07 -24-2002 1662-46300 (PO1-3646)
Form PTO-1595

won LT S Pt and Tademak Ot

U.S. Patent and Trademark Office
Tab settings = = = \ i) J 1v021 6580? A4 \ A

To the Honorable Commissioner of Patents and Trademarks: Please record the attached original documents or copy thereof
1. Name of conveying party(ies):

2. Name and address of receiving party(ies)
Name: Compaq Information Technologies Group, L.P
A. Bevin R. BRETT)

B. Alan HOLMANSKY 7.%% oﬂ ;2) Internal Address:

Additional name(s) of conveying party{es) attached? [Jj Yes gy No
3. Nature of conveyance:

& Assignment

L Merger '
Street Address: 20535 State Highway 249
[y Security Agreement Gl Change of Name
 Otner
A. March 29, 2002 City: Houston State:_1¢Xas _ zjp. 77070
i B. April 2, 2002

Execution Date: Additional name(s) & address(es) attached? u Yes @ No
4. Application number(s) or patent number(s}):

If this document is being filed together with a new application, the execution date of the application is
A. Patent Application No.(s)

B. Patent No.(s)
10/109,287

/

Additional numbers attached? L Yes [y No
5. Name and address of party to whom correspondence
concerning document should be mailed:

Name: Jonathan M. Harris

6. Total number of applications and patents involved:

7. Total fee (37 CFR 3.41).............. $_40.00

Enclosed
nternal Address: CONLEY, ROSE & TAYON, P.C. A

@ Authorized to be charged to depcﬁlt ac@ounl,

State: Texas Z*: 77253-3267

xs=H~f

(Attach duplicate copy of this page if paying by %os

o rH
™ T D

o oo

8. Deposit account number: Cony L

i i ;

Street Address: F-O: Box 3267 \ %) -

- mEE W

07/23/p002 GYONI1 00000141 032769 10109287 X 03-2769 2 ;n;;
01 FC:pat %0, 00 CH]
City: Houston @

[#2]

) DO NOT USE THIS SPACE
9. Statement and signature. 7

To the best of my knowledge and belief, the foregoing infori at/on is true and correct and any attached copy
is a true copy of the original document. /\
Jonathan M. Harris, Reg. No. 44,144

July 15,2002
Name of Person Signing

Date

Signature
Total number of pages including cover sheet, attachments, and documents

Mail documents to be recorded with required cover sheet information to
Commissioner of Patents & Trademarks, Box Assignments
Washington, D.C. 20231

PATENT
REEL: 013103 FRAME: 0606

04/02/02 15:18 FAX

Attorney Docket No. 1662-46300
Client Docket No. P01-3646

SIG. N

WHEREAS, We, Susanne M. BALLE, David C.P. LAFRANCE-LINDEN, Bevin R.
BRETT and Alexander E. HOLMANSKY, are joint inventors of “MULTIPROCESS
DEBUGGING USING MULTIPLE CONVENTIONAL DEBUGGERS” application for
United States Letters Patent which is executed of even date herewith; and

WHEREAS, COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., a Texas
limited partnership, is desirous of acquiring the entire right, title and interest in and to the
aforesaid invention throughout the world, and all right, title and interest in, to and under any and
all Letters Patent of the United States and all other countries throughout the world;

NOW, THEREFORE, for good and valuable consideration, the receipt of which is hereby
acknowledged, we hereby sell, assign, transfer and set over to COMPAQ INFORMATION
TECHNOLOGIES GROUP, L.P,, all right, title and interest in and to the said invention
throughout the world, and said application for U.S. Letters Patent, and any and all divisions,
continuations, and reissues thereof, and any and all Letters Patent of the United States and
foreign countries which may be granted therefor, the same to be held and enjoyed by COMPAQ
INFORMATION TECHNOLOGIES GROUP, L.P., for its own use and benefit, and for the use
and benefit of its successors, assigns, or other legal representatives, to the end of the term or
terms for which said Letters Patent of the United States or foreign countries are or may be
granted or reissued, as fully and entirely as the same would have been held and enjoyed by us if
this assignment and sale had not been made.

And we hereby authorize and request the Commissioner of Patents and Trademarks to
issue any and all Letters Patent of the United States on said invention or resulting from said
application and from any and all divisions, continuations, and reissues thereof, to COMPAQ
INFORMATION TECHNOLOGIES GROUP, L.P., as assignee of our entire interest, and bereby
covenant that we have the full right to convey the entire interest herein assigned, and that we
have not executed and will not execute any agreement in conflict herewith.

And we further hereby covepant and agree that we will, at any time, upon request,
execute and deliver any and all papers that may be necessary or desirable to perfect the title of
said invention and to such Letters Patent as may be granted therefor, to COMPAQ
INFORMATION TECHNOLOGIES GROUP, L.P., its successors, assigns, or other legal
representatives and that if COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., its
successors, assigns or other legal representatives shall desire to file any divisional or
continuation applications or to secure a reissue of such Letters Patent, or to file a disclaimer
relating thereto, will upon request, sign all papers, make all rightful oaths and do all lawful acts
requisite for the filing of such divisional or continuation application, or such application for
reissue and the procuring thereof, and for the filing of such disclaimer, without further
compensation but at the expense of said assignee, its successors, or other legal representatives.

And we do further covenant and agree that we will, at any time upoen request,
communicate to COMPAQ INFORMATION TECHNOLOGIES GROUP, L.P., its SUCCessors,
assigns or other legal representatives, such facts relating to said invention and Letters Patent or
the file history thereof as may be known to us, and testify as to the same in any interference or

69127.01/1662.46300 Page 1 of §

PATENT
REEL: 013103 FRAME: 0607

04/02/02 15:18 FAX

—— e @003

Attorney Docket No. 1662-46300
Client Docket No. P01-3646

other litigation when requested so to do, without further compensation but at the expense of said
assignee, its successors, or other legal representatives.

EXECUTED THIS day of , 2002.

