocol handler, the
configurator comprising:

(a) a command generator within the network device that issues commands

to be executed by the telephony switch;
(b) afirst access server within the network device for managing a
connection to the telephony switch;

(c) a first interface between the command generator and the first access
server for translating the commands between to command generator
and the first access server;

(d) asecond interface between the first access server and the data transport
protocol handler for translating the commands between the first access
server and the data transport protocol handler;

(e a second access server within the telephony switch for managing a

connection to the network device;

PATENT

REEL: 010041 FRAME

: 0695

10

15

20

25

30

®

(®)

()

2197517

5
a third interface between the second access server and the second data

transport protocol handler for translating the commands between the
second data transport handler and the second access server;

a fourth interface between the second access server and the command
executor for translating the commands between the second access

server and the command executor; and

a command executor within the telephony switch that executes the

commands changing configuration of the telephony switch.

According to another aspect of the invention, there is provided a method of

managing and controlling a telephony switch from a network device, the telephony

switch communicating with a computer network through a data transport protocol, and

the network device communicating with the network through the data transport

protocol, comprising the steps of :

a)

b)

c)
d)
€).
f)
g)

h)

j)

k)

initiating a command to connect to a selected telephony switch from

the network device;

translating the command to a format understood by first access server;
passing the command to the first access server;,

opening a communications channel to the specific telephony switch;
packaging the command for transport using data transport protocol;
passing the command to data transport protocol mechanism;

transporting the command on the network to the specified telephony
switch using the data transport protocol,

unpackaging the command received by the telephony switch ﬁsing the
data transport protocol mechanism;

passing the command to a second access server;

translating the command to a form which can be executed by the
telephony switch; and

executing the command on the telephony switch changing the
configuration of the telephony switch.

PATENT

REEL: 010041 FRAME

: 0696

10

15

20

25

30

35

2197517

6
BRIEF DESCRIPTION OF THE DRAWINGS

A detailed description of the preferred embodiment is provided herein below
with reference to the following drawings, in which:

Figure 1 is a block diagram showing a network configuration environment for
use of the present invention;

Figure 2 is a block diagram of the architecture according to the present
invention implemented in relation to existing telephony management stations and
telephony switch architectures; ,

Figure 3 is a diagram depicting the message flow between a user and a
telephony switch according to the present invention;

Figure 4 is a detailed block diagram of an OPS manager according to the
preferred embodiment installed in a telephony management station; and

Figure 5 is a detailed block diagram of a network element according to the
preferred embodiment installed in a telephony switch.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Tumning to Figure 1, an overview of the use of the present invention in a
network configuration is shown. The invention is implemented to effect connections
which can be made directly or indirectly through an Ethernet network. It is also within
the scope of this invention that other network protocols (e.g., token ring, FDDI, et
cetera) may be used. Serial connections may also be used although performance
considerations must be taken into account. In the preferred embodiment, management
station 10 obtains access to telephony switch 20 through local area network 30. In the
preferred embodiment, local area network 30 is an Ethemet network running TCP/IP,
however, it is within the scope of the invention that other network topologies and
protocols may be used. In an alternate embodiment of the invention, management
station 10 can interface with one or more telephony switches 42, located on remote
networks 44 through interconnected local area networks and wide area networks 46
such as are well known in the art. In an alternate embodiment, management station 10
can interface with telephony switch 52 by utilizing routers 48 connected to a private
or public network 50.

Turning to Figure 2, an overview of the architecture of the present invention is
shown. While Figures 2 to 5 relate to the preferred embodiment of the invention in
the context of operating on a local area network, it will be obvious to one skilled in
the art to modify and practice the invention utilizing other network interconnection
methods and structures, including those described in Figure 1. The invention is

PATENT

REEL: 010041 FRAME: 0697

-

10

15

20

25

30

35

2197517

facilitated by a combination of layered soﬁzvare components. The components
cooperate with existing software in the management station 10 and the telephony
switch 20 to provide access to specific operations of telephony switch 20. According
to the preferred embodiment, in order to provide this access, a database access layer is
created in both the management station 10 and the telephony switch 20. The database
access layer is facilitated by a DB access server 116 residing in management station
10 and a switch database server 118 residing in telephony switch 20.
Consequently, six major aspects are described herein below to facilitate the
present invention:
(1) Interface between the Application and Database Access Layer in the
Management Station;
2) Database Access Layer in the Management Station
3) Interface between Database Access Layer and the Data Transport
Layer in the Management Station;
(4) Interface between Data Transport Layer and the Database Access
Layer in the Telephony Switch;
(5) Database Access Layer in the Telephony Switch;
(6) Interface between the Database Access Layer and the Application
Layer in the Telephony Switch.

On management station 10, the application layer consists of an application 114
which is required to access information stored on telephony switch 20. Application
114 generates commands to be sent to the telephony switch 20. In the preferred
embodiment of the present invention, management station 10 connects to telephony
switch 20 via local area network 30. Management station 10 in the preferred
embodiment is a Unix™ or Windows™ based work station, however, computer work
stations utilizing other operating systems may be used. In the preferred embodiment,
management station 10 is connected to local area network area 30 via Ethernet card
110. In a similar manner, telephony switch 20 is connected to local area network 30
via Ethernet card 112. Although the application 114 is described as a database
application, the use of the present invention is not restricted to a database application.

Any application capable of running on a management station 10 or a computer
workstation that requires access to information on telephony switch 20 may do so
using the principles of the present invention. In an alternate embodiment, the
invention may be implemented so that an application operating on any device
connected to the network is provided access to information stored on telephony switch
20. In such an embodiment, the application and the architecture of the present

PATENT

REEL: 010041 FRAME: 0698

10

15

20

25

30

35

2197517

invention may reside or be implemented cosmplctcly in hardware.

Database 120 stores information on various types, models and features of
telephony switch 20 accessible via a network 30. Through the application 114,
various settings can be downloaded into the database 120 on the management station
10. Within the management station, the settings can be manipulated, modified or
changed and sent back to the telephony switch 20 for update. In this manner, the
administrator can be insulated from the arcane language and parameters required to
update the settings on telephony switch. In addition, moves and changes can easily
be implemented by downloading the feature set from the telephony switch being
moved from and then reloading the same feature set into the telephony switch being
move to. Furthermore, the translation of features where the parameters for a feature
may vary from one switch to another switch can be performed automatically, without
the administrator being required to know the different parameters for a feature from
the one switch to the other switch. A list of supported features can also be stored in
the database 120 and translated for the user so that a universal user interface is
presented. In the preferred embodiment, database application 114 is written in the
“C” programming language and database 120 is managed by the Oracle database
management system (DBMS). The invention is not limited to an Oracle DBMS, the
invention may be adapted to use any such DBMS as is well known in the art.
Database application 114 communicates with DB access server 116 through interface
115. Interface 115 is described in further detail with respect to Figure 4.

DB access server 116 in the database access layer communicates with a
communications pipe 122 in the data transport layer through interface 117 to facilitate
communications with the telephony switch 20. Interface 117 provides the database
access layer with a mechanism and protocol to handle and transport commands and
the data to telephony switch 20. Interface 117 is described in further detail below
with respect to Figure 4. Communications pipe 122 communicates through interface
119 with Ethernet card 110 to transfer information to telephony switch 20. In the
preferred embodiment, the communications pipe 122 and interface 119 are existing
processes which manage connections with individual network devices.

Returning to the telephony switch 20 of Figure 2, the operation of telephony
switch 20 is accessed, controlled and operates according to settings stored in database
124. The telephony switch 20 is generally an electronic device, with memory storage
means, an operating system and a command language. The information regarding the
configuration of the telephony switch 20 is stored in database tables, with each row of
a table being accessible as a tuplc, cither directly or indirectly through a view. A tuple
is a composite view of a database record or parts of several records that represents the

PATENT

REEL: 010041 FRAME: 0699

10

15

20

25

30

35

2197517

smallest granularity of data in a database. %uples consist of one or more fields that
are accessible by field names. The information (or tuples) in the table is accessible by
switch database access application 126 and the commands sent to the telephony
switch 20 are processed and executed by switch database application 126.

In the example that follows, the structure of database 124 conforms to that as
is exemplified in Mitel® PBX model SX-2000®. However, it will be obvious to one
skilled in the art that the invention can be modified to operate on tables in other
formats such a system is described in U.S. Patent No. 4,615,028, issued September
30, 1986 and U.S. Patent No. 4,616,360, issued October 7, 1986. The switch database
access application 126 is a program which regulates access to the database 124,
Switch database access application 126 and database 124 reside in the application
layer of telephony switch 20. The switch database access application 126 in the
application layer communicates with switch database server 118 through interface
123. The interface 123 is described in further detail with respect to Figure 5. The
switch database server 118 of the database access layer communicates with the
communications pipe 128 of telephony switch 20 through interface 121. The interface
121 provides the database access layer in the telephony switch 20 with a mechanism
and protocol to transport commands and data to the management station 10. The
interface 121 is described in further detail with respect to Figure 5. The
communications pipe 128 communicates with Ethemet card 112, passing information
onto local area network 30 to be received by management station 10. The
communications pipe 128 is an existing library of functions which manages the
translation between data representations used in the data transport, and those required
in the Database Access Layer. The communications pipe 128 in the preferred
embodiment of the present invention is provided by an existing transport mechanism
such as Opsman MNMS which is supplied by Mitel®. However, it is within the
scope of this invention that other transport mechanisms may be used. One of the
features provided by the present invention is that network devices can be enabled to
communicate with the telephony switch 20 so that the telephony switch can be
integrated into networked applications. Users may be enabled to control their own
telephony settings from their desktop computer. In addition, features on the telephony
switch 20 can be offered to take advantage of the telephony switch as a network
device that allows applications 114 through the present invention to communicate
with and integrate the telephony switch 20 into the workplace environment.

PATENT

REEL: 010041 FRAME: 0700

10

15

20

25

30

35

2197517

10
Message Flow

Turning to Figure 3, an example of the use of the present invention is
illustrated. Figure 3 illustrates the flow of information on a transaction to read a tuple
and write a tuple through an application 114. The application 114 is presentedtoa
user on a video display screen as is typically used on a computer workstation. A.user
communicates with an application running on management station 10 through user
interface 131. The application 114 communicates with DB access server 116 through
interface 115. DB access server 116 communicates with transport mechanism 130
through interface 117. Transport mechanism 130 communicates with switch database
server 118 through interface 121. Switch database server 118 communicates with
switch database access application 126 through interface 123. Starting at the top left
hand comer of Figure 3, at step 132a, through user interface 131, typically a screen,
keyboard or other input/output device opens or starts application 114 which causes a
user profile to be executed. At step 132b, application 114 starts a session and
communicates the message through interface 115 to DB access server 116. At step
132¢, DB access server 116 sets up the connection and sends the start session message
through interface 117 to the transport mechanism 130. At step 132d, the transport
mechanism 130 transports the message to the switch database server 118 on telephony
switch 20 through interface 121. At step 133a, upon receiving the message at step
1324, the switch database server 118 allocates a session ID and passes the session ID
back through interface 121 to transport mechanism 130. At step 133b, the transport
mechanism 130 passes the message through interface 117 to DB access server 116.

