Form PTO-1595 02-03-2003 U.S. DEPARTMENT OF COMMERCE U.S. Patent and Trademark Office (Rev. 10/02) OMB No. 0651-0027 102354211 Tab settings ⇒ ⇒ ⇒ To the Honorable Commissioner of Patents and Trademarks: Please record the attached original documents or copy thereof. 2. Name and address of receiving party(ies) 1. Name of conveying party(ies): 1.28-03 Name: Nortel Networks Corporation Bookham Technology PLC Internal Address: Additional name(s) of conveying party(ies) attached? X Yes 🔲 No 3. Nature of conveyance: Merger Assignment Street Address: 8200 Dixie Road Security Agreement Change of Name Suite 100 Other _____ Ontario, GA City: Brampton State:____Zip:____ Execution Date: 11/08/002 Additional name(s) & address(es) attached? Yes X No 4. Application number(s) or patent number(s): If this document is being filed together with a new application, the execution date of the application is: B. Patent No.(s) A. Patent Application No.(s) 6,222,200 09/688,873 Additional numbers attached? X Yes No 6. Total number of applications and patents involved: 209 5. Name and address of party to whom correspondence concerning document should be mailed: 7. Total fee (37 CFR 3.41).....\$8,360.00 Name: Thomas Rayski XX Enclosed Internal Address: Cleary, Gottlieb, Authorized to be charged to deposit account Steen & Hamilton 8. Deposit account number: Street Address: One Liberty Plaza (Attach duplicate copy of this page if paying by deposit account) City: New York State: NY Zip:10006 DO NOT USE THIS SPACE 9. Statement and signature. To the best of my knowledge and belief, the foregoing information is true and correct and any attached copy is a true copy of the original document. Thomas A. Raysti 1-27-63 Name of Person Signing Total number of pages including cover sheet, attachments, and documents: 01/31/2003 ECOOPER 00000078 0%66673 Mail documents to be recorded with required cover sheet information to: 0: FC:8021 8360.00 DP Commissioner of Patents & Trademarks, Box Assignments Washington, D.C. 20231 # Continuation of Item 1 of Recordation Form Cover Sheet Bookham Technology, Inc. Bookham Acquisition, Inc. Bookham (Switzerland) AG #### Continuation of Item 4 of Recordation Form Cover Sheet ## 4.A. Patent Application No.(s) 09/993,849 09/993,824 09/987,785 09/859,938 09/852,994 09/821,580 09/750,874 09/750,124 09/741,350 09/735,571 09/733,060 09/731,434 09/726,409 09/710,372 09/709,646 09/698,800 09/688,873 09/688,366 09/676,256 09/667,622 09/667,620 09/653,985 09/636,817 09/636,807 09/616,659 00/010,000 09/573,238 09/573,236 09/557,891 09/532,529 09/496,917 09/409,036 027102,030 09/386,604 10/262,763 10/259,890 10/259,745 10/254,594 10/245,199 09/213,088 10/242,497 10/196,956 10/190,592 10/165,465 10/161,523 10/141,914 10/141,862 10/131,335 10/116,168 10/108,856 10/098,446 10/073,101 60/414,404 60/414,402 60/404,166 60/391,648 60/390,882 60/380,261 60/352,572 60/334,013 10/049,886 10/032,421 10/032,416 10/027,229 10/026,150 10/025,866 10/024,972 60/148,148 60/148,017 60/099,308 60/099,252 10/014,807 10/006,509 60/004,620 09/888,888 09/736,095 09/672,703 10/218,267 09/101,276 10/109,916 PCTUS00/21904 PCTUS00/21905 PCTUS01/14918 PCTIB00/01530 PCTCA99/01067 PCTAU00/01380 ## 4.B. Patent No.