SIGNED SEPARATELY
Susanne M. BALLE

STATE OF NEW HAMPSHIRE §

COUNTY OF §

BEFORE ME, the undersigned authority, on this day personally appeared Susanne M.
BALLE, known to me to be the person whose name is subscribed to the foregoing instrument,
and acknowledged to me that she exccuted the same for the purposes and consideration therein

expressed.
GIVEN UNDER MY HAND and seal of office this _____ day of , 2002.
Notary Public in and for the State of New Hampshire
69127.01/1662.46300 Page 2 of 5

PATENT
REEL: 013103 FRAME: 0608

04/02/02 15:18 FAX

e e e e e e e —e o e @004

Attormey Docket No. 1662-46300
Client Docket No, P01-3646

Mk kb ke Ricd ko ibkorkdok kool kkokokok kbokkkkkkk

EXECUTED THIS day of , 2002.

SIGNED SEPARATELY
David C.P. LAFRANCE-LINDEN

STATE OF VIRGINIA §

COUNTY OF §

BEFORE ME, the undersigned authority, on this day personally appeared David C.P.
LAFRANCE-LINDEN, known to me to be the person whose name is subscribed to the
foregoing instrument, and acknowledged to me that he executed the same for the purposes and
consideration therein expressed.

GIVEN UNDER MY HAND and scal of office this day of , 2002,

Notary Public in and for the State of Virginia

69127.01/1662.46300 Page 3 of 5

PATENT
REEL: 013103 FRAME: 0609

THE-LANG .-GROUP-2ZKO ID:- MAR 29’02 15:15 No.00O1 P.0Q2
Attorney Docket No. 1662-46300
Client Docket No. P01-3646

EXECUTED THIS 9 _ day of /75‘/ oé 2002,

4_‘0_"_0(/,-&EZ’ ’

Bevin R. BRETT
STATE OF /l/""”//'é"/” 1 g

COUNTY OF %//(&9«»"—0% §

BEFORE ME, the undersigned authority, on this day personally appeared Bevin R.
BRETT, known to me to be the person whose name is subscribed to the foregoing instrument,
and acknowledged to me that she executed the same for the purposes and consideration therein
expressed.

GIVEN UNDER MY HAND and seal of office this 02 C} day of ”(LU‘L » 2002.
{ -
Notary Public in and for the State of M,%%MM/

69127.01/1662.46300 Page 4 of 5

PATENT
REEL: 013103 FRAME: 0610

04/02/02 15:19 FAX 7]
goe

Attorney Docket No. 1662-46300
Client Docket No. P01-3646

(ITTITIII ISR S L PSS E RS2 PRS2SR S22 2 2 4 2 2 2 2 2 8]

Y
EXECUTED THIS _Z _day of Apsr:L |, 2002.

4. Molegudtef —

Alexander E. HOLMANSKY
axacieed<
STATE OF §

COUNTY EJMMQ;Q§

BEFORE ME, the undersigned authority, on this day personally appeared Alexander E.
HOLMANSKY, known to me to be the person whose name is subscribed to the foregoing
instrument, and acknowledged to me that he executed the same for the purposes and

‘consideration therein expressed.

GIVEN UNDER MY HAND and seal of office thig™)) day of ELDH,O , 2002.

69127.01/1662.46300 Page 5 of 5

PATENT
REEL: 013103 FRAME: 0611

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Susanne M. BALLE et al. § Group Art Unit: 2133

Serial No.: 10/109,287 g Examiner: UNKNOWN

Filed: March 28, 2002 g Atty. Docket No.: 1662-46300

For: Multiprocess Debugging Using g Client Ref No.: P01-3646
Multiple Conventional Debuggers §

STATEMENT REGARDING PATENT APPLICATION

I, Jonathan M. Harris, Applicants’ registered attorney, state that the patent application
referred to in the attached Assignment as “executed of even date herewith” for which the
inventors, Bevin R. BRETT and Alexander E. HOLMANSKY, executed the enclosed
Assignment was filed with the U.S. Patent and Trademark Office on March 28, 2002 and

assigned Serial No. 10/109,287.

July 15, 2002 g\% W’T /””/J

DATE NATURE OF ATTORNEY
onathan M. Harris

Reg. No. 44,144
CONLEY, ROSE & TAYON, P.C.
P.O. Box 3267
Houston, Texas 77253-3267
Phone: (713) 238-8000
Fax: (713) 238-8008

ATTORNEY FOR APPLICANTS

79290.01/1662.46300

PATENT
REEL: 013103 FRAME: 0612

Express Mall Label No. EV065958953US

MULTIPROCESS DEBUGGING USING
MULTIPLE CONVENTIONAL DEBUGGERS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] Not applicable.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH OR DEVELOPMENT

[0002] This project has been funded by the Maryland Procurement Office under Contract

Number MDAS04-99-G-0703/005.

BACKGROUND OF THE INVENTION

Field of the Invention

(0003} The present invention generally relates to a debugger for a multiprocessor system.
More particularly, the invention relates to a debugger that uses a “tree” communication structure
comprising communication nodes that aggregate messages from debugging a plurality of processes

and provide aggregated, as well as unaggregated, messages, to a debugger user interface.

Background of the Invention

[0004] A computer program comprises a set of instructions which are executed by a processor.
A software designer writes the program to perform one or more functions. An error in the program
(referred to as a “bug”) may cause the program to operate in an unpredictable and undesirable

manner. Accordingly, a computer programmer must debug the program to help ensure that it is

error free.

83322.03/1682.46300 - 1 -

PATENT
REEL: 013103 FRAME: 0613

[0003] The process of debugging a computer program generally requires the ability to stop the
execution of the program at desired points and then check the state of memory, processor registers,
variables, and the like. Then, the program can continue to execute. To facilitate the debug
process, debug tools (i.e., software) are available which permit a ﬁrograrmner to debug the
software. Debug programs have numerous features such as the ability to éet break points in
program flow, single stepping through a program (i.e., executing one instruction at a time and then
stopping), viewing the contents of memory and registers, and many other features useful to the
debugging process.

[0006] The computer field has seen numerous advancements over the years. One significant
advancement has been the devélopment of multiprocessor computer systems (l.e., computer
systems having more than ome processor). Multiprocessor systems permit more than one
instruction to be processed and executed at time. This is generally called “parallel processing.”
The instructions being concurrently executed may be instructions from the same program or
different programs.

[0007] Although debugging a computer program that runs on a single processor computer can,
at times, be difficult enough, debugging a computer program that runs on multiprocessors
concurrently adds considerable complexity. For example, the debugging process may require
checking on and keeping track of the status of registers and memory associated with a multitude of
processors in the system. Additional complications occur when debugging a mizltiprocessor
system and those complications can best be understood with reference to Figure 1.