At step 133c, the DB access server 116 records the session Id and passes the message
to application 114 through interface 115. Upon receipt of the message, application
114 submits the request to read a tuple at step 134a. That request is sent back through
interface 115 to DB access server 116. At step 134b, DB access server 116 packages
the request and sends it through interface 117 to transport mechanism 130. At step
134c, transport mechanism 130 transfers the message to switch database server 118 on
telephony switch 20 through interface 121. At step 134d, switch database server 118
verifies the session ID and re-packages the request, and passes the message through
interface 123 to switch database access application 126. At step 135, upon receiving
the request, switch database access application 126 performs the read and at step 136a
returns a tuple through interface 123 to switch database 118. At step 136b, switch
database server 118 re-packages the request and passes it to transport mechanism 130
through interface 121. At step 136c¢, transport mechanism 130 passes the response
through interface 117 to DB access server 116. At step 136d, DB access server 116
converts the text data into the proper format and passes the data to application 114

PATENT

REEL: 010041 FRAME: 0701

10

15

20

25

30

35

2197517

through interface 115. At step 136e, appli}:;tion 114 presents the information to the
user through user interface 131. At step 137, the user edits the information. Once
editing is complete, the user, at step 1383, issues the commit command through user
interface 131 to application 114. At step 138b, application 114 issues a start
transaction message and passes the message through interface 115 to DB access server
116. At step 138c, Db access server 116 sends the start transaction message through
interface 117 to transport mechanism 130. At step 138d, transport mechanism 130
passes the message through interface 121 to switch database server 118. At step 138e,
switch database server 118 re-packages the start transaction message and passes it
through interface 123 to switch database access application 126. At step 139, switch
database access application 126 starts the transaction. When the transaction is ready
for execution at step 140a, switch database access application 126 retums a
confirmation through interface 123 to switch database server 118. At step 140b,
switch database server 118 re-packages the confirmation and passes it through
interface 121 to transport mechanism 130. At step 140c, transport mechanism 130
passes the confirmation through interface 117 to DB access server 116. At step 140d,
DB access server 116 passes the confirmation message through interface 115 to
application 114. At step 141a, upon receipt of the confirmation, application 114
issues the command to write the tuple through interface 115 to DB access server 116.
At step 141b, DB access server 116 re-packages the request and sends it through
interface 117 to transport mechanism 130. At step 141c, transport mechanism 130
passes the request through interface 121 to switch database server 118. At step 141d,
switch database server 118 verifies the session ID and re-packages the *“‘write” request
to be sent through interface 123 to switch database access application 126. At step
142, switch database access application 126 executes the write command. Upon
successful completion of the write, at step 143a, switch database access application
126 returns confirmation of successful write through interface 123 to switch database
server 118. At step 143b, switch database server 118 re-packages the confirmation
and passes it through interface 121 to transport mechanism 130. At step 143c,
transport mechanism 130 passes the request through interface 117 to DB access server
116. Atstep 143&, DB access server 116 passes the confirmation through interface
115 to application 114. At step 144a, upon receipt of the confirmation, application
114 sends the command to end the transaction back through interface 115 to DB
access server 116. At step 144b, DB access server 116 re-packages the request and
sends it through interface 117 to transport mechanism 130. At step 144c, transport
mechanism 130 passes the request through interface 121 to switch database server
118. At step 144d, switch database server 118 re-packages the request and passes it

PATENT

REEL: 010041 FRAME: 0702

10

15

20

25

30

35

2197517

through interface 123 to switch database aégess application 126. At step 145, upon
receipt of the request, switch database access application 126 submits the changes to
the hard drive and ends the session. At step 146a, upon successful conclusion of the
session, switch database access application 126 returns a confirmation through
interface 123 to switch database server 118. At step 146b, switch database server 118
re-packages the end session confirmation and passes it through interface 121 to
transport mechanism 130. At step 146¢, transport mechanism 130 pasScs the
confirmation through interface 117 to DB access server 116. At step 146d, DB access
server 116 passes the confirmation through interface 115 to application 114. At step
146e, application 114 informs the user of the success of the transaction through
interface 131. At step 147a, the user, upon being informed of success, closes the
application which causes a message to be sent back through user interface 131 to
application 114. At step 147b, application 114 issues the end session message
through interface 115 to DB access server 116. At step 147¢c, DB access server 116
sends the end session message through interface 117 to transport mechanism 130. At
step 147d, transport mechanism 130 sends the end session message through interface
121 to switch database server 118. At step 148a, upon receiving the end session
message, switch database server 118 de-allocates the session ID and passes the
confirmation through interface 121 to transport mechanism 130. At step 148b,
transport mechanism 130 passes the confirmation through interface 117 to DB access
server 116. At step 148¢c, DB access server 116 sends the close connection message
through interface 115 to application 114. At step 148d, upon receipt of confirmation
message of closure of the connection, application 114 terminates.

1) INTERFACE BETWEEN THE APPLICATION AND DATABASE
ACCESS LAYER IN THE MANGEMENT STATION

Tuming to Figure 4, in order to utilize the present invention, an application
114 establishes a Database Access Session with the telephony switch 20. Within the
session the application 114 can search, read and write database tuples within the
switch database 124. ‘

Multiple telephony switches can be accessed simultaneously by the application
114 through independent Database Access Sessions.

The invention provides support for a set of operations which provide
application 114 with access via the switch database access application to the switch
database 124. Additional support is described for failure recovery and backwards
compatibility. In the following discussion Switch and Network Element are used

PATENT

REEL: 010041 FRAME: 0703

10

15

20

25

30

a5

2197517

13
interchangeably.

The structure of the interface between the application layer and the Database
Access Layer on the Management Station is provided by the functions (known as
“API” functions) as described.

All of the above functions, except the tuple management functions, on the
management station side have a mirrored function on the telephony switch 20 side.
When the application 114 exercises one of the above functions, the function is
packaged and transported to the telephone switch, where it is received, unpackaged
and delivered in a format understood by the switch database access application for
execution. In this manner, the user executing application 114 on the management
station 10 is isolated from the peculiarities of the switch, as the application 114 can
take care of any translations or data structure formats applicable to any particular
brand, model or version of switch. Each of these functions are called from the
application layer and passed through to the database access layer for further
processing. Results are passed back from the database access layer back through to
the calling function in the application layer. Fore more information on the data types
passes, pleased refer to the section “DB Access Server in the Management Station”

Detailed Description of Functions

(a) Error Identification - In the case where success is not returned, an error code
is returned and optionally passed as a variable to the application 114 signifying the
error encountered. The application 114 may optionally be referred to a look-up table
for the text of the error code, and return the error text to the user.

() Application Registration - This requires the application 114 to be registered
with the DB access server 116 prior to performing operations. This group of
functions operates within the management station 10. Registration is an important
element in the communication between application 114 and DB access server 116.
The application 114 is designed to understand certain versions and revision levels of
telephony switch 20. When registration occurs, the application 114 provides to the
DB access server 116 the version and revision level information that the application is
designed to handle. In the event that the application seeks to communicate to a
telephony switch 20 of a lesser version than that which the application is capable of
understanding, the DB access server converts the data from the version understood by
the application to the version understood by telephony switch 20. This mechanism
can also be used to operate in the opposite direction. Where an application is

PATENT

REEL: 010041 FRAME: 0704

10

15

20

25

30

35

2197517

14
communicating with a telephony switch of a greater version than the application, the

DB access server 116 can perform the necessary translation of the data for
communication with the telephony switch 20. When a data translation is necessary,
the DB access server 116 adds, translates or omits data as necessary to facilitate
communication with telephony switch 20. The application 114 is required to
deregister to relinquish use of system resources. The registration operations are:

@ Register

(ii) Deregister

An application 114 needs to register only once. Subsequent registrations result in
success and utilize the previously established DB access server 116 communication
channels.

@) Register - In order to utilize DB access server 116, an application must
- first register itself by calling the register function.
An application 114 is registered by calling the register function and providing
the name of the application as well as the edition of Switch Database it
understands as variables. The register function establishes a connection to the
DB access server 116 which handles all subsequent DB access requests. The
function will retumn a value indicating the success or failure of the operation.
In the event the start session fails, Database Access is not available. Ifa
Database Access session already exists, success is returned.
(ii) Deregister - When an application 114 wishes to terminate access, the
deregister function is called. Communication with the DB access server 116 is
terminated. The function will return a value indicating the success or failure
of the operation. If communication with the DB access server 116 was
previously terminated or does not exist, or a session is active, or a transaction
is active, failure is returned. Any sessions and transactions must be explicitly
terminated by the application 114 prior to deregistering.

(© Session Management - Operations to access each switch database 124 are
conducted within the confines of a ‘session’. An application 114 starts a session,
conducts a series of database access operations, and ends the session. The
management of the session is done by the underlying data access layer and data
transport layer which performs operations such as, opening and closing the
communications pipe 122 to the switch 20, packaging application requests and
sending them to the switch 20, and presenting request results to the application 114,

PATENT

REEL: 010041 FRAME: 0705

10

15

20

25

30

35

2197517

15
The session management operations are simply:

@) Start Session
(ii) End Session.
A session is catalogued and identified by a unique session ID. The telephony switch
20 is responsible for allocating and presenting the session ID to the DB access server
116. This is described in further detail below. An application 114 can only have one
session opened per telephony switch. Any attempt to start another session for the
same telephony switch will be rejected. Sessions can only be initiated on the active
plane where applicable and are dropped when an activity switch occurs.
(i) Start Session - In order to access the switch database of a telephony
switch 20, an application 114 must start a database access session. A session is
started by calling the start session function and providing the identifier of the
specific telephony switch 20 as a variable that the application 114 wishes to
access and the destination plane. The ID of the switch is entered through the
application 114, The start session function will establish a connection to the
specified telephony switch 20 through the network or connection mechanism
and assign a session ID to that connection. The function will return a value
indicating the success or failure of the operation. The session ID is passed
back to the calling application 114 as a session_ID parameter. The application
must use this session ID for subsequent access requests for the duration of the
session. In the event the start session fails, access to a switch database 124 is
not available for the telephony switch 20. If a database access session already
exists, or communication to the telephony switch 20 cannot be established,
failure is returned. On switches with multiple planes (fault tolerant
redundancy) the desired plane can be identified for access.
(ii) End Session - When an application 114 wishes to terminate the current
session, the session end function is called. The current Session_ID is passed as
a parameter to the function. The communications pipe 122 to the switch 20
will be closed. The function will return a value indicating the success or
failure of the operation. If the session was previously terminated or does exist,
or a transaction is active, failure is returned. The transaction must be explicitly
terminated by the application 114 prior to ending a session.

@ Transaction Management - As discussed above, the present invention is
described with respect to a Mitel® SX-2000® switch. On such a switch, access to the
database is provided by a view layer with the database tables 124 being manipulated
as a view set, as part of the switch database access application 126. It is obvious to

PATENT
REEL: 010041 FRAME: 0706

10

15

20

25

30

35

2197517

one skilled in the art to make the necessary1 gnoderations to the present invention to be
adapted to a telephony switch of a different design or manufacture where such view
sets are not used. Any database operations that will modify the switch database 124
must be conducted within the confines of a transaction. Three transaction functions
are provided: |
) Start Transaction
(ii) Submit Transaction
(iii) Cancel Transaction.
An application 114 can only have one transaction active per telephony switch 20. Any
subsequent start transaction request for the same teléphony switch 20 will be rejected.
@) Start Transaction - In order for an application 114 to make database
modification requests, a transaction must be initiated. The application 114
starts a transaction by calling the start transaction function and passing in the
session ID allocated when the start session function was called. When
communicating with an SX-2000® switch, the application 114 must also
specify the view set, where applicable, of the switch database access
application 126 that is to be opened during the transaction. The appropriate
view set for each version of switch is either preloaded or contains the database
120 on management station 10 or is entered through the application interface.
The application view set is used according to the operation selected by
application 114. The session ID is validated and a request is sent to the
telephony switch 20 to open the specified view set. The function will return a
value indicating the success or failure of the operation. If the start transaction
fails, the view set of the switch database 124 is not opened for write access. If
one or more views of a switch database 124 have already been opened by
another application 114, failure is returned. Only the views specified will be
available for modification. The view set open cannot be changed during a
transaction. Any attempt to modify other views within the current transaction
will be rejected. However, GET and FIND operations will be allowed for
other views with in the current transaction.
(ii) Submit Transaction - When an applicatioh 114 wishes to submit the
current transaction, it calls the submit transaction function and specifies the
current session ID. The submit function will issue a submit request to the
telephony switch 20 and closes the transaction regardless of success. The
function returns the success or failure of the operation. If a transaction is not
in progress, failure is returned.