(s) 4,489,477 4,493,287 4,530,099 4,574,730 4,608,276 4,615,031 4,631,078 4,660,207 4,661,962 4,675,876 4,675,877 4,695,125 4,720,684 4,730,171 4,735,648 4,748,307 4,760,580 4,772,086 4,793,840 4,830,459 4,847,665 4,849,373 4,859,628 4,889,830 4,934,774 4,937,638 4,949,352 4,950,046 4,953,006 4,969,712 4,988,159 4,989,214 5,029,981 5,035,916 5,050,953 5,050,960 5,056,096 5,062,687 5,082,380 5,083,090 5,115,444 5,345,459 5,350,923 5,363,457 5,365,534 5,393,707 5,419,804 5,448,581 5,452,318 3 5,483,547 5,502,741 5,522,000 5,524,076 5,530,580 5,534,442 5,536,085 5,542,011 5,567,659 5,568,728 5,570,444 5,574,811 5,586,207 5,664,043 5,668,823 5,694,504 5,703,980 5,777,793 5,778,113 5,793,913 5,799,119 5,825,792 5,828,689 5,869,398 5,872,649 5,901,164 5,930,441 5,933,707 5,936,994 5,956,437 5,960,014 5,985,086 5,991,471 6,026,110 6,028,875 6,041,071 6,058,125 6,075,800 6,104,739 6,124,956 6,141,370 6,151,347 6,158,901 6,188,118 6,201,824 6,204,560 4 6,222,200 6,240,221 6,246,826 6,275,321 6,287,401 6,351,589 6,377,717 6,391,214 6,407,438 6,409,241 RE34,516 4,756,589 4,801,185 5,488,679 5,638,473 5,703,976 5,708,740 5,730,888 5,885,881 5,904,491 6,014,475 6,044,192 6,115,518 6,263,131 6,321,000 6,415,077 6,424,755 6,466,704 #### PATENT SECURITY AGREEMENT WHEREAS, Bookham Technology plc, a public limited company incorporated under the laws of England and Wales (the "<u>Pledgor</u>"), and each of its subsidiaries that are listed on the signature pages hereto (together with the Pledgor, the "<u>Pledgor Parties</u>"), own the Patent Collateral (as defined below); and WHEREAS, pursuant to a Security Agreement (the "Security Agreement"), dated as of November 8, 2002, between the Pledgor and Nortel Networks Corporation (the "Pledgee"), the Pledgor Parties have granted to the Pledgee a continuing security interest in certain collateral, including, without limitation, the Patent Collateral, to secure certain of the Pledgor's obligations under certain notes issued pursuant to the Acquisition Agreement, dated as of October 7, 2002 between Pledgor and Pledgee; NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the Pledgor Parties hereby pledge and grant to the Pledgee, to secure such obligations, a continuing security interest in all of the Pledgor Parties' right, title and interest in, to and under the following, whether presently existing or hereafter created or acquired (collectively the "Patent Collateral"): - (i) all of the patents and pending patent applications listed on Schedule I and all patents issuing from such patent applications; and - (ii) any and all divisionals, continuations, continuations-in-part, reissues, reexaminations and extensions of any such patents and patent applications. The Pledgor Parties irrevocably constitute and appoint the Pledgee and any officer or agent thereof, with full power of substitution, as their true and lawful attorney-in-fact with full power and authority in the name of the Pledgor Parties or in the Pledgee's name, from time to time, in the Pledgee's discretion, so long as any Events of Default (as defined in the Security Agreement) shall have occurred and be continuing, to take with respect to the Patent Collateral and to execute any and all documents and instruments which may be necessary or desirable to carry out the terms of this Patent Security Agreement and to accomplish the purposes hereof. Each of the Pledgor Parties hereby reconfirms the Covenants regarding the Patent Collateral set forth in Section 3.03 of the Security Agreement. The foregoing security interest is granted