[0008] Figure 1 shows a conventional multiprocessor system comprising a plurality of
application processes 10 (labeled as “Process 0,” “Process 1,” and so on). Each application process

10 comprises at least one processor and may include more than one processor. The debuggmg of

[\
)

65322.03/1662,46300 =
PATENT
REEL: 013103 FRAME: 0614

application software that runs on the various processes 10 can be controlled and monitored via a
debugger user interface 18 which has a separate communication channel 16 to/from a debug server
12 associated with each process. Through interface 18 a person can, for example, set break points,
examine register contents, etc. As shown, each process 10 is associated with a debug server 12
which may be a computer program that actually causes the actions desired by the computer
programmer to occur. The debug server 12 may be embedded in the associated process or be
separate from the process. In general, the debug servers 12 cause the debugging actions to occur
that the programmer feels are necessary to debug the application and provides status information
and memory/register data back to the debugger user interface 18.

[0009] The architecture shown in Figure 1 works generally satisfactory for systems having
relatively few processes. This is true for several reasons. First, many operating systems limit the
number of communication channels 16 that can be open concurrently for a given process. Thus,
the number of communication channels that can be open at a time peftaining to the debugger user
interface 18 {(which itself is a process) may be limited to a number that is less than the number of
processes 10 in the system.

{0010} Timing can also become a problem for debuggers in the multiprocessor architecture
shown in Figure 1. Tt takes a finite amount of time to process a message from a debug server 12.
This amount of time is accumulated when considering processing responses from all of the debug
servers 12. For example, if it takes 1 millisecond for the interface 18 to process a nw:essage from
one debug server 12 and the system includes 2000 processes, then it would take as much as 2
seconds (2000 milliseconds) to finish processing a message in response to a single command to the

interface 18. This delay can detrimentally interfere with the debugging process.

-
63322.03/1562.46360 I -

PATENT
REEL: 013103 FRAME: 0615

[0011] The problems described above become more severe as the number of processes
ncreases. Accordingly, a solution to these problems is needed. Such a solution would permit a

more efficient debug operation for multiprocessor systems.

BRIEF SUMNMARY OF THE PREFERRED EMBODIMENTS OF THE INVENTION
[0012] The problems noted above are solved in‘large part by providing a computer system
with an aggregator network that fans out commands and aggregates messages. A preferred
embodiment of the computer system includes a plurality of processes on which an application
executes, the aggregator network and a debugger user interface. Using the debugger user interface,
cormmands can be created and sent through the aggregator network to debug servers associated
with the processes. Further, messages from the debug servers are routed through the aggregator
network to the debugger user interface. The aggregator network preferably, whenever possible,
combines the debug servers’ messages into fewer messages and provides a reduced number of
messages to the debugger user interface.

[0013] The aggregated messages generally contain the same information as the messages they
aggregate and identify the debug servers from which the messages originated. The aggregator
network examines the debugger server messages for messages that have identical or similar data
payloads. Messages with identical data payloads can be easily combined into a single message that
indicates which debug servers generated the identical messages. Messages with non-identical
payloads having some common data values can also be agg:reéated. A message that aggregates
messages with similar, but not identical, payloads preferably identifies the identical portions of the
payload and the non-identical portions along with an identification of the debug servers associate

with the non-identical portions. Not all messages can necessarily be aggregated and such

635322.03/1662.46300 - 4 -

PATENT
REEL: 013103 FRAME: 0616

unaggregated messages are also routed from the processes through the aggregator network to the
debugger user interface.

0014} The debugger user interface can store and process the messages in their aggregated
form or convert the aggregated messages to their unaggregated form. This feature is selectable via
the debugger user interface.

[0015] This aggregation of processor message alleviates the burden on the debugger user
interface which otherwise would have to be capable of receiving and processing many more
messages. Further, the aggregator network 1s one preferred form of a multi-layer communication
network that comprises a plurality of communication nodes that permit a plurality of processes to
send messages to a single debugger user interface, and commands to be routed to the processes.
Such a multi-layer communication network provides an architecture in which all processes have
open and active communication channels despite reasonable limitations imposed by the operating
system on the number of communication channels to/from an individual process. These and other

advantages will become apparent upon reviewing the following disclosures.

BRIEF DESCRIPTION OF THE DRAWINGS
[0016] For a detailed description of the preferred embodiments of the invention, reference will
now be made to the accompanying drawings in which:
(0017] Figure 1 shows a conventional debug architecture in which a debugger user interface
includes a separate communication channel to each process debu:g server in the system;
(0018] Figure 2 shows a preferred embodiment of the invention in which a balanced
‘aggregator network is used to couple debug servers associated with processes to a debugger
interface;

[0019] Figure 3 shows a method of aggregating messages having identical data payloads;

wh
i

83322.03/1662.46300 -

, PATENT
REEL: 013103 FRAME: 0617

[0020] Figure 4 shows a method of aggregating messages having non-identical data payloads;
[0021] Figures 5a and 5b show an alternative method of aggregating messages having non-
identical data payloads;

[(0022] Figure 6 shows a method of aggregating messages provided from separate aggregators;
[0023) Figures 7a-7c include tables of routing information associated with the aggregator
network; and

{0024] Figure 8 illusirates one embodiment of an unbalanced aggregator network.

NOTATION AND NOMENCLATURE
[0025] Certain terms are used throughout the following description and claims to refer to
particular system components. As one skilled in the art will appreciate, computer companies may
refer to a component and sub-components by different names. This document does not intend to
distinguish between components that differ in name but not function. In the following discussion
and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and
thus should be interpreted to mean “including, but not limited to...”. Also, the term “couple” or
“couples” is intended to mean either a direct or indirect electrical connection. Thus, if a first
device couples to a second device, that connection may be through a direct electrical connection, or
through an indirect electrical connection via other devices and connections. In addition, no
distinction is made between a “processor,” “microprocessor,” “microcontroller,” cor “central
processing unit” (“CPU™) for purposes of this disclosure. Tg the extent that any term is not
specially defined in this specification, the intent is that the term is to be given its plain and ordinary

meaning.