PATENT

REEL: 010041 FRAME: 0707

i0

15

20

25

30

35

2197517

17
(iii) Cancel Transaction - When an application 114 wishes to cancel any

changes it has made to the switch database 124, it calls the cancel transaction
function with the current session ID. The cancel function sends a cancel
transaction request to the telephony switch 20 and terminates the transaction.
The function returns the success or failure of the operation. If a transaction is
not in progress, failure is returned.

(e) Read/Write Functions - A tuple is a composite view of a database record or
parts of several records that represents the smallest granularity of data in a database.
Tuples consist of one or more fields that are accessible by field names. All like tuples
are contained within a database view. Four basic tuple manipulation functions are
provided:
(i) Get Tuple
(ii) Add Tuple
(ili) Delete Tuple
(iv) Modify Tuple.
With the exception of the GET and FIND operations, all operations must be
conducted within the context of a transaction. All of the operations must be called
within the context of a session.
(i) Get Tuple - An application 114 can get the contents of a single tuple
from a telephony switch 20 for a particular view and tuple key by calling the
get tuple function. The application 114 must provide the current session ID,
the view ID or table names for the tuple requested, and a tuple structure with
the key portion filled in. The view ID, tuple structure and tuple mask are
dependent on the make, model and version of telephony switch being
accessed, the structure being stored in database 120 for use by application 114.
Optionally, information on tuples can be obtained by calling the Get Tuple
Definition function described below. The Get Tuple function returns a value
indicating the success or failure of the operation. The tuple contents are
returned in the tuple parameter. If the tuple does not exist or can not be read,
failure is returned. This functxon must be called within the context of a session
but does not require a transaction.
(ii) Add Tuple - An application 114 can add a tuple to a telephony switch
20 by calling the add tuple function. The application 114 must provide the
current session ID, the view ID, and the tuple contents. The view ID, tuple
structure and tuple mask are dependent on the make, model and version of
telephony switch being accessed, the structure being stored in database 120 for

PATENT
REEL: 010041 FRAME: 0708

10

15

20

25

30

35

(LY

2197517

18
use by application 114. Optionally, information on tuples can be obtained by
calling the Get Tuple Definition function described below. The success or
failure of the operation is returned. If failure is returned, the tuple is not added.

. If a transaction, containing the view to be modified, is not open, failure is

returned.

(iii) Delete Tuple - An application 114 can delete a tuple from a switch
database 124 by calling the delete tuple function. The application 114 must
provide the current session ID, the view ID, and the tuple. The view ID, tuple
structure and tuple mask are dependent on the make, model and version of
telephony switch 20 being accessed, the structure being stored in database 120
for use be application 114. Optionally, information on tuples can be obtained
by calling the Get Tuple Definition function described below. The success or
failure of the operation is returned. If failure is returned, the tuple is not
deleted. If a transaction, containing the view to be modified, is not open,
failure is returned.

(iv) Modify Tuple - The application 114 must provide the current session
ID, the view ID, the old tuple and the new tuple contents. The view ID, tuple
structure and tuple mask are dependent on the make, model and version of
telephony switch being accessed 20, the structure being stored in database 120
for use by application 114. Optionally, information on tuples can be obtained
by calling the Get Tuple Definition function described below. The success or
failure of the operation is returned. If failure is returned, the tuple is not
modified. If a transaction, containing the view to be modified, is not open,
failure is returned.

Get First/Next Functions - Two Get functions are provided:
@) Get First Tuple
(ii) Get Next Tuple.

@) Get First Tuple - The application 114 can find the first tuple for a
particular view on a switch database 124 by calling the get first tuple function.
The application 114 must specify the current session ID, the view ID, and a
tuple data structure. The view ID, tuple structure and tuple mask are dependent
on the make, model and version of telephony switch being accessed, the
structure being stored in database 120 for use by application 114. Optionally,
information on tuples can be obtained by calling the Get Tuple Definition
function described below. The success of the operation is returned and the

PATENT

REEL: 010041 FRAME: 0709

10

15

20

25

30

35

2197517

tuple is provided in the tuple parar&:ter. This function must be called within
the context of a session but does not require a transaction to be accepted.

(ii) Get Next Tuple - This function is similar to the Get First Tuple
function except that the application 114 must provide a startTuple from which
to start. The function will return the next tuple following the startTuple for the
specified view. The success of the operation is returned and the tuple contents
of the matching tuple is provided in the tuple parameter. This function must
be called within the context of a session but does not require a transaction to
be accepted.

Tuple Management Functions - A number of Tuple Management functions
are provided. The application 114 can get the definition of a tuple for a
particular view, based on the version of the software loaded in the telephony
switch 20, by calling the get tuple definition function. The application 114
must specify the view ID and the switch load version which is either stored in
the database 120 or obtained through the application 114. The success of the
operation is returned and the tuple definition is provided in the tuple size
parameter. The switch load version must be provided for backward
compatibility. This does not necessarily represent the load version of any
telephony switch 20 that the application 114 wishes to communicate with. The
tuple definition includes information pertaining to but is not limited to the
following items:

Tuple size

Key identification

Offsets of individual fields within the tuple

Sizes of individual fields

Field Data types

Field Data Ranges
This function can be called outside the context of a session since
communication with a telephony switch 20 is not necessary.

(@) Malloctuple

®) Inituple
(c) Freetuple
(d) Getupletype

(e) Getuplename
(63] Getuplesize

PATENT

REEL: 010041 FRAME: 0710

r

10

15

20

25

30

35

2197517

20
(g) Getuplenumfields

(h) Getfieldnameptr
() Getfieldkind

@G) Getfieldtype

&) Getfieldsize

()] Getfieldxlationtbl
(m) Setfield

(m) Getfield

(0) Copytuple

All of the above functions are particular to the management station 10 and are
designed to allow the application 114 to obtain information about the structure of the
database table on telephony switch 20. In the discussion that follows, the operation of
the functions is illustrated with respect to a Mitel® SX-2000® telephony switch,
although it is within the scope of this invention that the functions would be modified
to the particularities of different makes, models and versions of telephony switches.
All of the above functions operate within the Application Access Layer and Database
Access Layer of the management station 10. The functions allow the application to
obtain information about the particular database and table structures utilized on the
telephony switch 20. These functions need only be called if the application requires
such information. It is possible for application 114 to be written to utilize the other
aspects of the present invention without resorting to these functions, if the application
is already aware of the database table structure and definition of the selected
telephony switch. However, by adding this functionality to the present invention,
compatibility between different versions of applications 114, DB access server 116
and telephony switch 20 can be enhanced as the application can query for the database
structure on the telephony switch that it desires to communicate with. The
intelligence regarding the structure of various database tables, views, et cetera for
different makes, models, versions and revisions of telephony switch 20 is all
contained within the DB access server 116 which allows the decoupling of the
database application 114 from specific versions of telephony switch 20.

Rach of the above functions are described in further detail below.

a) Malloctuple - This function takes the database view ideas of
parameter and allocates a tuple buffer (area of memory)

PATENT

REEL: 010041 FRAME: 0711

10

15

20

25

30

35

b)

d)

g)

h)

@

i)

®)

M

(m)

®)

2197517

efficient to hold any2 %uple managed and manipulated by the
application 114 and DB access server 116.

Inituple - This function takes the database view ID and a
pointer to the tuple as a parameter and initializes the tuple
buffer to remove its current contents.

Freetuple - This function takes the buffer allocated by the
Malluctuple function and returns it when it is no longer used for
recovery of system resources.

Gettupletype- This function takes the view ID and returns the
type of the tuple. That is, the operations that are supported on
that particular database view. The different view types may or
may not support adding, deleting, modifying, or reading the
data. A
Gettuplename - This function takes the desired view ID and
returns the name of the tuple.

Gettuplesize- This function takes the view ID and returns the
size of the tuple.

Gettuplnumfields - This function gets the release addition and
view ID and returns the number of fields in the tuple.
Getfieldnameptr - This function takes the view ID and field ID
and returns the name of a given field in the tuple.

Getfieldkind - This function takes the field ID and view ID and
returns the kind of a given field in the tuple (i.e. integer,
enumeration or string).

Getfieldtype - This function takes view ID and field ID and
returns the kind of a given field in the tuple (i.e. . integer,
enumeration or string).

Getfieldsize - This function takes view ID and field ID and
returns the size of a given field in the tuple

Getfieldxlationtbl - This function takes view ID and field ID
and returns as a table used to translate an enumeration to its
corresponding string in a given field in the tuple.

Setfield - This function takes the release addition, view ID,
field ID, field value and tuple and sets the value of a given field
in the tuple.

Getfield - This function takes the release addition, view ID,
field ID, field value pointer and a tuple and gets the value of a

PATENT

REEL: 010041 FRAME: 0712

10

15

20

25

30

35

2197517

given field in the tu;lze.

(o) Copytuple - This function takes the view ID, destination tuple
and source tuple and copies the contents of the source tuple to
the destination tuple buffer.

For further information on examples of the structure of data types which could be
used for the above, please refer to the section Common data format below.

2) DATABASE ACCESS LAYER IN THE MANAGEMENT STATION

Returning to Figure 4, the features of the database access layer in the
telephony management station 10 incorporating the present invention is described. As
mentioned above, application 114 on management station 10 communicates to DB
access server 116 through API redirection layer 150. In an alternate embodiment,
other DBA clients or other routing applications may utilize API redirection layer 150
to communicate with DB access server 116. DB access server 116 communicates
through DB Comm server 152 which in turn communicates with Comms redirection
layer 154. Comms redirection layer 154 then communicates with the data transport
layer via communications pipe 122. Communication pipe 122 calls presentation layer
service 156 to place the data in a format such as can be communicated to Ethernet
card 110 and placed on local area network 30. The architecture of the present
invention enables support of multiple independent applications.

The individual software components required to support DB access requests
on the management station 10 are as follows:

(a) API Redirection Layer

(b) API Parameter Data Format
(c) Comxﬁon Data Format

(d) DB Access Server

(e) DB Comms Server

A brief overview of each software component is described in the following
subsections.

(a) API Redirection Layer - The API Redirection Layer 154 resides in
the management workstation 10 as a library of functions with which
applications such as application 114 compile and link. The API Redirection

PATENT

REEL: 010041 FRAME: 0713

10

15

20

25

30

2197517

Layer 154 translates the applicatiorzlal 14 functions described above to a form to
be processed by DB access server 116. These functions permit the application
114 to establish a socket connection with the DB access server 116 and issue
Database Access requests to act on telephony switch 20. The API Redirection
Layer isolates applications such as application 114 from the actual
implementation of the DB access server 116. This isolation allows the DB
access server 116 to be changed without impact to individual applications (i.e.
old applications do not require recompiling or relinking to do the work with a
new DB access server). API function calls by the application 114 as
described in the section “Interface Between The Application and Database
Access Layer in the Management Station” above are converted to associated
messaging by using a simple socket connection and a common data format.
Messages are sent and received synchronously (blocking for a response).

As described above, the application 114 makes an API function request to the
API redirection layer 150. The API redirection layer 150 receives the API
request from the application 114, converts the API request to a common data
format request, then sends the common data format request DB access server
116. The DB access server 116 then processes the request and once processed,
sends back a response in common data format to the API redirection layer 150.
The common data format response is then formatted by the API redirection
layer 150 into a format receivable by the calling API function and returned to
the application 114.