in conjunction with the security interests granted by the Pledgor Parties to the Pledgee pursuant to the Security Agreement. The Pledgor Parties and the Pledgee acknowledge and affirm that the rights and remedies of the Pledgee and the Pledgor Parties with respect to the security interest in the Patent Collateral made and granted hereby are more fully set forth in the Security Agreement, the terms and provisions of which are incorporated by reference herein as if fully set forth herein. This Patent Security Agreement shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles. [Remainder of page intentionally left blank] IN WITNESS WHEREOF, the Pledgor Parties and the Pledgee have caused this Patent Security Agreement to be duly executed by their authorized officers on this 8th day of November, 2002. NORTEL NETWORKS CORPORATION By:___ Name: Khush Dadyburjor, as Attorney-in- Fact | BOOKHAM TECHNOLOGY PLC | |---| | By: | | Name: | | Title: | | | | | | BOOKHAM TEÇHNOLOGY, INC. | | \mathcal{M}_{Λ} \setminus \setminus | | Ву: | | Name: | | Title: | | _ | | BOOKHAMACQUISITION, INC. | | BOOKHAM/ACQUISITION, INC. | | 121 12 | | Ву: | | Name: | | Title: | | | | BOOKHAM _A ŞWITZERLAND) AG | | \mathcal{U}_{Λ} (| | | | By:Name: | | Title: | | Titto. | | \ / | | On this <u>for</u> day of November, 2002, before me appeared <u>Klaub Azir Swore</u> , the who signed this instrument, who acknowledged that he/she signed it as affree act on his/l | person | |--|---------| | | ier own | | behalf or on behalf of Nortel Networks Corporation with authority to do so. | | State of <u>Untrio</u> (<u>finitu</u>)) County of <u>ful (rigin)</u>) ss. | On this 8 day of November, 2002, before me appeared PHILLY 5.5. DAVIS, the person | |---| | who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own | | behalf or on behalf of Bookham Technology plc, Bookham Technology, Inc, Bookham | | Acquisition Inc., and Bookham (Switzerland) AG with authority to do so. | | State of A/E / Year | SS. State of NEW YORK) County of NEW YORK STEVEN FOUNDOS Notary Public, State Of New York No.01F06076651 Qualified In Nassau County Certificate Filed In New York County Commission Expires July 1, # **SCHEDULE I** ## **Transferred Patents** | Disclosure
Number | Filed
Country | Filed Date | Number | Filed
Countries in
Family | Title 2.1 | |----------------------|------------------|------------|---------------------------------------|---|--| | 10289RO | US | 19-Apr-99 | · · · · · · · · · · · · · · · · · · · | Canada, United
States |
PHOTODETECTOR WITH
SPECTRALLY EXTENDED
RESPONSIVITY | | 10412RO | US | 17-Oct-00 | Pending | United States | EXTERNAL CAVITY LASER USING
ANGLE-TUNED FILTER AND
METHOD OF MAKING SAME | | 10413ID | US | 30-Jun-99 | Pending | United States | FIBRE TERMINATION COMPOUND GRADED INDEX LENSES | | 10485RO | US | 1-Dec-00 | Pending | United States | ELECTROCHROMIC OPTICAL
ATTENUATOR | | 10509RO | US | 23-Dec-99 | 6287401 | Canada, United
States | ALIGNMENT METHOD FOR
SEMICONDUCTOR OPTICAL
DEVICES UPON CARRIERS | | 11006ID | US | 2-Feb-00 | Pending | United States | MODULATOR ASSEMBLIES | | 11010ID | US | 28-Feb-00 | Pending | Canada, European
Patent Convention,
United States | OPTICAL AMPLIFIER STAGE | | 1 1920ID | US | 21-Apr-00 | Pending | United States | PUMPED OPTICAL AMPLIFICATION DEVICE | | 11945ID | US | 18-May-00 | Pending | United States | A RAMAN FIBRE LASER | | 11954ID | US | 18-May-00 | Pending | United States | A RAMAN FIBRE LASER | | 12242RO | US | 11-Dec-00 | Pending | United States | EPITAXIALLY GROWN