(@)Y
1

65322.03/15862.46300 -

PATENT
REEL: 013103 FRAME: 0618

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0026] Referring now to Figure 2, system 100 1s shown comstructed in accordance with a
preferred embodiment of the invention. As shown, system 100 mcludes one or more application
processes 102 coupled to a debugger user interface 114 via an aggregator network 110. Although
nine processes 102 (PO-P8) are shown in Figure 2, any number of processes can be debugged using
the preferred embodiment. Each application process 102 to be debugged preferably includes, or is
associated with, a debug server 104 which preferably is a commonly available piece of debug
software, such as Ladebug provided by Compaq Computer Corporation, gdb provided from the
Free Software Foundation, or dbx from Sun Microsystems, which can be used to set break points,
check memory and registers, and other types of debugging tasks initiated via the debugger user
interface 114,

[0027} Using the debugger user interface 114, a user (e.g., a computer programmer) can send
debug commands to one or more of the debug servers and receive messages from the debug
servers. The commands may be any commands useful to debugging an application that runs on
one or more of the processes 102. Examples of such commands may include commands that set
break points in program flow, single stepping through a program, requests for the contents of
memory and/or processor registers, and the like. The messages from the debug servers 102 to the
user interface 114 may include the content of memory, the content of registers, status information,
and other information that may be useful in the debugging progess. The user in’terfa;e 114 itself
preferably runs on a process and includes at least one processor, an input device (e.g, 2 keyboard
and mouse) and an output display device.

[0028] The aggregator network 110 preferably includes two features which help solve the

problems noted above. One feature is that the aggregator network 110 preferably includes a

$3322.03/1662.46300 -/ -

PATENT
REEL: 013103 FRAME: 0619

hierarchy structure comprising one or more layers 116 and 118 and one or more aggregators 120,
124, 126 and 128 in each layer. The use of the aggregators to aggregate messages will be
described below. For now, it should be understood that the salient feature of the aggregators is that
they are one type of communication “node.” Each communication node (i.e., aggregator) receives
and transmits messages and commands. Using the communication infrastructure shown in Figure
2, no one process need have more communication channels than is permitted by any reasonable
limitations on the system, such as the quantity of open communication channels which may be
imposed by the operating system as explained above. As shown in Figure 2, although there are
mine processes 102, each aggregator 120-128 only has four communication channels, one channel
for each of four processes/aggregators. In the example of Figure 2, aggregator 120 communicates
with processes PO, P1 and P2 via communication chammels 130. Aggregator 124 communicates
with processes P3-P5 using communication channels 132 while aggregator 126 has communication
channels 134 to processes P6-P8. Each aggregator in layer 116 also has a communication channel
136 to aggregator 128 in layer 118.

[0029] Accordingly, aggregators 120-126 have three communication channels 130, 132, 134 to
each of three processes aﬁd a fourth commumucation channel 136 to aggregator 128. Aggregator
128 in layer 118 includes the three communication channels 136 to aggregators 120, 124 and 126
and a fourth communication channel 138 to the debugger user interface 114. Rather than having
nine communication channels from the processes 102 directly to the debugger us;r interface,
which would be the case with the conventional communication architecture of Figure 1, the
aggregator network 110 of Figure 2 requires no more than four channels to any one process. The
aggregator network 110 of Figure 2 can be scaled for any number of processes. For example,

additional aggregators could be added to layer 116 in the network 110 to communicate with

45322.03/1662.46300 -3 -
PATENT
REEL: 013103 FRAME: 0620

hundreds or thousands of processes. Additionally, the number of communication layers in the
aggregator network 110 could be increased beyond just the two shown in Figure 2. Further still,
aggregator 128 (layer 118) is not necessary to the implementation of a communication netwark
which permits a plurality of processes to communicate with a debugger user interface 114 with the
number of active communication channels that the operating system permits. Accordingly,
aggregators 120-126 in layer 116 could simply communicate with the debugger user interface 114
without communicating through layer 118. Broadly, the preferred embodiment of the invention
mcludes at least one layer of communication nodes, each node communicates with one or more
processes and to one or more other communication nodes or to a debugger user interface.

[0030] In addition to simply being communication nodes, the aggregators in Figure 2 also
perform another function. Accordingly, the second advantageous feature of the embodiment
shown in Figure 2 is that messages from debug servers 104 to the debugger user interface 114 are
analyzed and, when appropriate, combined or otherwise aggregated together. For example, if each
derbug server 104 transmits the same message (e.g., the current date) ultimately destined for the
debugger user interface 114, rather than transmitting nine separate, yet identical, messages to the
user interface 114, the aggregator network 110 aggregates those messages preferably into a single
message. The single message might include a single instance of the date and an indication that all
nine processes 102 transmitted the date. There are numerous possible techniques to analyze and
aggregate messages together and several such techniques will pe discussed below. "l:he message
aggregation preferably occurs without regard to messages being sent from the debug servers 104 to
the debugger user interface 114. Messages communicated in the opposite direction (e,
commands from the debugger user interface 114 to the debug servers) generally are not

aggregated.

65322.03/1662.46300 -9.

PATENT
REEL: 013103 FRAME: 0621

[0031) As shown in Figure 2, each aggregator 120-128 in the aggregator network 110 analyzes
and aggregates iis input messages and forwards on an aggregated message to the entity to which it
communicates. The aggregators in layer 116 aggregates messages from the debug servers 104 and
the aggregator(s) in layer 118 aggregates messages from the layer 116 aggregators. Accordingly,
aggregator 120 aggregates messages from the debug servers associated with processes PO-P2.
Aggregator 124 aggregates messages from the debug servers associated with processes P3-P5
while aggregator 126 aggregates messages from the debug servers associated with prbcesses Pé6-
P8. Aggregator 128 in layer 118 aggregates messages from aggregators 120-126.

[0032] Whenever possible, each aggregator tries to aggregate its input messages together to
forward on to the next entity in the communication chain. A plurality of messages may be
aggregated into a single message or more than one message. In general, n messages are aggregated
nto m messages, Where m is less than n. The value » is greater than 1 and, by way of example and
without limitation, may be greater than 100 or greater than 1000.

[0033] - Not all messages can be aggregated. Some input messages to an aggregator may be too
dissimilar to be aggregated. Non-aggregated messages are simply forwarded on.