Each application 114 communicates with an independent API Redirection
Layer 150 process to manage access to DB access server 116.

The API redirection layer sends a common data format request message to the
DB access server 116 and blocks for a response. The following API calls are

managed by this layer:
e View Set Management

OrderViewSet

e Error Identification
GetErrorText

e Application Registration

PATENT

REEL: 010041 FRAME: 0714

10

15

20

25

30

2197517

24
Register

Deregister

e Session Management
StartSession

EndSession

e Transaction Management
StartTransaction
SubmitTransaction
CancelTransaction

¢ Read/Write Functions
GetTuple
AddTuple
DeleteTuple
ModifyTuple

e Get First/Next Functions
FindTuple
GetNextTuple

For more information of these function calls, reference should be made to the

“Interface Between The Application and Database Access Layer in the
Management Station™ section described above.

®) API Parameter Data Format - The API Parameter Data Format is
the format of the data and variables passed by the functions described above
with respect to Figure 4 and used by the application 114 and the API
Redirection Layer 150. The API redirection layer 150 translates data received
from the application 114 in API parameter data format to common data format
and passes the information on to DB access server 116. These formats may be
unique to the application but contain the information necessary to convert the
information to common data format. The common data format is described in
further detail below. The example below is particular to a Mitel® SX-2000®
switch. Obvious modifications can be made to support other switch designs.

PATENT

REEL: 010041 FRAME: 0715

10

15

20

25

30

35

2197517

() Common Data Format - nge common data format is used only by the
API Redirection Layer 150, the DB access server 116, the DBA Comms
Server 152 and the Comms Redirection Layer 154. Data structures are used by
each component to compose or interpret the messages passed between them as
untyped data. The API redirection layer 150 takes the data received from the
application 114 in API parameter data format and converts it into common
data format. The specific translation depends upon the make, model and
version of the telephony switch being manipulated. The structure for a typical
Mitel® SX-2000 switch will be used as an example. The common data
format includes a version identification to ensure that backward compatibility
can be supported in the future in the event that enhancements are made to the
common data format itself. This format is hidden from the application 114.
Changes to the common data format can be introduced independently such that
the versions of each component can differ without loss of communication.

The DB access server 116 maintains a Client Record for each client (associated
with the socket connection). This Client Record maintains the client type, status,
name, release, session count, and socket connection record. API Redirection
Layer 154 and DB Comms Server 152 clients are distinguished by a client type
of CLIENT_APPLIC and CLIENT _NE, respectively.

Common Data Format Data Types

The common data format Data Types are passed between the API
Redirection Layer 154, the DB access server 116 and the DB Comms Server
152.

o The following is an example of the definition of the type of requests which
are supported by the DB access server 116 and switch database server 118
of the present invention. These correspond to the action codes supported
by the telephony switch 20.

typedef enum {
DBA_REQ _NIL = DBA_FIRST_ENUM -
DBA_REQ_CLIENT REGISTER,
DBA_REQ _CLIENT_DEREGISTER
DBA_REQ_ASYNC_ERROR
DBA_REQ_SESSION_START
DBA_REQ_SESSION_END
DBA_REQ TRANS_START
DBA_REQ TRANS_SUBMIT
DBA_REQ _TRANS_CANCEL

PATENT
REEL: 010041 FRAME: 0716

10

15

20

25

30

35

40

45

2197517

26
DBA_REQ ADD _TUPLE
DBA_REQ MODIFY_TUPLE
DBA_REQ _GET_TUPLE
DBA_REQ GET FIRST
DBA_REQ_GET_NEXT
DBA_REQ _LAST -
DBA_REQ_END = DBA_LAST_ENUM

} d‘paZkRequest

1]

The following is an example of the definition of the data structure for the
data portion of a message to be sent to the telephony switch 20 for
performing one of the transactions described above.

typedef struct {
dba2kViewldSet_t dba2kViewldSet;

// This is the set of views (or tables)
to be locked when starting a
transaction.

dba2kViewld_t dba2kViewld;

// This is the view (or table) being
acted upon (for adding, modifying,
deleting etc.)

dba2kTuple t dba2kKeyTuple;

// This is the tuple key to use for a
transaction.

dbaZkTuple_t dba2kFullTuple;

{// This is the tuple to use for the
transaction.

} dba2kData t;

The following is an example of definitions of the data structure for the
client name and release edition or version of the switch, as well as a
structure to hold the data portion of a message to be sent to the telephony
switch 20.

typedef char dbaClientName t [DBA_NAME_STR_LEN + 1
typedef char dbaRealeaseEdition_t [DBA_RELEASE STR_LEN +
typedef dba2Kdata_t *dba2kDataPtr_t;

/* This structure can grow in size to handle backwards compatibility */

PATENT
REEL: 010041 FRAME: 0717

10

15

20

25

30

35

40

45

2197517

27
typedef struct {

int dbaHeaderSize;

int dba2kDataSize;

dbaRequest_t dbaRequest;

dbaError_t dbaError;
// This is for the handling of errors
on the transaction.

dbaClientName _t dbaClientName;
// This is the name of the client for
the client register request.

dba2kEdition_t dbaReleaseEdition;
/! This is the switch release edition
being contacted.

dbaClientName_t dbaAssociateName;

dbaPlace t dbaAssociatePlane;
// The above two are associated
name the switch and controller for
a transaction (when the optional
redundant switch is contacted).

int dbaSessionld;
// This is the unique identifier for
the transaction.

dba2kDataPtr_t dba2kDataPtr;

// This is the data accompanying
the transaction for performing of
the operation.

} dbaCdfMessage t

e The following is an example of definitions of the data structure for
supporting a telephony switch 20 that has multiple planes (fault tolerant
redundancy).

typedef enum §

DBA_PLANE_NIL =DBA_FIRST_ENUM,
DBA_PLANE_A,

DBA_PLANE_B,

DBA_PLANE_ACTIVE,

DBA_PLANE INACTIVE,

DBA_PLANE _END =DBA_LAST_ENUM
} dbaPlane_t; '

typedef int dbaError_t;

PATENT
REEL: 010041 FRAME: 0718

10

15

20

25

30

35

40

45

2197517

28

The following is an example of the definition of the kind of fields that may
appear in a tuple.

}

DBA2K_FIELDKIND NIL
DBA2K_FIELDKIND KBY
DBA2K_FIELDKIND READ WRITE
DBA2K_FIELDKIND_READ_ONLY
DBA2K_FIELDKIND SECONDARY_KEY
DBA2K_FIELDKIND END = DBA_LAST_ENUM
dba2kFieldKind t;

=DBA_FIRST_ENUM

The following is an example of the definition of the type of fields that may
appear in a tuple.

typedef enum {

}

DBA2K_FIELDTYPE_NIL
DBA2K_FIELDTYPE_INTEGER
DBA2K_FIELDTYPE_ENUM
DBA2K_FIELDTYPE_STRING
DBA2K_FIELDTYPE_END
dba2kFieldType_t;

= DBA_FIRST_ENUM

= DBA_LAST_ENUM

The following is an example of the definition of the type of views that may

appear in a telephony switch.

typedef enum {

DBA2K_VIEWTYPE_NILE = DBA_FIRST_ENUM
DBA2K_VIEWTYPE_FULL_FUNCTION_SUPPORT_WITH_BLAN-

TUPLES,

ES

}

DBA2K_VIEWTYPE_FULL_FUNCTION_SUPPORT_NO_BLANK_TUPL

DBA2K_VIEWTYPE_NO_SUPPORT_FOR_ADD_OR_DELETE,
DBA2K_VIEWTYPE_VIEW_HAS_COMPRESSED_MEMBER_LIST,
DBA2K_VIEWTYPE_HEAD_ONLY,
DBA2K_VIEWTYPE_END
dba2kViewType_t

=DBA_LAST_ENUM

The following is an example of the definition of what a field might look
like that may appear in a tuple.

typedef struct {
char *fieldName;
int . offset;
int size;

dba2kFieldKind t kind;
dba2kFieldType t type;
int minValue;

PATENT
REEL: 010041 FRAME: 0719

10

15

20

25

30

35

40

2197517

29
int maxValue;
strToEnum {*xlationTbl} [];
strToEnum {apiXlationTbl} [];

} dba2kFieldDesc t;

e The following is an example of the definitions for the kind of fields that
may appear in a tuples for different versions of telephony switch 20.

typedef dba2kFieldDesc_t {*dba2kFieldTbIPtr_t} [];

typedef struct {
dba2kFieldThIPtr_t tupleFieldTbIPtr;
const dba2kEdition_c releaseEdition;
const int numFields;
}dba2kTupleVersion _t;

typedef dba2kTupleVersion_t {"dba.ZkTup]eVefsionTblPtr_t} (%

typedef struct {
dba2kTupleVersionTbIPtr_t tupleVerTbiPtr;
int tupleSize;
char *tupleName;
dba2kViewType_t viewType;

}dba2kTupleDesc_t;

e The following is an example of definitions of the data structure for the
various types of views or tables which can be supported on telephony
switch 20.

typedef enum { /* from view_identifier/dbviewid.typ */

VID_NIL,

VID_COR,
VID_COS,
VID_FAC,

VID_REMOTE_DN,
VID_END =DBA_LAST_ENUM
} Viewld;

Switch Database Data Types - Also when implemented with Mitel® SX-
2000® switches, Switch Database Data Types are passed to the API
redirection layer which directly reflects the Switch Database 124. These are:

PATENT

REEL: 010041 FRAME

: 0720

(’\

10

15

20

25

30

35

40

2197517

30

typedef enum {
CLIENT_NIL =DBA_FIRST _ENUM,
CLIENT_APPLIC,
CLIENT_NE,
CLIENT_END =DBA_LAST ENUM
} clientType _t; '

typedef struct {
dbaFError_t dbaError;
boolean dbaErrStrPresent;
char dbaErrStr{
DBA_STR_LEN 300];
} dbalongError_t;

Session Id Data Types - The Session Id Data Types are also
passed in all messages and cannot be changed, they are:

typedef struct {
int dbaSysld,
longint - dbaTasklId;
char dbaPlaneld;

} dbaSessionld t;

These common data format types are used internally to the Database Access
Layer for management internally, and will change from implementation to
implementation. For example, these may include:

#define ABS_MAX_CLIENTS 8 /* Must be greater than the number of all
Clients Allowed */

#define ABS_ MAX_SESSION_COUNT4

typedef enum {
STATUS_NIL,
STATUS_OK,
STATUS_NEW,
STATUS_AWAITING_NE,
STATUS_END

} clientStatus_t;

typedef struct {
char clientSessionAssociateName[DBA_NAME_LEN];

int clientSessionAssociateld;

PATENT

REEL: 010041 FRAME

: 0721

10

15

20

25

30

35

40

2197511

31
int clientSessionSqNbr;
} clientSession_t;

typedef struct {
int clientNbr;
clientType_t _clientType;
clientStatus_t clientStatus;
char clientClientName[DBA_NAME_LEN];
char
clientRelease[DBA_RELEASE_INFO_LEN];
int clientSessionCount;

clientSession_t '
clientSessionRec[ABS_MAX_SESSION_COUNT];
ssuconnectRec_t clientConnectRec;

} clientRec t;

(d) DB Access Server - The DB access server 116 is provided as a

separate daemon process running on the management station 10 which

provides services to client applications 114. The present invention provides
multiplexing support between mﬁltiple applications and multiple telephony
switches. Simple socket connections are used to communicate with
applications through the API Redirection Layer 154 and the DB Comms server -
152, referred to collectively as clients. Backward compatibility support is
provided using a common data format for the messages passed across the

socket connection as is described in further detail below. Messages are sent
and received asynchronously (non-blocking).