AVALANCHE PHOTODIODE | | 12339ID | US | 1-Sep-00 | Pending | United States | OPTICAL FIBER DEVICE | | 12349RO | US | 12-Oct-00 | Pending | Canada, United
States | COMPACT CHIP LABELING USING STEPPER TECHNOLOGY | | 12526RO | US | 12-Sep-00 | Pending | United States | APPARATUS FOR GRIPPING
CERAMIC SUBSTRATES | | 12615ID | US | 29-Sep-00 | Pending | United States | PACKAGING ATMOSPHERE AND
METHOD OF PACKAGING A MEMS
DEVICE | | 12634RO | US | 20-Dec-00 | Pen ding | United States | STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS | | 12665R() | US | 22-Sep-00 | Pending | United States | PRINT QUALITY TEST STRUCTURE
FOR LITHOGRAPHIC DEVICE
MANUFACTURING | | I 2686ID | US | 27-Oct-00 | Pending | United States | GLASS FIBER FIXATIVE AND
FIXING PROCESS | 7 | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|---|--| | 12715RO | US | 22-Sep-00 | Pending | United States | METHODS FOR MAKING
PATTERNS IN RADIATION
SENSITIVE POLYMERS | | 12800AU | US | 30-Aug-95 | 5930441 | United States | SPLIT-BEAM FOURIER FILTER | | 12841ID | US | 14-Jul-00 | Pending | United States | INTEGRATED OPTICAL
TRANSMITTER | | 12847RO | US | 14-Dec-01 | Pending | Canada, United
States | CONFINEMENT LAYER OF BURIED
HETEROSTRUCTURE
SEMICONDUCTOR LASER | | 12849ID | US | 9-Nov-00 | Pending | Patent Cooperation
Treaty, United
States | OPTICAL AMPLIFIER METHOD
AND APPARATUS | | 12948ID | US | 6-Dec-00 | Pending. | Canada, United
States | OPTICAL AMPLIFIER, OPTICAL
AMPLIFIER HYBRID ASSEMBLY
AND METHOD OF MANUFACTURE | | 13063CK | US | 27-Sep-96 | 6041071 | United States | ELECTRO-OPTICALLY TUNABLE
EXTERNAL CAVITY MIRROR FOR
A NARROW LINEWIDTH
SEMICONDUCTOR LASER | | 13144CK | US | 31-Aug-99 | Pending | Canada, United
States | LASER WITH SETTABLE
WAVELENGTHS | | 13199CK | US | 10-Aug-00 | Pending | Canada, European
Patent Convention,
United States | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13201CK | US | 10-Aug-00 | Pending | Canada, European
Patent Convention,
United States | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13391RO | US | 16-Nov-01 | Pending | United States | MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE- EMITTING SEMICONDUCTOR LASER | | 13417RO | US | 29-Dec-00 | Pending | United States | METHOD OF ETCHING PATTERNS
INTO EPITAXIAL MATERIAL | | 13444CK | US | 17-May-01 | Pending | Patent Cooperation
Treaty, United
States | MICROELATION FOR DWDM
TELECOMMUNICATIONS
APPLICATIONS | | 13494ID | US | 29-Mar-01 | Pending | Canada, European
Patent Convention,
United States | METHOD AND APPARATUS FOR
MINIMIZING GAIN DEVIATION IN
OPTIAL FIBRE AMPLIFIERS | | 13495ID | US | 4-Oct-00 | 6377717 | United States | OPTICAL MODULATORS | | 13502RO | US | 14-Dec-00 | Pending | United States | OPTICAL FIBER TERMINATION | | Disclosure | Filed | Filed Date | Patent | Filed | Title | |------------|---------|------------|---------|---|---| | Number | Country | | Number | Countries in
Family | | | 13524RO | US | 19-Jul-01 | Pending | United States | A METHOD AND SYSTEM FOR
FABRICATING SEMICONDUCTOR
LASERS | | 13544RO | US | 10-May-02 | Pending | United States | SEMICONDUCTOR LASER | | 13584RO | US | 13-Nov-00 | Pending | Canada, European
Patent Convention,
United States | ELECTRODE TERMINATION FOR