{0034] A message preferably includes header information containing routing specifics such as
a destination address and a data payload. In accordance with a preferred embodiment, with regard
to message aggregation, messages generally fall into one of the following three categories:

+ 1dentical payloads 3

» similar payloads

» completely dissimilar payloads

(0035] Thus, two or more messages may have identical payloads, similar payloads or payloads

too different to benefit from message aggregatnion. Message aggregation may occur for two or

§5322.03/1662.46300 -10-

PATENT
REEL: 013103 FRAME: 0622

more messages that have identical or similar payloads. If the inpuf message payloads into an
aggregator are identical, the aggregator can use those input messages to generate a single output
message with a single payload also identifying the processes 102 to which the aggrezate message
pertains. An example of aggregating messages with identical payloads is shown in Figure 3. As
shown, an aggregator receives two input messages 150 and 152 which have identical payloads 156
and 158, respectively. The difference between messages 150 and 152 is that each originated from
a different debug server. Message 150 oniginated from the debug server associated with process
PO as indicated by numeral 0 in field 160 and message 152 6riginated from the debug server
assoclated with process P1 as indicated by field 162. The aggregated message 154 preferably
includes the same payload (156, 158) as messages 150 and 152. Field 164 includes a process
identifier range which identifies the processes to which the aggregated message payload 156, 158
pertains. In the example of Figure 3, the value in field 164 comprises “0:1” indicating that the
payload onginated from the debug serves associated with processes PO and P1.

[0036] Figure 4 illustrates the use of one suitable message aggregation technique for similar,
but not identical, messages. As shown in Figure 4, messages 170 and 172 are aggregated together
by an aggregator to form aggregated meésage 174. Message 170 originates from process PO as
indicated by field 180 and message 172 originates from process P1 as indicated by field 182.
Messages 170, 172 have similar, but not identical, payloads 176 and 178, respectively. Payload
176 m message 170 includes the date data value “FEBRUARY 11, 2002” and pay:load 178 in
message 172 includes the date data value “FEBRUARY 13, 2002”. The two date data values are
identical except for the dates—11, 13. That is, portions 184, 190 (“FEBRUARY ") are identical
and portions 188, 194 (%, 2002”) also are identical. That is, the initial portions 184 and 150

“FEBRUARY ” (including the blank space immediately after the word FEBRUARY) in each

63322.03/1662.46300 -11 -
PATENT
REEL: 013103 FRAME: 0623

payload and the ending portions 188 and 194 %, 2002” (including the blank space afier the comma)
are common to both message payloads. Portions 186 and 192 (values of 11 and 13, respectively)
are different.

[0037] Aggregated message 174 can be formed as shown without repeating the common
portions 184, 188, 190, and 194. Only the dissimilar portions 186, 192 of the data payloads need
to be individually identified. In the aggregated message 174, field 196 identifies the processes (PO
and P1 in the example) from which the aggregated message originated. Data payload 198 includes
three fields of data values which generally correspond to the three fields of each of the imput
messages 170, 172. Fields 200 and 204 relate the data values that are common to both input
messages. These values are indicated as being common by not including any indication that those
values are different in any way. Field 202 includes the data values from the input messages that
are different berween the messages. These values—11 and 13—are identified as a list of dissimilar
data values by the use of predetermined syntax, Although any special syntax can be used, in the
example of Figure 4, the syntax includes brackets around the values and a semicolon indicating a
range or a comma individually separating the values. Whether the aggregated messages use a
semicolon to indicate a range or a comma to list the differences is a user-selectable feature. Thus,
special syntax is used to encode or otherwise identify those data values of the input message
payloads 176, 178 that are unique; all othef fields of the data payload 198 are assumed to contain

data values that are identical to the aggregated messages. d

[0038] Figure 4, as shown, retains only the low and high values of the dissimilar fields, and
does not retain the origins of the field values. This in itself can be useful to reduce processing and
bookkeeping and to enhance speed. Alternate possibilities include retaining all the values and their

origins, preferably in a compact form. This would allow a first presentation using a range as

53322.03/1 662.46300 -12 -
PATENT
REEL: 013103 FRAME: 0624

shown in Figure 4, as well as being able to show more detail in expanded presentations.
Ageregators could be in modes, e.g., based on time and space versus utility tradeoffs, to discard or
retain various degrees of information. This disclosure covers all such cases.

(0039} In this way, messages that contain some identical and some non-identical elements of
their data payloads can be aggregated into fewer messages, preferably a single message, that
effectively provide the same information. Figures 3 and 4 illustrate one possible technique for
aggregating messages, but numerous other techniques exist and are within the scope of this
diéclosure. For example, Figures 5a and 5b illustrate another technique. In Figure 5a, message
2 ld originated from process O and has a data payload comprising the value “ ABCDEF”. Message
220 onginated from process 1 and has a data payload comprising the value “BCDEFG”. In
comparing the two payloads side by side there are no common elements to payloads. However, as
shown in Figure Sb, if the data payload of message 220 is shifted by one character, or at least
viewed .in a shifted format, with respect to the payload of message 210, then it can be seen that the
two payloads include common data values. As shown, the values “BCDEF” 224 are common (o
both payloads, while the values A (226) and G (228) are unique to each message (A being unique
to message 210 and G being unique to message 220). The aggregators preferably analyze the data
payloads of their input messages to determine if identical alphanumeric strings, albeit in different

[y

portions with the payloads, exist in the input messages.
5

{0040} These messages can be aggregated together as shown by message 230 in Figure 5b.
The payload comprising the aggregated message 230 indicates that the first value A (234) was an

element of only the message from process PO (message 210). This fact is indicated by including

the value A in brackets along with the process number to which that value pertains. Similarly, the

65322.05/1662.46300 -13 -

PATENT
REEL: 013103 FRAME: 0625

ending value G (236) is encoded as being an element of a message from process P1 only. The field
236 In aggregated message 230 contains the common data values, “BCDEF”. Again, as noted
above, there are numerous ways to encode this type of information besides that shown in Figure
5b.

[0041] The example of Figure 5b assumes the values of the aggregated payloads are
maintained in the same order. If, however, order is not necessary then the concept of Figure 5b can
be extended to reorder payloads to permit aggregation.