Socket operations and common data format messages are handled by the
DB access server 116 exclusively through the DBA_Service socket. Where
required, conversion is performed between common data format message
versions and also between various Switch Database 124 versions.

To facilitate communication from management station 10 to telephony
switch 20, the version of the DB access server 116 must be greater than or
equal to the version of telephony switch 20. The DB access server 116
contains within it knowledge of the various models, versions and revisions of
telephony switch 20 to enable it to translate commands and data received from
application 114 to a format which can be understood by telephony switch 20.
This allows for backward compatibility. DB access server 116 has knowledge
of the various commands and data formats necessary to control and manage
telephony switch 20. It is able to translate, supply and omit elements as
necessary to package commands and present responses in a format which can

PATENT

REEL: 010041 FRAME

: 0722

10

15

20

25

30

35

2191517

be understood by both telephony s:r;i:tch 20 and application 114. One of the
benefits of this design is that the application is not required to be aware of
changes brought about by different models, versions and revisions of
telephony switch 20. Through the registration function described above, the
application 114 stipulates to the DB access server 116 the version, model and
revision of telephony switch that it is capable of understanding, and the DB
access server 116 can perform the translation necessary to present the
application 114 with responses that the application can expect.

Performance Characteristics

The communication link and associated layers of the present invention impact
PBX performance. This impact is dependent on the communication link
characteristics The transaction mechanism allows an application to open multiple DB
Views simultaneously. The more DB Views that are modified, the longer a submit
action takes to complete. If an Activity Switch occurs at any time during the
transaction, prior to the successful completion of a submit, all changes are rolled back.
For this reason, it is recommended to limit the extent of changes performed within a
single transaction. The Database access server 116 manages client connection
requests and prepares an associated Client Record. Subsequent messages on the socket
connection are handled in the context of the associated Client Record in common data
format.

Each message is serviced independently and either forwarded or acted upon as
required. Conversions between common data format messaging levels and between
Switch Release levels are also performed as required.

Initialization - The Database access server 116 is launched at system start-up, when
Database Access Functionality is enabled. Each Client Record is initialized to nil
values and the DBA_Service socket service is established.

Each function provided by the API Redirection Layer 154 initiates a function request
and blocks for the result of the request. A dbaError is returned which is either
DBA_SUCCESS or a failure code.

Where required, the request is converted to a common data format request, passed to
the DB access server 116, and the associated common data format response is
converted for return to the application 114.

The following requests are communicated to and dealt with by the DB access server
116.

PATENT

REEL: 010041 FRAME: 0723

10

15

20

25

30

35

219751/

Client Connect - The handle Client Conggct is invoked when a connection is
established by the client on the DBA_Service socket. A Client Record is obtained and
the connection record is initialized. The socket connection is denied if a Client Record
is not available because the maximum number of simultaneous socket connections is
exceeded.

Client Disconnect - The handle Client Disconnect is invoked when a disconnect of the
client is recognized on the DBA_Service socket. The connection is closed and the
associated Client Record is cleaned up, as required.

Client Register - Handle Client Register is marked by the client and determines the
type of client connecting to the DB access server 116. The Database access server 116
initializes the associated Client Record accordingly.

Registration is denied if the number of allowed clients of the given type are exceeded.

Client Deregister - Upon receiving a Client Deregister request from the DB Comms
Server 152, a check by the DB access server 116 is made of the number of sessions in
progress. If no sessions are active the associated socket connection is closed, no
notification is provided to associated clients.

Session Start - Upon receiving a Session Start request from the API Redirection Layer
150, the Client Records are scanned for an existing DB Comms Server 152
communicating with the desired telephony switch 20. If one does not already exist a
DB Comms Server 152 is spawned by the Database access server 116. The
dbaSessionld is initialized and partially established using the associated Client Record
identifiers and the associated DB Comms Server 152 is forwarded the Start Session
request. Upon receiving a Session Start request from the DB Comms Server 152, the
associated Client is determined from the dbaSessionld. An acknowledgment is then sent
to the requesting API Redirection Layer 154 process. At this point the dbaSessionld has
been fully established.

Session End - Upon receiving a Session End request from the API Redirection Layer
150, a check is made of the number of sessions in progress. If no sessions are active the
associated socket connection is closed.

The Session End request is not used by the DB Comms Server 152.

Request and Response - Handle Request and Response manages requests for Switch
Database operations and the associated responses (transaction start, transaction submit,
transaction cancel, get tuple, get first, get next, find first, find next, etc.). Validation of
the dbaSessionld is performed and the common data format message is forwarded to the
associated client. Compatibility conversion is also applied as required.

PATENT

REEL: 010041 FRAME: 0724

10

15

20

25

30

35

2197517

34
Constraints - Limitations on the number of simultaneous clients are imposed to
manage resource constraints. The maximum number of all socket connections is
specified along with limits on the number of clients of each client type.

Error Handling - Should any messaging failure occur on a socket connection, the
associated client is deregistered and the socket connection is disconnected. No impact is
incurred on any other established connection. Messages received which are destined
for clients which no longer exist are disregarded. An unexpected message error will be
logged in the event the client type is not allowed.

Additional Support Provisions
The following support provisions are provided within the DB access server
116:
@) Switch DB Programming Verification
(ii) Support Multiple Management Station Sessions
(iii) Support Multiple Telephony Switch Sessions
(iv) Inactivity Timeout on Transactions
W) Active and Inactive Plane Handling
(vi) Activity Switch Handling
(vii) Database Versions
(viii) Failure Recovery
(ix) Backward Compatibility
These are described in further detail below.

63} Switch DB Programming Verification - During any
operations which change DB View contents on the telephony switch 20
, a validation procedure is performed and any error is reported. If an
error occurs, the validation failure is then communicated to the
application 114 through the error identification function described
above to take appropriate actions.

(i) Support Multiple Management Station Sessions - The
architecture of the present invention is engineered to support multiple
sessions. That is, multiple management stations 10, or multiple user
work stations, may access a given telephony switch 20 under the
architecture of the present invention. From this aspect, the telephony
switch may be more tightly integrated into a networked environment,

PATENT

REEL: 010041 FRAME: 0725

10

15

20

25

30

35

2197517

35
as the status of various features of the telephony switch can be reported
to multiple users, and can be changed by individual users on demand.

(iii) Support Multiple Telephony Switch Sessions - The
architecture of the present invention provides support for multiple
sessions to a single telephony switch 20 from different applications
114. This allows multiple applications to query and adjust different
features of the telephony switch simultaneously.

(iv) Imactivity Timeout on Transactions - A programmable
inactivity timeout, with default value of 20 minutes, is provided. This
allows for hung or inactive sessions to be gracefully terminated.

) Active and Inactive Plane Handling - The architecture is
engineered to support both the Active and Inactive planes of a
redundant telephony switch 20. In the case the telephony switch is not
partitioned, only DB Access sessions on the Active Plane are permitted
to write changes to the telephony switch database 124.

(vi) Activity Switch Handling - Upon occurrence of an Activity
Switch any established session is dropped without the specific reason
provided to the application 114.

(vii) Database Versions - In the present example of a Mitel® ® SX-
2000® switch, it is obvious to one skilled in the art to make
modifications to support the retrieval of the version of software from
telephony switches of other models or manufacturers. In the preferred
embodiment, the existing main controller load version retrieval
mechanism for MNMS is used for SX-2000® switches. For other
switches or models the appropriate mechanism to determine the
software load version could be used. A table in the database 120
identifies Database Form changes for the different versions.

(viii) Failure Recovery - In the event a failure occurs, any
transaction in progress is aborted and the application 114 is informed
of the nature of the failure. A problem situation does exist when the
transaction submit was requested by the application 114. Under this

PATENT

REEL: 010041 FRAME: 0726

10

15

20

25

30

35

2197517

condition the submit may o:: inay not have been successful prior to the
failure. Further action may be required to verify the success of the
submit operation.

The following specific failures are handled: Inactivity Timeout,
Activity Switch, Link Outage, DB Access Server trap, Message Lost,
Backwards Compatibility, Version Mismatch.

Inactivity Timeout - When the session inactivity timeout expires, any
transaction in progress is aborted and the application session is
closed.

Activity Switch - Upon activity switch notification from active to
inactive, any transaction in progress is aborted.

Link Outage - Upon communication failure the DB access server 116
aborts any transaction in progress and closes the established
session.

DB Access Server trap - In the unlikely event the DB access server 116
encounters a run-time trap, it is recreated and aborts any
transactions in progress.

Message Lost - The existing link layer supports multiple re-
transmission and message integrity. This is supported in both
directions.

(ix) Backwards Compatibility - In the operation of the invention,
the database access version is always equivalent to or higher than the
highest version of switch 20 software to which it is connected.
Requests and replies associated with an older version of switch 20
software are handled within the DB access server 116.

To facilitate communication from management station 10 to telephony
switch 20, the version of the DB access server 116 must be greater than
or equal to the version of telephony switch 20. The DB access server
116 contains within it knowledge of the various models, versions and
revisions of telephony switch 20 to enable it to translate commands and
data received from application 114 to a format which can be

PATENT

REEL: 010041 FRAME: 0727

10

15

20

25

30

35

2197517

understood by telephony svsi—ich 20. This allows for backward
compatibility. As DB access server 116 has knowledge of the various
commands and data formats necessary to control and manage
telephony switch 20, it is able to translate, supply and omit elements as
necessary to package commands and present responses in a format
which can be understood by both telephony switch 20 and application
114. One of the benefits of this design is that the application is not
required to be aware of changes brought about by different models,
versions and revisions of telephony switch 20. Through the
registration function described above, the application 114 stipulates to
the DB access server 116 the version, model and revision of telephony
switch that it is capable of understanding, and the DB access server can
perform the translation necessary to present the application with
responses that the application can expect.
The application 114 should be recompiled against the DB access server
116 version for compatibility. For example, the following changes are
supported by the DB access server 116:
. New Table or View Added

A table or view is not provided by the Switch 20, until an

application 114 is designed to request it.

. Old View Removed
The application 114 request is rejected, if a table or View is not
supported by the switch 20.

. New Field Added (to end)

The is-present flag is included in the API Redirection Layer
support for the new field. If the field is not provided by the
switch 20, the is-present flag for that field returns false. The
field is not passed to an older version switch, if supplied by the
application.

. New Enumeration Added (to end)
The enumeration value is rejected by the switch, if supplied by
the application and not supported.

Version Mismatch

In the event the switch 20 software version is not recognized the
telephony switch is not available for DBA sessions. An error is also
returned to the application 114 by the Start Session request.

PATENT
REEL: 010041 FRAME

: 0728

10

15

20

25

30

21971517

38

(e DB Comms Server - The DB Comms Server 152 isolates the DB
access server 116 from the network communications mechanisms. This
includes the Presentation Layer Service 156 and the communications pipe 122.

This isolation allows the Presentation Layer Service 156 and the
communications pipe 122 to be changed without impact to the DB access
server 116 or applications 114. The DB Comms Server 152 process establishes
a socket connection with the DB access server 116 and also listens for
messages from the Comms Redirection Layer 154. Each message is serviced
independently and either forwarded or acted upon as required. Messages are
sent and received asynchronously (non-blocking) from both the telephony
switch 20 and the DB access server 116. The DB Comms Server 152 is
provided as a secparate process running on the management station 10 and acts
as a client of the DB access server 116.

A DB Comms Server 152 is spawned for each telephony switch 20, by the DB
access server 116, in response to Application 114 requests. Destruction of the
DB Comms Server 152 processes are also managed by the DB access server
116.