REDUCED LOCAL HEATING IN AN
OPTICAL DEVICE | | 13591ID | GB | 18-Dec-01 | Pending | Great Britain,
Patent Cooperation
Treaty | OPTICAL MODULATORS | | 13614ID | US | 26-Nov-01 | Pending | United States,
Patent Cooperation
Treaty | OPTICAL PULSE GENERATION | | 13721RO | US | 20-Sep-02 | Pending | United States | AN NON-DESTRUCTIVE AND FAST
WAY TO DETECT DIFFUSION
DEPTH AND UNIFORMITY CROSS A
WAFER | | 13813RO | US | 20-May-02 | Pending | United States | MONOLITHICALLY INTEGRATED
HIGH POWER LASER OPTICAL
DEVICE | | 13816RO | Unfiled | Unfiled | Unfiled | Unfiled | APPARATUS FOR MONITORING
THE OUTPUT POWER OF DIODE
LASERS AND MODULATORS | | 14224ID | US | 21-Dec-01 | Pending | United States | ISOLATION OF MICROWAVE
TRANSMISSION LINES | | 14429ID | US | 6-Dec-01 | Pending | United States | OPTICAL BEAM SAMPLING
MONITOR | | 14404RO | US | 20-Dec-01 | Pending | United States | HYBRID CONFINEMENT LAYERS
OF BURIED HETEROSTRUCTURE
SEMICONDUCTOR LASER | | 14433JD | US | 20-Apr-98 | 6204560 | Patent Convention, | TITANIUM NITRIDE DIFFUSION
BARRIER FOR USE IN NON-
SILICON TECHNOLOGIES AND
METHOD | | 14434JD | US | 1-Sep-00 | Pending | European Patent
Convention, United
States | STABILIZED LASER SOURCE | | 14435JÐ | US | 25-Oct-00 | Pending | Patent Convention, | SUPPORTING STRUCTURE FOR
FIBER FIXING AND SUBMICRON
FINE ALIGNMENT | | 14480RO | Unfiled | Unfiled | Unfiled | | GAIN COUPLED DISTRIBUTED
FEEDBACK LASER USING SELF-
ASSEMBLED QUANTUM DOTS | | | , | | | | | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|-------------------|------------------|--|--| | 14549JD | us | 9-May-02 | Pending | Canada, European
Patent Convention,
Japan, United States | HIGH POWER SEMICONDUCTOR
LASER DIODE | | 14551JD | US | 19-Dec-01 | Pending | United States | HIGH POWER LASER CARRIER | | 14552JD | US | 6-Nov-01 | Pending | United States | ANTI-REFLECTION COATINGS FOR SEMICONDUCTOR LASERS | | 14592ID | US | 19-Dec-01 | Pending | United States | GIMBALLED LENS MOUNT AND
ALIGNMENT ASSEMBLY FOR A
SENSITIVE OPTICAL ALIGNMENT | | 14676RO | US | 26-Dec-01 | Pending | United States | ENHANCED LINK OPERATION OF
DIRECTLY MODULATED LASERS
USING GAIN-COUPLED GRATINGS | | 14681ID | US | 21-Dec-01 | Pending | United States | THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES | | 14716RO | US | 12-Feb-02 | Pending | United States | WAVEGUIDE MODE STRIPPER FOR
INTEGRATED OPTICAL
COMPONENTS | | 14777 I D | US | 18-Dec-2001 | Pending | United States | OPTICAL AMPLIFIERS | | 14794RO | US | 30-Sep-02 | Pending | United States | METHOD AND APPARATUS FOR
FLOATING GRATINGS IN DFB
(DISTRIBUTED FEEDBACK)
LASERS | | 14854RO | Unfiled | Unfiled | Unfiled | Unfiled | A METHOD FOR MINIMIZING
CROSSTALK DUE TO LASER
WAVELENGTH VARIATIONS WITH
NON-IDEAL FILTERS | | 14864RO | US | 8-Jul-02 | Pending | | CURRENT TUNED MACH-ZEHNDER
OPTICAL ATTENUATOR | | 14942RO | US | 5-Apr-02 | Pending | ì | RE-CIRCULATING OPTICAL PULSE
GENERATOR | | 15004RO | US | 18-Mar-02 | Pending | United States | MICRO-MIRRORS WITH VARIABLE
FOCAL LENGTH, AND OPTICAL
COMPONENTS COMPRISING
MICRO-MIRRORS | | L5093RO | US | 26-Sep-02 | Pending | | MULTIPLE-CONTACT
SEMICONDUCTOR OPTICAL
AMPLIFIERS | | 15095RO | US | 29-Mar- 02 | Pending | 1 | FREQUENCY IDENTIFICATION WITH FREQUENCY LOCKER | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|---------------------------------|--| | 15113CK | US | 7-Jun-02 | Pending | United States | WAVELENGTH STABILIZED