[0042] The aggregation techniques described above generally pertain to messages being sent
from processes 102 to the debugger user interface 114 (Figure 2). Messages from the processes
102 are aggregated, if possible, by aggregators 120-126 in layer 116, The aggregator 128 in layer
118 preferably aggregates the aggregated and non-aggregated messages from aggregators 120-126
on channels 136. Aggregator 128 compares the messages it receives from the three aggregators
120-126 to determine if any of the messages receivgd from different aggregators can further be
aggregated. Also, aggregator 128 detennine§ whether any non-aggregated input messages can be
aggregated with either aggregated or non-aggregated messages from other aggregators. The
aggregation techniques shown in Figures 3 and 4 can be used by aggregator 128 to aggregate
messages received from different aggregators 120-126 1n layer 116.

[0043] Figure 6 illustrates how a non-aggregated message yeceived from one agg;egator 120-
126 can be compared to and aggregated with an aggregated message received from a different
aggregator. In the example of Figure 6, aggregator 128 receives two messages 240 and 134.
Message 240 originated from process P6 and, according to Figure 2, passed through aggregator

126. Message 154 is an aggregated message that originated from processes PO and Pl and was

65322.03/1662.46300 -14 -

PATENT
REEL: 013103 FRAME: 0626

previously described in Figure 3. Aggregator 128 compares the payloads of the two messages,
determines that they are identical and aggregates the two messages together 1o form aggregated
message 246, Message 246 includes a process identifier field 238 which identifies all of the
processes that provided messages that became aggregated together in message 246. As such,
identifier field 238 includes the values 0:1,6 to indicate that messages from processes PO, P1 and
P6 are aggregated together by message 246. The data payload 248 of message 246 is simply the
payload from the messages generated by processes PO, P1 and P6.

10044] Further, it is concelvable to have aggTegatoré operate on objects rather than text.
Imagine a query of “statistics of age keyed by name.” The object would be a set. Each entry is a
name and information about age statistics (2.g. 1, sum(age), sum(age”2) will allow count, average
and standard deviation). “ Aggregating” two objects would create a new object that represents the
union of the names, but with the statistics entries combined, which in this case is a straightforward
summation. This kind of partial aggregation can be done in the aggregator network/tree.

[0045] In fact, if the internal representation sorts the set by name, then aggregation can be done
na pipelmed/ﬂow-thfough fashion without having each aggregator read each full object from its
inputs before doing the combination, and sending the large result out. Instead, knowing they are
sorted allows an aggregator that sees, for example, “Robert” to know it will never see a “ David”,
so that if there are “David” s pending from other channels, it canrsafely cormbine and forward.
[0046] As described above, aggregators layer 116 aggregate messages from the process.es 102,
while aggregator(s) in layer 118 aggregate messages from layer 116 aggregators. The message
aggregation described herein pertains to messages being transmitted from the processes 102 to the

debugger user interface. By aggregating messages whenever possible, fewer messages are

653722.03/1662.46300 -15-

PATENT
REEL: 013103 FRAME: 0627

provided to the user and the effort of debugging the application program is made considerably
easier and more efficient.

[0047] Thus far, a balanced aggregator network has been shown. Figure 8 shows one
embodiment of an unbalanced network. As shown, aggregators 320 may receive inputs from
debug servers, while aggregators 330 aggregate messages from other aggregators. The scope of
this disclosure includes balanced and unbalanced networks. Further, there is no limit on the depth
of the network (i.e., the number of levels in the network).

[0048] As noted above, commands or other information transmitted by the debugger user
nterface 114 to the processes 102 generally are not aggregated. Instead, each command is routed
by the aggregafors 120-128 to the appropriate destination location(s). Each .command preferably is
encoded with a process number (e.g., 0, 1, 2, etc.) or a process set corresponding to a group of
processes as>is commonly understood by those skilled m the art. Preferably, each aggregator has
access to routing information which is used to determine how to forward commands on to other
aggregators/processes. The routing information may take the form, for example, of a table which
i1s loaded into memory. Figure 7a shows one exemplary embodiment of a routing table 300 which
1s useful for aggregator 128. As showm, table 300 in Figure 7a lists the various processes, P0-P8,
mn the system along with an indication for each process of the layer 116 aggregator th;ough which
that process communicates. Accordingly, the routing informati?n preferably states thz;t aggregator
120 includes communication channels to processes PO-P2. Similarly, the routing information may
state that aggregator 124 includes communication channels for processes P3-P3, while the routing
information indicates that aggregator 126 includes communication channels for processes P6-P8.

Aggregator 128 uses the routing information table 300 to determine to which aggregator 120-126

$5322.03/1662.46300 -16 -
PATENT
REEL: 013103 FRAME: 0628

n layer 116 to transmit a command from the debugger user interface. It many cases, a command
may need to be routed to processes corresponding to more than one aggregator 120-126. In these
cases aggregator 128 preferably broadcasts the command to all of the aggregators that are to
receive the command.

[0049] The debugger user interface 114 similarly may have access to a table of routing
information which informs the interface to which aggregator to route commands. Figure 7b shows
one suitable embodiment of such a table 350. Each entry in the table 350 includes a process set
and a routing disposition. Because the exemplary embodiment of Figure 2 shows the interface 114
only coupled to one aggregator (aggregator 128), table 350 includes only a single entry. Other
entries could be included if the interface 114 coupled to other aggregators. Further, each of
aggregators 120, 124, 126 also have access to a routing table. An exemplary table 370 is shown in
Figure 7c for aggregator 124,

{00501 The debugger user interface 114 will generally receive both aggregated and
unaggregated messages from the processes 102 via the aggregator network. The messages can be
dealt with in any desirable manner. For example, the messages can simply be logged to a file.
Further, the messages can be viewed on a display (not shown) that is part of the debugger user
interface 114. If desired, and if sufficient information is available, aggregated messages can be
converted back to their unaggregated form. This conversiorn process will esseni;ially be the
reciprocal process from that used to generate the aggregated messages in the first place. In general,
the individual unaggregated messages can readily be recreated because each aggregated message
identifies the processes from which the messages originated. Further, in the case of aggregated

messages based on similar, but not 1dentical, messages, such aggregated messages can be

£5322.03/1662.46300 - 17 -

PATENT
REEL: 013103 FRAME: 0629

converted back to the original unaggregated messages if the aggregated messages retain the origins
of the dissimilar payloads. Using this information, aggregated messages can be converted to their
original unaggregated form.