The DB Comm server 152 then processes the request and returns a common
data response to the DB access server 116. The DB access server 116 then
performs the necessary translation to handle backward compatibility and then
transfers the common data results back to the API redirection layer 150.

Initialization - The DB Comms Server 152 is spawned by the Database access
server 116 with command line parameters, including the identity of telephony
switch 20 with whom to connect. A communication channel is setup with the
telephony switch 20 and the Release Info regarding that switch is obtained. A
message handler is then attached to listen on the communications pipe 122
connection. Upon successful completion of these operations the DB Comms
Server 152 registers with the DB access server 1 16.

Imterfaces - The DB Comms server 152 receives a common data request from the DB
access server 116. The DB Comms server 152 then establishes a ComsessionID. The
DB Comm server 152 then sends the common data request to the Comms Redirection
layer 154 and waits for a response. When a response is received, the Comms
redirection layer 154 passes a common data response back to the DB Comm server 152.

PATENT
REEL: 010041 FRAME: 0729

10

15

20

25

30

2197517

39
The DB Comm server 152 then determines the comsessionID from the response and
then sends the common data request back to the DB access server 116.

Socket operations and common data format messages are handled by the DB Comms
Server 152 through the DBA_Service socket. Comms Redirection Layer 154 functions
are utilized to manage communication with the telephony switch 20.

MESSAGES HANDLED BY DB COMMS SERVER

There are two types of messages which are received by the DB Comms server:
messages from the DB access server 116 and messages from the telephony switch 20.
The DB comms server receives DB access server messages from the DB access server
116 in common data format and passes them to the Comms Redirection Layer 154 for
sending to the associated telephony switch 20. The message is converted to a common
data format message and sent to the DB access server 116 for subsequent redirection
based on the Session Id.

Session Start - Upon receiving a Session Start request from the DB access server 116
the session count is incremented and the request is passed to the Comms Redirection
Layer 154. Upon receiving a Session Start response from the Comms Redirection
Layer 154, the associated Client is determined from the comSessionld. The message is
forwarded to the DB access server 116.

Session End - A Session End request from the DB access server 116 is forwarded to
the telephony switch 20 via the Comms Redirection Layer 154, and the session count is
decremented. In the event no more sessions are established to the telephony switch 20,
a timeout is set to wait for the configured kold time.

Timeout - Timer expiry indicates the hold time has elapsed. The DB Comms Server
152 ensures there are no new sessions established, disconnects the telephony switch 20
and terminates. If a session has been established the timeout is cleared.

Error Handling - In the event 2 connection cannot be established or is dropped, the
cxisting error handling is utilized. Severe errors are logged, using the existing log
mechanism, as appropriate. The socket connection to the DB access server 116 is also
closed.

PATENT

REEL: 010041 FRAME: 0730

10

15

20

25

30

2197517

messages in this other data format ‘tlc} translate them to the common data format
used by the DB Comms server 152. The telephony switch 20, when it receives
the data, unpackages the data from its message transport format for eventually
processing. The telephony switch 20 and management switch 10 must therefore
use a compatible message transport mechanism.

MNMS Message Data Format - The MNMS Message Data Format is
an example of a message transport mechanism protocol which can be used by
the Comms Redirection Layer 154 and the communications pipe 122 to
communicate with telephony switch 20 via the Presentation Layer Service
156. Messages are translated from this format to common data format to be
handled by the DB Comms Server 152.

This data is passed as a typed data structure to the transport protocol
for transport. The MNMS Data types are not an aspect of this invention, but,
for more information they are described in further detail.

Where required, the request is converted from a common data format
request to a transport protocol message and passed to the communications pipe
122. Translation is also applied in the reverse direction. The following
messages, along with the data supplied to the Comms redirection layer is sent to
the communications pipe 122 for communications with the telephony switch 20.

Q) Send Common Data Format Request - Sends common data
format Request converts a common data format message to transport
protocol message and passes it to the communications pipe. A sequence
number is used in the message based on a unique identifier.

(i) Receive Common Data Format Response - Receive common
data format Response obtains an MNMS message from the
communications pipe 122 and converts it to a common data format
message. The sequence number in the message is used to determine the
unique identifier. '

(ili) Connect To Telephony Switch - Connect to telephony switch
establishes 2 communication channel with the specified telephony switch
20. The switch name is validated, utilizing the database, and an attempt
to open a connection is made. Should the initial attempt fail, it will retry
after a delay based on the reason for failure. On successful connection
the applicld is used to register for reception of messages.

PATENT

REEL: 010041 FRAME: 0731

10

15

20

25

30

35

2197517

42
(iv) Disconnect From Telephony Switch - Disconnect from network
element closes an existing MNMS communication channel with the
specified Network Element.

“) Get Switch Release Info - Get switch release info obtains the
software release info from the telephony switch.

b) = Presentation Layer Service - The Presentation Layer Service 156 is
an existing library of functions which manage translation and transformation
between message or data transport format and specific Z.300 data
representations. The Presentation Layer Service 156 resides in the
management station 10 environment as a library of functions with which the
DB Comms Server 152 is compiled and linked.

c) Communications Pipe - The communications pipe 122 resides in the
data transport layer and is an existing daemon process which manages
connections with individual telephony switches. It exists as a library of
functions with which the DB Comms Server 152 is compiled and linked. The
communications pipe manages communication with the connected telephony
switch 20. Functions are provided to connect and disconnect the
communication channel and facilitate message passing. The Z.300 Data
Format is used by the communications pipe 122 and the existing Transport
Layer to communicate with telephony switch 20 via the Presentation Layer
Service 156. The invention is not dependent on this data format. Other data

formats can be used.
ARCHITECTURE WITHIN THE TELEPHONY SWITCH

Turning to Figure 5, the features of the architecture of the present invention in
a telephony switch are described in further detail. To a large extent, the architecture
within the telephony switch 20 to implement the present invention is the mirror image
of that found on the management station 10 previously described. The translations
performed are merely the unpackaging of the information packaged at the
management station 10. As such, guidance for the operations performed on the
telephony switch can be obtained in reference to the operations performed on the
management station 10 described above.

In summary, the message sent from management station 10 is received by
telephony switch 20 through Ethernet card 112. The message is then transferred

PATENT

REEL: 010041 FRAME: 0732

10

15

20

25

30

35

2197517

through communications pipe 128 to mess‘:x;c handler 180. Message handler 180
translates the message from its format into DBA request record format to interface
with switch database server 118. The translation formed by communications pipe 128
and message handler 180 is described in further detail below. Message handler 180
translates the message from its data transport format into DBA request record format
so that it can be handled by switch database server 118. The switch database server
118 then spawns a DB task server 182, (one for each session). The switch database
server 118 then passes the DBA request record to the DB task server 182 for further
processing. DB task server 182 then translates the DBA request record into the
appropriate format acceptable to switch database access application 126 and passes
the request to switch database access application 126 for processing. Switch database
access application 126 then processes the request by accessing switch database 124
and returns the result back to DB task server 182. The response is then translated by
DB task server 182 back into DBA request record format and the record is then passed
to switch database server 118 for further processing. The response then travels
through switch database server 118 through the database access layer to the data
transport layer to message handler 180. Message handler 180 then performs the
translation for communications pipe 128 and passes the transformed message to the
communications pipe 128. Communications pipe 128 then passes the message to
Ethernet card 112 which interfaces with local area network 30 to be sent back to the
originating management station or device.

4. = INTERFACE BETWEEN THE DATA TRANSPORT LAYER AND
DATABASE ACCESS LAYER IN THE TELEPHONY SWITCH

The data arrives from network 30 and passes through Ethernet card 112 to
communications pipe 128. Message handler 180 then allocates a DBA request record,
converts the input data format to DBA request record format and then sends the DBA
request record format to the switch database server 118. Switch database server 118,
which receives the database request record allocates resources to service the data and
sends the service data back through the interface to message handler 180. Message
handler 180 then converts the DBA request records back to the appropriate format for
the communications pipe 128 to receive and then forwards the formatted data back to the
communications pipe 128 for transport. The message handler also de-allocates the space
for the DBA request record if required. There are three aspects to the interface between
the data transport layer and the database access layer on the telephony switch 20:

(a) Communications pipe

PATENT

REEL: 010041 FRAME: 0733

5

10

15

20

25

30

35

2197517

44
(b) Message handler

© DB access request record

The following aspects of the interface between the data transport layer and the

database access layer within the telephony switch 20 will be described in further detail

(a) Communications Pipe - The communications pipe 128 is responsible for
handling the input/output of data for a specific transport mechanism. The
communications pipe 128 unpackages the data packaged through the
communications pipe and mechanism in the management station 10. In the
preferred embodiment, the OPSMAN MNMS pipe is described for illustration,
although other data transport mechanisms may be used. The communications
pipe 128 is responsible for converting the Z.300 transport layer data format to
and from a MNMS data format and passes them to the message handler 180. The
communications pipe 128 then translates the message into a DBA request record
to be used by the switch database access server 118 and DB Task Servers 182. It
also parses the text data into pascal tuple structures.

®) Message Handler - Each message handler 180 is identified by a unique
id. New handler ids are added as required. When a message handler is initialized
usually at system start up, it must register with switch database server 118 before
being allowed to send DB access messages. The registration process includes
identifying a callback function with the switch database server 118 for the
message handler 180. Switch database server 118 uses the callback function to
return DB access results to the message handler 180.

The operation of the interface between the message handler 180 and the
switch database server 118 is as follows: message handler 180 passes DBA
request record to switch database server 118. The switch database server 118
spawns a DB task server 182 and enters cross references in its resource table to
pass the messages to new DB task server 182 if a new session is required to set
up. In the alternative, if a new session is not required, the switch database server
118 merely passes the message onto the existing DB task server 182. DB task
server 182 receives the DB access request record that services the request. Once
the request is serviced, DB task server 182 sends back the service data to the
switch database server 118. Upon receipt, the switch database server 118

PATENT

REEL: 010041 FRAME: 0734

10

15

20

25

30

2197517

45
forwards the service data back through the interface to message handler 180
according to the resource table.

The message handler 180 is divided into an input process and an output
process. The input process binds to the communications pipe and listens for a
message from the management station 10. When a message is received through
the communications pipe 128, the message handler 180 obtains a DBA Request
Record from the DBA Request Record pool, parses the text data, fills in the
DBA Request Record, and sends a dba_request message to the switch database
Server 118.

The callback function for the message handler 180 is a routine that sends
a reply message to the message handler 180. The output process listens for a
reply message from the switch database server 118. The message data contains
the index of a DBA Request Record resource. The message handler 180
converts the data into format for the communications pipe 128 and sends the
message to the management station.

To convert messages into the DB Request Record format, the message
Handler 180 obtains a DBA Request Record resource from the DBA Request
Record pool. The tuple text portions of the message are parsed and copied to the
DBA Request Record. A message is then sent to switch database server 118
with the resource index included in the message.

Optionally, the message handler 180 may log some information from the
incoming message into a transport record. The transport record is obtained from
a free list managed resource pool. The record contains information required by
the handler’s output process but can’t be carried in the DBA Request Record. A
field in the DBA Request Record is used to record the resource number of the
transport record. The sequence number from the message handler message is
recorded in the transport record and the transport record resource is stored in the
DBA Request Record.

When a message is received from the communications pipe, the message
handler 180 determines which message is being sent, and performs the
following operations on the message data:

. obtain a DBA Request Record resource

. parse the tuple or key text data for insertion in the DBA request
record

PATENT

REEL: 010041 FRAME: 0735

10

15

20

25

30

2197517

46
. parse the view set text data for insertion in the DBA request
record
. parse the tuple mask data for insertion in the DBA request record

e fill in the DBA Request Record with the parsed data.

L obtain a transport record resource from the Transport Record

pool.