OPTICAL DEVICE | | 15116JD | US | 24-Apr-02 | Pending | United States | HIGH POWER SEMICONDUCTOR
LASER DIODE AND METHOD FOR
MAKING SUCH A DIODE | | 15117JD | Unfiled | Unfiled | Unfiled | Unfiled | PUMP LASER DIODE WITH
IMPROVED WAVELENGTH
STABILITY | | 15138ID | US | 3-Jun-02 | Pending | United States | AN IMPROVED METHOD FOR
TERMINATING AN OPTICAL
WAVEGUIDE INTO AN OPTICAL
COMPONENT | | 15142RO | US | 31-Jan-02 | Pending | United States | FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS | | 15150RO | US | 27-Sep-02 | Pending | United States | METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIA GROWTH STEP | | 15164RO | US | 2-Oct-02 | Pending | United States | A DOPANT-INDUCED REAL
REFRACTIVE INDEX-GUIDED
SELF-ALIGNED LASER
STRUCTURE WITH INTEGRAL
CURRENT BLOCKING LAYER. | | 15181ID | US | 26-Jun-02 | Pending | United States | LASER TRANSMITTER | | 15193RO | US | 14-May-02 | Pending | United States | OPTIMIZED PERFORMANCE OF
INGAASP/INP
COMPACT ON-CHIP
POLARIZATION CONVERTER | | 15320RO | US | 15-Oct-02 | Pending | United States | ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP | | 15338RO | Unfiled | Unfiled | Unfiled | Unfiled | HIGH POWER DISTRIBUTED
FEEDBACK LASER | | 15386JD | US | 16-Sep-02 | Pending | United States | RIDGE WAVEGUIDE LASER DIODE
WITH COMPLEX INDEX GUIDING
LAYER | | 15389JD | Unfiled | Unfiled | Unfiled | Unfiled | LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBACK | | 15390RO | US | 16-Aug-02 | Pending | United States | ON-CHIP POLARIZATION
SPLITTER/COMBINER DEVICE | | 15399ЛЭ | US | 17-Oct-02 | Pending | United States | A GUIDED SELF-ALIGNED LASER
STRUCTURE WITH INTEGRAL
CURRENT BLOCKING LAYER | | Disclosure | Filed | Filed Date | Patent :: | Filed | Title | |------------|---------|------------|-----------|--|--| | Number | Country | | Number | Countries in
Family | | | HQ0054 | US | 19-Feb-99 | 6141370 | Canada, United
States | SUPERIMPOSED GRATING WDM
TUNABLE LASERS | | ID0032 | US | 6-Oct-94 | 5534442 | United States | OPTO ELECTRONIC COMPONENTS | | ID0079 | US | 19-Jul-93 | 5393707 | Great Britain,
United States | SEMICONDUCTOR - SLICE
CLEAVING | | ID0094 | US | 17-Nov-95 | 5668823 | France, Germany,
Great Britain,
Japan, United States | HYBRID OPTIC SOLUTION | | ID0134 | US | 16-Feb-94 | 5419804 | France, Germany,
Great Britain,
Japan, United States | SEMICONDUCTOR ETCHING
PROCESS | | ID0137 | US | 26-Jul-95 | 5574811 | Great Britain,
United States | PROVIDING OPTICAL COUPLING
BETWEEN OPTICAL COMPONENTS | | ID0170 | US | 24-Feb-94 | 5365534 | United States | INJECTION LASER AND
PHOTOSENSOR ASSEMBLY | | ID0193 | US | 13-Feb-95 | 5568728 | Great Britain,
United States | FILAMENT COOLER | | ID0199 | US | 9-Sep-94 | 5542011 | United States | CO & COUNTER-PUMPED OPTICAL
AMPLIFIER | | ID0206 | US | 9-Sep-94 | 5530580 | France, Germany,
Great Britain,
Japan, United States | ELECTRO ABSORPTION OPTICAL
MODULATORS | | ID0216 | US | 29-Jul-94 | 5522000 | Great Britain, | PROVIDING OPTICAL COUPLING
WITH SINGLE CRYSTAL
SUBSTRATE MOUNTED ELECTRO-
OPTIC TRANSDUCERS | | ID0237 | US | 22-Mar-94 | 5502741 | United States | DIRECT AMPLITUDE
MODULATION OF LASERS | | ID0261 | US | 7-Mar-96 | 5933707 | France, Germany,
Great Britain,
Japan, United States | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0287 | US | 3-Aug-95 | 6275321 | France, Germany,
Great Britain.