[0051] The use of an aggregator network, such as the network described herein,
advantageously solves or alleviates the problems discussed previously. First, the detrimental
effects caused by the limitation as to the number of active communication channels that can be
open at a time for any one process is avoided through the use of multiple, hierarchically-arranged
aggregator processes in the aggregator network. Second, messages from the various processes can
be aggregated within the tree, often concurrently with other aggregators, into preferably fewer
messages to permit more efficient operation. The benefit of message aggregaﬁon increases as the
number of processes in the system increases. The architecture is readily scalable to any number of
processes (e.g., 100 or more or 1000 or more processes), and may provide significant advantages
over conventional architectures (e.g., Figure 1) when used in conjunction with 64 or more
processes/debug servers.

[0052) The above discussion is meant to be illustrative of the principles and various
embodiments of the present invention. Numerous variations and modifications will become
apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the
preferred aggregation technique described herein can be applied to messages that qontain text,
reply objects, or any other type of payload. It is intended that the following claims be interpreted

to embrace all such variations and modifications.

£3322.03/1662.463C0 -18 -

PATENT
REEL: 013103 FRAME: 0630

[N]

|3

(O8]

CLAIMS
What is claimed is:
1. A computer system, comprising:

a plurality of processes;

a debugger user interface usable to coordinate the debugging activity of an application
running on said processes; and

an aggregator network coupled to said processes and said debugger user interface, said
aggregator network aggregates together messages from two or more of said

processes and provides aggregated messages to said debugger user interface.

2. The computer system of claim 1 wherein said aggregator network also provides

unaggregated messages from said processes to said debugger user interface.

3. The computer system of claim 1 wherein said aggregator network comprises a plurality of
aggregators, each aggregator having communication channels to some, but not all, of said

PIOCESSES.

4, The computer system of claim 3 wherein said aggregator network also includes at least one

[

aggregator that has communication channels to other aggregaters and aggregates messages from

such other aggregators.

£3322.03/1662.46300 -19-

PATENT

REEL: 013103 FRAME: 0631

[\

(S8

(P8

(WS}

Q]

LD

(R

5. The computer system of claim 3 wherein said aggregator network also includes at least one
aggregator that has communication channels to other aggregators and to said debugger user

mterface.

6. The computer system of claim 1 wherein said aggregator network determines whether
messages from different processes have identical payloads and aggregates such messages with

different payloads into an aggregated message.

7. The computer system of claim 1 wherem said ageregator network determines whether
messages from different processes have non-identical payloads with some common data values and

aggregates such messages into an aggregated message.

8. The computer system of claim 7 wherein said aggregated message indicates the common
data values and uncommon data values and, for the uncommon data values, identifies the processes

from which the uncommon data values originated.

9. The computer system of claim 7 wherein said aggregator network includes an aggregator
that receives aggregated and unaggregated input messages and determines if any of said input

1

messages can be further aggregated and, if so, aggregates such messages.

10. The computer system of claim 1 wherein said aggregator network includes a plurality of

layers, each layer having at least one aggregator, and said aggregator network includes a first layer

65322.03/1662.46300 -20 -

PATENT

REEL: 013103 FRAME: 0632

(8]

I

[\

[N

(O]

whose at least one aggregator couple to said processes and a second layer whose at least one

aggregator couple to the at least one aggregator in the first layer.

11, The computer system of claim 10 wherein said aggregator network includes three or more

layers of aggregators coupled together.

12. The computer system of claim 1 wherein said aggregator network includes a first plurality
of communication nodes coupled to said processes and to a second communication node, said
second communication node coupled to said debugger user interface, and each communication
node in said first plurality is coupled to at least one, but not all, of said processes, and said
processes transmit messages through said first plurality of communication nodes to said second

communication node.

3. A computer system, compriéing:
a plurality of processes; and
a first plurality of communication nodes coupled to said processes and to a second
communication node, each communication node in said first plurality coupled to at
least one, but not all, of said processes;

wherein said processes transmit messages through said first plurality of communication

nodes to said second communication node;

63322.03/1662.46300 - 21 -

PATENT

REEL: 013103 FRAME: 0633

L

o

o

o

(&8)

(W]

()

(g

14, The computer system of claim 13 wherein said first plurality of communication nodes
aggregates messages from said processes and provides aggregated messages to said second

communication node. .

15, The computer system of claim 14 wherein said first plurality of communication nodes also

forwards on to said second communication node unaggregated messages from said processes.

16. The computer system of claim 13 wherein said second communication node aggregates

messages from said first plurality of communication nodes.

17. The computer system of claim 13 wheremn said first plurality of communication nodes
determines whether messages from different processes have identical payloads and aggregates such

messages with different payloads into an aggregated message.

18. The computer system of claim 13 wherein said first plurality of communication nodes
determines whether messages from different processes have non-identical payloads with some
common data values and aggregates such messages into an aggregated message.

19, The computer system of claim 18 wherein said aggregated message indicates the common
data values and uncommon data values and, for the uncommon data values, identifies the processes

from which the uncommon data values origmated.

393
Q9]
i

85322.03/1662.46300 -

PATENT

REEL: 013103 FRAME: 0634

=3

(8

Qe

(U8

20. The computer system of claim 18 wherein said second communication node receives
aggregated and unaggregated input messages from said first plurality of communication nodes and
determines if any of said input messages can be further aggregated and, if so, aggregates such

messages.

21, The computer system of claim 13 wherein said first plurality of communication nodes and

said second communication node are arranged in a plurality of communication layers.

22. A method of providing information between a plurality of processes on which an
application executes and a debugger user interface, the information usable in debugging activity of
said application, said method comprising:

(a) receiving a plurality of messages from a plurality of said processes;

(b) detexminiﬁg if said messages have any common data values; and

(¢) combining n messages from said plurality of messages into m messages, wherein m is

less than n.
23. The method of claim 22 wherein m equals 1.
24, Themethod of claim 22 wherein 7 is greater than 100.

25. The method of claim 22 wherein » is greater than 1000,

~o
(@'
1

63322.03/1662.46300 -

PATENT

REEL: 013103 FRAME: 0635

1 26, Themethod of claim 22 wherein said combined m messages in (c) include an identification

2 of'the processes from which the n messages originated.