. fill in the Transport Record and store the resource number in the
DBA Request Record

o send a message to switch database server 118 with the resource

index of the message data.

The submit and cancel transaction actions requires a parameter
containing a session id. The transaction start action requires a parameter that
contains a session id and view set information.

The message handler 180 receives database access reply messages from
the switch database server 118 in response to database access request messages. -
These reply messages contain resource numbers for DBA Request Record
resources. The same resource that was allocated when the request first came
from management station 10 is used. The message handler 180 then converts the
tuple data in the DBA request records to the communications pipe message
format. It then sends the message to the communications pipe 128. The DBA
Request Record resource is then returned to the pool.

When the switch database server 118 is ready to send a reply back to the
message handler 180, it passes the index of a DBA Request Record to get to the
message data.

(c) DBA Request Record Format - The occurrence of the DBA Request
Record is to release the switch database server 118 from reliance upon a
particular communications pipe’s data representation. In this way a new
communications pipe and a new method to support connections to different
kinds of switches can be added without having to modify the switch database
server 118. Any communications pipe 128 may be used that can transfer the
data to the message handler 180. The message handler then requires
modification in such a manner as would be obvious to one skilled in the art, to
take of the data received and transform it to DB access request record format.

PATENT

REEL: 010041 FRAME: 0736

10

15

20

25

30

35

2197517

The DBA Request Record ccntains4 ;11 of the tuple, view, view set, and other
information required to provide access to the switch database 124. While most
of the information is sourced from the application 114 and database access layer
on the management station 10, some information is filled in by the message
handler 180. Database access results are also stored in this structure.

dba_request_record_type =
RECORD

dba_session_id : dba_session_id_type;
dba_action_code : dbserver_action_code_type;
dba_view_id : view_identifier;
dba_old_tuple : view_tuple;

dba_view_tuple :view_tuple;

dba_view_set : view_identifier_set;
dba_tuple_ mask :tuple_string type;
dba_error_ref :db_error_msg_reference;

dba_transport_hdlr_id : dba_transport_id_type;
transport_hdlr_resource : resource_range; {OPTIONAL}
ENDREC;

One record of this type is allocated for each dbaccess request and returned to the
pool when the request has been completed.

° dba_session_id - the session id is allocated by the switch
database server 118 process when a start session request is
received.

. dba_action_code - This field is filled in by the message handler
180 to indicate the action requested by the application 114.

° dba_view_id - This field is filled in by the message handler 180
from data provided by the application. It is the view_id of the
view the action is to be performed on.

. dba_old_tuple - This field is filled in by the message handler 180
with data provided by the application 114. This field is only
required for the action of modifying a tuple.

U dba_view_tuple - This field is an input and output field. It is
filled in by the message handler 180 with data provided by the
application 114 for writing to the database and filled in by switch
database server 118 with results of a requested action.

PATENT
REEL: 010041 FRAME

: 0737

10

15

20

25

30

2197517

48
° dba_view_set - This field is filled in by the message handler 180
with data provided by the application 114.

° dba_tuple_mask - This field is filled in by the message handler
180 with data provided by the application 114. It is used only for
the dba_find actions. It is the mask that describes the search
criteria for tuple searches.

° dba_error_ref - This field is filled in by switch database server
118 to indicate any error conditions that result from a dbaccess
request.

. dba_transport_hdlr_id - This field is filled in by the message
handler 180 with the message handler 180 is unique id. This

value will later be used to obtain the callback function for the
message handler 180.

. transport_hdlr_resource - This field is optional. It can be used by
the message handler 180 to record a resource id for a resource
that it requires over and above the data that is stored in the DBA
Request Record. In this way, the message handler 180 can piggy-
back data onto the DBA Request Record.

For further details on the information handled by the DBA Request Record,
please refer to the section on common data format previously described above.

S. DATABASE ACCESS LAYER IN THE TELEPHONY SWITCH

The switch database server 118 is the focus for the movement of requests through
the switch. It receives DB access requests from the various handlers in DBA Request
Record format, allocates resources to service the request and passes back the serviced
data to the message handlers.

The database access server spawns a new DB Task Server 182 process whenever
a start session message is received from a message handler 180. For all other message
types it examines the sessionID to identify an existing DB Task Server to pass the
message to. The switch database Server 118 maintains a resource table that keeps track
of what handlers are communicating with what DB Task Servers 182. The switch
database Server 118 validates the sessionID and forwards messages to the DB Task
Server 182 process identified in the sessionID.

The Switch database server 118 receives database access request messages,

Inactivity Timer messages, and can send a Database access reply message.

PATENT

REEL: 010041 FRAME: 0738

10

15

20

25

30

2197517

49
The switch database server 118 consists of one permanent process which is
usually created at system startup.

. 'When a message handler 180 has received a DB Access request it sends the
switch database server 118 a database access message after preparing the requested data
in DB access record format. The message data will contain a resource number for a
database access data structure allocated by the handler. The switch database server 118
examines the data structure to determine a course of action. It is concerned with two
items, the sessionID and the DB action. If the sessionID is blank and the DB action is
‘start session’ then switch database server 118 allocates a DB Task process from a pool
of processes and forwards the database access message to the new Task process. If the
sessionlD is not blank then the server verifies that the sessionID contains the system ID
for the switch, and that the processID is the that of an existing DB Task 182 process. If
all of the checks pass then the database access message is forwarded to the DB Task
182 process. Finally, it updates a cross reference table with the sessionlD and
HandlerID. When the switch database server 118 receives a database access message
from a DB Task server 182, it forwards the message to the appropriate message handler
180 by checking the cross reference table.

6. INTERFACE BETWEEN DATABASE ACCESS LAYER AND
APPLICATION LAYER IN TELEPHONY SWITCH

The DB Task server receives the basic commands originally issued from the
application 114 and translates them into a format which can be passed to and executed
by the switch database access application 126. The exact translation to be performed
depends upon the features of the switch database access application and the exact make,
model and version of telephony switch 20. The necessary translation for
implementation can be performed by any person skilled in the art of programming the
telephony switch 20.

The DB Task Server 182 is responsible for servicing the DB access requests. It
is spawned when the switch database server 118 receives a start session message and is
terminated when it receives an end session message.

Initialization - The task server process is created by the switch database server 118 on
a per session basis and is a permanent process. It is responsible for allocating a
sessionID at session start-up time and processing subsequent requests for that

sessionlD.

PATENT

REEL: 010041 FRAME: 0739

10

15

20

25

30

2197517

50
The DB Task server 182 allocates a sessionID when it receives & start session request

in a database access request message. The sessionID contains the processiD of the
Task server 182, the systemID of the switch and the planeID. The sessionID is passed
back to the switch database server 118 in a database access reply message.

The first task the DB Task Server 182 performs is to allocate a sessionID and
pass it back to the DB NE server. All subsequent DB access requests are verified against
that sessionID by the switch database server 118. The DB Task Server 182 performs
additional checks on the process id portion of the sessionID.

The DB Task Server 182 receives a DBA Request Record that contains all of the
data required to perform the requested action. It calls the appropriate functions, (e.g. for
Mitel® ® DBVIEW functions) to perform the action and places the resulting data back
into the DBA Request Record. The resulting data and responses are passed back to the
switch database Server 118 which forwards it on to the appropriate message handler 180.

One DB Task Server 182 process is allocated for each session.
The DB Task Server 182 supports the following functions:
@) Error Identification

. Get Error Text

(ii) Service Session Functions
® Start Session

. End Session

(iii) Service Translation Functions (Translation Management)

) Start Transaction
. Submit Transaction
. Cancel Transaction

(v) Get First/Next Requests
] Get First Tuple
o Get Next Tuple

PATENT

REEL: 010041 FRAME: 0740

10

15

20

25

30

™)

2197517

. 51
Read/Write Requests

. Get Tuple

° Add Tupple

e Delete Tuple
. Modify Tuple

These functions constitute the API and correspond to the function calls made by
the application 114 on the management station 10. The database task server 182 then
transforms the request to the specific form and passes it to the switch database access

application 126.
()] Error Identification -
(i) Service Session Functions - The DB Task server 182 services the two

session functions, start and end.
Start Session - The Task Server 182 allocates a sessionID

End Session - The Task Server 182 verifies that the sessionID is
correct and checks that no transaction is active. If a transaction is active,
an error message is returned to indicate that the transaction must be
submifted or cancelled before the session can end. If no transaction is
active then the DB Task server 182 simply sends a dba_reply message

back indicating no error.

(iii) Service Transaction Functions (Transaction Management) -
The DB Task server 182 services the three transaction functions, start,

submit, and cancel.

(a) Start Transaction - When the Task server receives a
start transaction request, the DB Task server 182 examines the
DBA Request Record for the textual view set parameter. The
text is passed through a view set text parser. When
implemented on a SX-2000® switch, the resulting view set is
opened for write access by the DB Task server 182 by calling
the DBVIEW open_view_set function. The views are

opened and locked. The success or failure of the open operation

PATENT

REEL: 010041 FRAME: 0741

10

15

20

25

2197517
52
is recorded in the DBA Request Record and the Task server
182 sends a database access reply message back to the switch
database server 118 indicating the DBA Request Record

resource,

M) Submit Transaction - When the Task server rcccives a
submit transaction request, it translates and passes the request
to the switch database access application 126. For example,
with a Mitel® ® SX-2000® switch, it calls the DBVIEW
close_view_set function with the db_mode parameter
set to db_commi t. The changes in the underlying database
tables for the open view set are flushed to the hard drive and the
view set is closed and unlocked. The success or failure of the
submit operation is recorded in the DBA Request Record and
the DB Task server 182 sends a database access reply message
back to the switch database server indicating the DBA Request
Record resource.

(c) Cancel Transaction - When the DB Task 182 server
receives a cancel transaction request, it translates and passes the
request to the switch database access application 126. For
example, with the Mitel® ® SX-2000® switch, it calls the
DBVIEW close_view_set function with the db_mode
parameter set to db_abort. The changes in the underlying
database tables for the open view set are restored from the hard
drive and the view set is closed and unlocked. The success or
failure of the cancel operation is recorded in the DBA Request
Record and the DB Task 182 server sends a database access
reply message back to the switch database server 118 indicating
the DBA Request Record resource.

PATENT

REEL: 010041 FRAME: 0742

10

15

20

25

30

2197517

53
Get First/Next Requests

The DB Task server 182 services the data view functions.

(a) Get First Tuple - When the DB Task server 182
receives a get first tuple request, it examines the DBA Request
Record for the view id. The view id is passed to the switch
database access application 126. For example, with a Mitel® ®
SX-2000® switch the, DBVIEW first_view_key
function. The first key for the specified view id is returned and
the DB task server 182 passes the key to the DBVIEW
read_view_tuple function. The tuple contents or any
resulting error codes are stored in the DBA Request Record.
The DB Task 182 server then sends a database access reply
message back to the switch database server 118 indicating the

DBA Request Record resource.
() Get Next Tuple - When the DB Task server 182

receives a get next tuple request, it examines the DBA Request
Record for the view id and the textual view tuple parameter.
The text is passed through a view tuple text parser. The key
data is extracted from the tuple data and the request is
translated and passed to the switch database access application
126. For example, with a Mitel® ® SX-2000® switch, the
DBVIEW next_view_key is called with the key data. The
next key for the specified view id is returned and the DB task
server 182 passes the new key to the DBVIEW
read_view_tuple function. The tuple contents or any
resulting error codes are stored in the DBA Request Record.
The DB Task server 182 then sends a database access reply
message back to the switch database server 118 indicating the
DBA Request Record resource.