United States | POLARISATION-INSENSITIVE
OPTICAL MODULATORS | | Disclosure
Number | Filed
Country | Filed Date | 1 (a 100) | Filed
Countries in
Family | Title | |----------------------|------------------|-------------------|-----------|---|--| | ID0295 | US | 12-Dec-95 | 5570444 | France, Germany,
Great Britain, Italy,
United States | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0311 | US | 4-Dec-96 | 5872649 | France, Germany,
Great Britain, Italy,
United States | OPTICAL AMPLIFIER | | ID0384 | US | 19-Jul-96 | 5664043 | Great Britain,
United States | HERMETIC OPTICAL FIBRE FEED-
THROUGH | | ID0426 | US | 30-Apr-97 | 5828689 | Canada, European
Patent Convention,
Japan, United States | ETALON ARRANGEMENT | | ID0431 | US | 19-Jun-98 | 6058125 | France, Germany,
Great Britain, Italy,
Japan, United States | SEMICONDUCTOR LASERS | | ID0467 | US | 5-Feb-97 | 5985086 | France, Germany,
Great Britain, Italy,
Japan, United States | CONTROLLED DISPENSE OF GLUE
ONTO A SILICON V-GROOVE | | ID0519 | US | 1 -A ug-97 | 6188118 | Canada, European
Patent Convention,
Japan, United States | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | ID0651 | US | 30-May-97 | 5901164 | Canada, European
Patent Convention,
Japan, United States | DIRECT AMPLITUDE
MODULATION OF LASERS | | ID0687 | US | 4-Dec-97 | 6124956 | United States | OPTICAL TRANSMITTER OUTPUT
MONITORING TAP | | ID0691 | US | 5-May-98 | 6075800 | United States | BONDING RIDGE STRUCTURE
LASER DIODES TO SUBSTRATES | | ID0764 | US | 16-Aug-99 | 6351589 | United States | A REMOVABLY COATED OPTICAL
FIBRE | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|--|---| | ID0803 | US | 24-Dec-97 | 5956437 | Canada, European
Patent Convention,
Japan, United States | ELECTRICALLY CONTROLLABLE
OPTICAL ATTENUATOR | | ID0908 | US | 30-Apr-98 | Pending | United States | SEMICONDUCTOR OPTO
ELECTRONIC DEVICE PACKAGING | | ID1107 | US | 29-Mar-99 | 6240221 | Canada, European
Patent Convention,
United States | INTEGRATED OPTICAL MACH
ZEHNDER STRUCTURES | | ID8512 | US | 15-Jul-83 | 4615031 | Great Britain,
United States | INJECTION LASER PACKAGES | | ID8850 | us | 22-Jul-86 | 4720684 | Canada, United
States | OPTICAL AMPLIFIERS | | ID8852 | US | 21-May-85 | 4608276 | Canada, United
States | MANUFACTURING OPTICAL FIBRE | | ID8960 | US | 11-Dec-86 | 4735648 | United States | OPTICAL FIBRE MANUFACTURE | | ID9003 | US | 2-Oct-85 | 4631078 | Canada, Germany,
Great Britain,
Japan, Spain,
United States | COATING OPTICAL FIBRES | | ID9186 | US | 17-Jan-89 | 4949352 | Great Britain,
United States | LASER MANUFACTURE | | ID9209 | US | 1-May-86 | 4748307 | United States | TUBE FURNACE | | ID9312 | US | 14-Aug-86 | 4793840 | Great Britain,
United States | OPTICAL FIBRE MANUFACTURE | | ID9315 | US | 31-Dec-90 | RE34,516 | France, Germany,
Great Britain, New
Zealand, United
States | OPTICAL FIBRE CABLE HAVING
SLOTTED CORE | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in | Title | |----------------------|------------------|------------|------------------|---|--| | | | | | Family | | | ID9379 | US | 24-Nov-86 | 4772086 | Great Britain,
United States | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER | | ID9495 | US | 31-Mar-87 | 4760580 | Germany, Japan,
United States | LASER ARRAY | | ID9552 | US | 10-Feb-88 | 4830459 | France, Germany,
Great Britain,
United States | OPTICAL FIBRE CABLES | | ID9604 | US | 9-Aug-88 | 4988159 | France, Germany,
Great Britain, | FIBRE TAILED OPTO-ELECTRONIC
TRANSDUCER | | | | | | Netherlands,
Sweden, United