63322.03/1662.46300 -24 -

PATENT
REEL: 013103 FRAME: 0636

10

ABSTRACT

A computer system includes an aggregator network that couples a plurality of processes on
which an application executes to a debugger user interface. Using the debugger user interface,
commands are created and sent through the aggregator network to the processes and messages
from the processes are routed through the aggregator network to the debugger user interface.
Whenever possible, the aggregator network combines the processors’ messages into fewer
messages and provides a reduced number of messages to the debugger user interface. The
aggregated messages generally contain the same information as the messages they aggregate and
identify the processes from which the messages onginated. The aggregator network examines the
processor messages for messages that have identical or similar data payloads and aggregates

messages that have identical or similar payloads.

AN
wn
'

65322.03/1662.46300 -

PATENT _
REEL: 013103 FRAME: 0637

Attorney Docket No. 1662-46300 (PO1-3646)

Applicants: Susanne M. BALLE et al.

Title: Multiprocess Debugging Using Multiple
Conventional Debuggers

Sheet 1 ol ¢ Express Mail Label No. EV065958958US
VN

| PRecES PR CETS R

05 8- G, ks

[oe5e.] ?::’f:ﬂ
(2.
IL —_
| e——n

DEAucaed USer
J M TERRAC

IR}

FOG LurRe)
 PRICR ARTD

PATENT
REEL: 013103 FRAME: 0638

Altorney Docket No. 1662-46300 (P01-3646)

Applicants: Susanne M. BALLE ctal.

Tide: Multiprocess Debugging Using Multiple
Conventional Debuggers

Sheet 2 of 4 Express Mail Label No. EV0O65958953US

PATENT
REEL: 013103 FRAME: 0639

Attormey Docket No. 1662-46300 (PO - 3646)

Applicants: Susanne M. BALLE et al

Title: Multiprocess Debugping Using Multiple
Conventional Debuggers

Sheet 3 of 4 Express Mail Label No. EV065958958U8S
IQ,D
j5C T)56 15% 54
L=z
\D[/D][pﬁ\/l—olxbj e
= [@ 1] [Pavtoro]
L] [P}rno,raj —
1527 T
t 5%
‘(p'L,
FIG, 3
171
e
52)84 i e 8
]'70 ‘/ ‘/"\‘*—'—’\ /—M J 200 2o
¥[b] FEBRWARY I 2002) T B T
et & J— [O:‘] Fe 0 Rutrf [pl;rj]) 200’1}
l“*f:ﬂreﬁaumv 13, 202] prpeu
1 Lge Rz lq*
Ig2-

, Fle.

2 oy in o5 oe]

[fecdeFe]
F’t()'gcx 30

| 1}(" e V»‘(224 1”/
vfo][/} /_’>C,l)6 FJ jf]H/\ o:}BCDEFE"/]]

|ll'!

222 _J1] [lg ¢ DE Fl ((]

218

Fresh

PATENT
REEL: 013103 FRAME: 0640

- Auomey Docket No. 1662-46300 (P0O1-3646)
Applicants: Susanne M. BATILE et al.
Title: Multiprocess Debugging Using Multiple
Convenlional Debuggers

Sheet 4 of 4

15"

A\{—KIG] T Py Lo&D)

e

nisrosriiond

procEsSS SETT
pROCESZOE

&2 AGG . 12)

’’’’’ i -
3.5 "1’(’6’__’,2’,1—7.
(o8 ACC (0|

—(6. 7

e

{_/Ioz \j]:P,H(Lm‘ri}j —_— L/O‘

Express Mail Label No. EV065958958US

238 PR

-/
\%f e |) Prprend

PG (o

35
/

pPrOC NS
5&7
P(C{f]ib

370

/

D (SPOTOTr 0N

e

- ~ g N
| R 7 1A
DEGIG SEAV &R —

process !

PATENT
REEL: 013103 FRAME

: 0641

Please type a plus sign (+) inside this box - PTO/SBI21 (08-00)
Approved for use through 10/31/2002. OMB 0651-0031

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

4

Application Number 10/109,287 \

TRANSMITTAL Filing Date March 28, 2002

FO RM First Named Inventor |Susanne M. BALLE

{to be used for all correspondence after initial filing) Group Art Unit 2122
Examiner Name UNKNOWN
\ Total Number of Pages in This Submission| 37 Attorney Docket Number{| 1662-46300 (P01-3646))
ENCLOSURES (check all that apply)
. o | Assignment Papers After Allowance Communication
Fee Transmittal Form (for an Application) to Group
v ; |:| - D Appeal Communication to Board
‘ Fee Charged to Deposit Account Drawing(s) of Appeals and Interferences
I:I Amendment / Reply Licensing-related Papers Appeal Communication to Group
(Appeal Notice, Brief. Reply Brief)
- Petition
After Final D Proprietary Information
I:I Petition to Convertto a
Affidavits/declaration(s) Provisional Application Status Letter
Power of Attorney, Revocation
.] Change of Correspondence Other Enclosure(s) (please
Extension of Time Request Address identify below):
Terminal Disclaimer 1. Statement Re: "Attached"
Express Abandonment Request inat .
Request for Refund Patent Application (1 p.);

2. Copy of App. as filed (29 p.); &
3. Acknowledgment postcard.

[:I Information Disclosure Statement CD, Number of CD(s)

Certified Copy of Priority
Document(s) Remarks

Response to Missing Parts/
Incomplete Application

Response to Missing Parts
under 37 CFR 1.52 or 1.53

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm Jonathan M. Harris, Reg. No. 44,144
or CONLEY, ROSE & TAYON, P. C.
Individual name

</ :
Signature \} /ﬁ‘/

24’ ’4 m/i4 — kb?
Date ly 15,2002
(" CERTIFICATE OF MAILING)

| hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as first class
mail in an envelope addressed to: Commissioner for Patents, Washington, DC 20231 on this date: July 15, 2002

Typed or printed name Colleen F. Brown

. P i
\Signature /ﬂ/ﬁm 71—, M@: » | Date lJuly 15, 2002)

Burden Hour Statement; This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments

on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington,
DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

MACU 6621463000 PTO TRANS 03

PATENT
RECORDED: 07/22/2002 REEL: 013103 FRAME: 0642