PATENT

REEL: 010041 FRAME: 0743

10

15

20

25

30

\))

2197517

54
Read/Write Requests

(a) Get Tuple - When the DB Task server 182 receives a
get tuple request, it examines the DBA Request Record for the
view id and the textual view tuple parameter. The text is passed
through a view tuple text parser. The key data is extracted from
the tuple data and the DB task server translates and passes the
request to the switch database access application 126. For
example, with a Mitel® ® SX-2000® switch, the DBVIEW
read_view_tuple is called with the key and tuple data.
The tuple contents or any resulting error codes are stored in the
DBA Request Record. The DB Task server 182 then sends a
database access reply message back to the switch database
server 118 indicating the DBA Request Record resource.

(b) Add Tuple - When the DB Task server 182 receives an
add tuple request, it examines the DBA Request Record for the
view id and the textual view tuple parameter. The key data is
extracted from the tuple data and the request is translated and
passed to the switch database access application 126. For
example, with a Mitel® ® SX-2000® switch, the DBVIEW
write_view_tuple is called with the key, tuple data and
parameters. Any resulting error codes are stored in the DBA
Request Record. The Task server 182 then sends a database
access reply message back to the switch database server 118
indicating the DBA Request Record resource.

© Delete Tuple - When the DB Task server 182 receives a
delete tuple request, it examines the DBA Request Record for
the view id and the textual view tuple parameter. The key data
is extracted from the tuple data and the request is translated and
passed to the switch database access application 126. For
example, with a Mitel® ® SX-2000® switch, the appropriate
DBVIEW function is called. Any resulting error codes are
stored in the DBA Request Record. The DB Task server 182

PATENT

REEL: 010041 FRAME: 0744

10

15

20

2497517

55
then sends a database access reply message back to the switch

database server 118 indicating the DBA Request Record

resource.

) Modify Tuple - When the DB Task server 182 receives
a modify tuple request, it examines the DBA Request Record
for the view id and the textual view tuple parameters. In this
case there will be old and new tuple parameters. It compares the
keys and calls the appropriate DBVIEW
write_view_tuple function, replace_views_tuple function
or delete_view_tuple function as necessary. Any resulting error
codes are stored in the DBA Request Record. The DB Task
server 182 then sends a database access reply message back to
the switch database server 118 server indicating the DBA

Request Record resource.

Although the invention has been described in terms of the preferred and
several alternate embodiments, those skilled in the art will appreciate other
modifications and alternation that can be made without departing from spirit and
scope of the teachings of the invention. All such modifications are intended to be
included within the scope of the claims appended hereto.

PATENT
REEL: 010041 FRAME: 0745

10

15

20

25

30

We Claim:

2197517

56

1) A telephony switch configurator to manage and control at least one telephony

switch from a network device, said telephony switch containing a read/writable

storage medium for storing a configuration of said telephony switch and which is
accessible from a computer network through a first data transport protocol handler, the

network device communicating with said network through a second data transport

protocol handler, said configurator comprising:

(a)

®)

(c)

(d)

C)

®

(2

()

a command generator within said network device that issues

commands to be executed by said telephony switch;

a first access server within the said network device for managing a

connection to said telephony switch;

a first interface between said command generator and said first access
server for translating said commands between said command generator

to said first access server;

a second interface between said first access server and said data
transport protocol handler for translating said commands between said
first access server and said data transport protocol handler;

a second access server within the said telephony switch for managing

a connection to said network device;

a third interface between said second access server and said second
data transport protocol handler for translating said commands between

said second data transport handler and said second access server;

a command executor within said telephony switch that executes said

commands for changing configuration of said telephony switch; and

a fourth interface between said second access server and said command
executor for translating said commands between second access server

and said command executor.

PATENT

REEL: 010041 FRAME: 0746

10

15

20

25

30

2197517

57
2) The configurator of Claim 1, wherein said first application comprises a

database management system, a database access application and a user interface.

3) The configurator of Claim 2, wherein set database access application is
composed of database tables with identical database structure as said telephony
switch.

4) The configurator of Claim 3, wherein said first access server maintains

connections to plural telephony switches simultaneously.

5) The configurator of Claim 3, wherein said telephony switch is of a different

version than said configurator.

6) A method of managing and controlling a telephony switch from a network
device, said telephony switch communicating with a computer network through a data
transport protocol, and a network device communicating with said network through
said data transport protocol, comprising the steps of :

a) initiating a command to connect to a selected telephony switch from

said network device;

b) translating said command to a format understood by a first access

server,
c) passing said command to said first access server;
d) opening a communications channel to said selected telephony switch;

e) packaging said command for transport using said data transport
protocol;

) passing said command to data transport protocol mechanism;

£) transporting said command on said network to said specified telephony
switch using said data transport protocol;

h) unpackaging said command received by said telephony switch using
said data transport protocol mechanism;

PATENT

REEL: 010041 FRAME: 0747

(\

10

15

2197517

i) passing said command to aiicond access server;

) translating said command to a form which can be executed by said
telephony switch;

k) executing said command on said telephony switch for changing

configuration of said telephony switch.

7. A method of configuring a network of telephony switches from a network
device, said telephony switches communicating with a computer network through a
data transport protocol and said network device communicating with said network
through said data transport protocol, comprising the steps of:

a) initiating a command to connect a first selected one or said telephony
switch from said network device;

b) downloading configuration information from said first selected one or

said telephony switches to said network device;

c) initiating a command to connect to a second selected one or said

telephony switches to said network device; and

d) uploading said information from said network device to said second

selected one or said telephony switches.

PATENT
REEL: 010041 FRAME: 0748

(.

2197517

e %
v by
=) F) focmote 1o
— | howt Yb '
12 - TCP/IP
0 —(E

s -l
4
:
e

)

PATENT
REEL: 010041 FRAME: 0749

C

2197517

PATENT

lo Management Station Telephony Switch
N (OPS Manager) ijl (Network Element)
110 Y b 7 . 12y
S Dastabase
= =) =
(NMAC) Application Access Layer (View
)
| s ~__}123
4 Iy
v v
avar Database Access Laydr) Seaese
e ors Data Transport Layer
— 19 Message Service
Ethemet Card | ——~— [10 Ethernet Card]‘/\h—-lll
j Leeal-Arca-Network
0

(1]

REEL: 010041 FRAME: 0750

21

97517

/k 1 23
’ / " n B swien
DB / \/ Switch { Database
User [Application Access J;;‘:ﬁfs’; Database Access
open Server Server Application
application set 132¢
o | oo |2 3
122b connection allocate
record |e session id
1324 ¢———— session ig X 1a%h
::;: »| package nic |3 Yd
,(e repackage 135
i3ia Yo [Tx | s Y
. l.; "{(on form
read
136 d ‘ “retum
13be repackage | ypie
\31’ g present o convert L ¢ ponss f
QJ info je——— ;:ﬁ 7 13bb | 3ba
edit info to user 136c
press— . :
commit stat ——>»| send stant L P3¢ 139
} transaction transaction . »| repackage N start
(view) j . 7\ stat ———» transaction
l 3% (4 ¢ l 3 g ya 139 d transaction n View
set
133b 1y og b ¥ DC
Oc ~) re‘lurn_
|¥la |1y0d Q/ 14 repackage | confirmation
{e——caonfirmation
write tuple | Package repackage Y, per
- request . request o~ Mid pewr;:n
and send " | endverify——®_______
Y K Mie Mic sessionid /1435 Ve
end ¢ package gy 143 packege retumn
W transacti————»{ request “ ck:’"ﬂ"““m" < confirmation
n and send repa e L)
W wom | T | T | e g
close \-b ; : retum
of < e .
spploaion _fe—— 130 Nwer | N woc confimation |¢Gonfmation
s:ssion——’ send end « 3 | L1974 R K
SRLELS session dealiocate \Ypb l "’6
— Close e . session id 4
eomprl;eq———— eonn'{dlon 14 2b _ ™ 8(‘
1484 48 c
Figue 2
PATENT

REEL: 010041 FRAME: 0751

n

2197517

(5 I

D Structures Communications Pf-gse'ﬂa‘hm Layer
- Pipe Service
~ Socket Connection '(

—— “
“&% Non-blocking)
—®- Blocking Ethemet Card

1 ~10
LAN
30
F’j ure ?
PATENT

REEL: 010041 FRAME: 0752

29

Figure

126

Switch

Database
Access

Application

DB Task
Server

DB Task
Server

2197517

— 12

~— 182

— (18
Switch
Database
{NE)Server
Message — (80
Handler
K’_\/ (29
Communications Pipe
I)
~— (1 2
Ethemet Card
%9
PATENT
REEL: 010041 FRAME: 0753

PATENT
REEL: 010041 FRAME: 0754

10

15

20

25

30

35

2197517

40
INTERFACE BETWEEN DATABASE ACCESS LAYER AND DATA
TRANSPORT LAYER IN THE MANAGEMENT STATION

The interface between the Database Access Layer and the Data Transport Layer

is performed by the following features:

(a) Comms Redirection Layer 154
(b) The communications pipe 122; and
(¢) . The Presentation Layer service 156.

* These are described in further detail below.

(@) Comms Redirection Layer - The Comms Redirection Layer 154
isolates the DBA Comms Server 152 from the actual implementation of the
specific network transport mechanism. The Comms Redirection Layer 154
resides in the management station 10 environment as a library of functions with
which programs compile and link. The Comms Redirection Layer 154 provides
functions to utilize communications pipe services. These functions manage the
opening and closing of connection to telephony switch 20, and the exchange of
messages. A function is also provided to query the software release of the
telephony switch 20. The Comms redirection layer receives a common data
request from the DB Comms server 152. The Comms redirection layer 154
converts the common data request to the form used by the data transport
mechanism and sends the request to communications pipe 122. The
communications pipe 122 then communicates the request to the telephony
switch 20. When a response is received from telephony switch 20, in the form
of a transport mechanism response, the communications pipe 122 passes the
response to the Comms redirection layer 154. The Comms redirection layer 154
converts the response to a common data request and sends the common data
request to the DB Comm server 152.

The Comms redirection layer translates messages from common data
format received from the DB Comms server 152 to the desired message format
used by the data transport layer to communicate with the telephony switch 20.
The invention can be practiced using any data transport mechanism or message
format, but for the purposes of illustration, the MNMS data format provided by
Mitel® and the Z.300 data format will be used. Z.300 is an international
publicly known standard described in CCITT document Volume X Facicle X.
Rec Z301-Z341. If the invention is practiced utilizing another data transport
mechanism, the Comms Redirection Layer 154 must be reprogrammed to accept

PATENT

REEL: 010041 FRAME: 0755

CANADA) TO ALL WHOM THESE PRESENTS
PROVINCE OF ONTARIO) MAY COME, BE SEEN OR KNOWN
TO WIT:)

I, STEPHEN JOHN PERRY, a Notary Public in and for the Province of
Ontario, residing in the Regional Municipality of Metropolitan Toronto in said Province, DO
CERTIFY AND ATTEST that the paper writing hereto annexed is a true copy of a
document produced and shown to me and purporting to be an ASSIGNMENT WORLD-
WIDE dated, from Paul Erb and Brian Maclsaac to Mitel Corporation for an invention
entitled Database Access Server for PBX, the said copy having been compared by me with
the said document, an act whereof being requested I have granted under my Notarial Form

and Seal of Office to serve and avail as occasion shall or may require.

IN TESTIMONY WHEREOF 1 have hereto subscribed my name and
affixed my Notarial Seal of Office at Toronto, this 23 day of June, 1998.

STEPHEN JOHN PERRY

STEPHEN JOHN PERRY, Notary Public, Province of
Ontario, limited to attestation of instrumments and the
taking of affidavits, for Sim & McBumey Patent and
Trademark Agents.

Expires January 10, 1893,

PATENT
RECORDED: 06/18/1999 - REEL: 010041 FRAME: 0756