States | | | ID9617 | US | 1-Sep-88 | 4937638 | United States | EDGE EMITTING LIGHT EMISSIVE DIODE | | ID9661 | GB | 12-Oct-88 | 2213957 | Great Britain | WAVEGUIDE TO OPTO-
ELECTRONIC TRANSDUCER | | ID9715 | US | 31-May-90 | | Great Britain, | CONTACTLESS MEASUREMENT OF
THE ELECTRICAL RESISTANCE
PER UNIT LENGTH | | ID9716 | US | 31-May-90 | | | CARB ON COATING OF OPTICAL
FIBRES | | ID9731 | GB | 4-Aug-88 | 2221570 | Great Britain | BONDING A SEMICONDUCTOR TO
A SUBSTRATE | | ID9742 | GB | 30-Sep-88 | 2223324 | Great Britain | OPTICAL FILTERS | | ID9750 | US | 10-Sep-90 | | | DIFFRACTION GRATING | | ID9752 | GB | 4-Oct-88 | 2223509 | Great Britain | VAPOUR PHASE PROCESSING | | Disclosure | Filed | Filed Date | Patent | Filed | Title | |------------|---------|--|---------------------------------------|--|--| | Number | Country | The state of s |
· · · · · · · · · · · · · · · · · · · | Countries in Family | | | ID9763 | US | 11-Dec-90 | 5115444 | France, Germany,
Great Britain,
United States | MULTICHANNEL CAVITY LASER | | ID9774 | GB | 3-Feb-89 | 2227854 | Great Britain | INTEGRATED OPTICS
ASYMMETRIC Y-COUPLER | | ID9806 | US | 27-Jun-90 | 5082380 | United States | OPTICAL FIBRE CABLE | | ID9837 | US | 12-Oct-90 | 5050960 | United States | AERIAL OPTICAL FIBRE CABLE | | | | | | | | | ID9856 | GB | 2-Nov-89 | 2237654 | Great Britain | SEMICONDUCTOR OPTICAL
SOURCE | | ID9870 | US | 17-Sep-90 | 5056096 | France, Germany,
Great Britain,
Japan, United States | RING LASER | | MO0068 | US | 8-Jun-89 | 4934774 | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS MANUFACTURE | | MO0166 | US | 20-Sep-96 | | United States | A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER | | MO0167 | US | 10-Jul-96 | | Canada, European
Patent Convention,
Japan, United States | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|---------------------------------|--| | MO0167 | US | 15-May-98 | 6158901 | | METHOD FOR HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON SEMICONDUCTOR
SUBSTRATE | | MO0167 | US | I-Jun-00 | 6391214 | , | METHOD FOR HYBRID INTEGRATION OF DISCRETE ELEMENTS ON SEMICONDUCTOR SUBSTRATE | | RE1009 | US | 28-Nov-89 | 4950046 | Canada, United
States | FIBER OPTIC COUPLER | | RE1037 | US | 28-Apr-86 | 4730171 | Canada, United
States | OPTICAL SIGNAL MODULATORS | | RO1624 | US | 11-Feb-81 | 4695125 | United States | HERMETIC OPTICAL ATTENUATOR | | RO1807 | US | 3-Dec-82 | 4493287 | Canada, United
States | DIFFUSION EQUIPMENT | | RO1809 | US | 9-Dec-82 | 4530099 | United States | A PLANAR NARROW-STRIPE
LASER WITH IMPROVED CHARGE
CARRIER CONFINEMENT | | RO1882 | US | 27-Feb-84 | 4574730 | Canada, United
States | MELT DISPENSING LIQUID PHASE EPITAXY BOAT | | RO1903 | US | 23-Feb-84 | 4489477 | Canada, United
States | METHOD FOR SCREENING LASER DIODES | | RO1944 | US | 22-Oct-84 | 4661962 | Canada, United
States | PHASED LINEAR LASER ARRAY | | RO1961 | US | 9-Sep-88 | 4889830 | Canada, United
States | ZINC DIFFUSION INTO INDIUM
PHOSPHIDE | | RO1987 | US | 21-Nov-84 | 4660207 | Canada, United
States | DOUBLE HETEROSTRUCTURE
SURFACE EMITTING LASER
STRUCTURE | | RO1994 | US | 14-Feb-85 | 4675877 | Canada, United
States | A SURFACE EMITTING LASER | | RO2005 | US | 14-Feb-85 | 4675876 | Canada, United
States | A BRAGG DISTRIBUTED
FEEDBACK SURFACE EMITTING
LASER | | RO2268 | US | 11-Apr-88 | 4859628 | Canada, United
States | AN INTERRUPTED LIQUID PHASE EPITAXY TECHNIQUE | | RO2314 | US | 31-Mar-88 | 4847665 | United States | MONOLITHIC INTEGRATION OF
OPTOELECTRONIC AND
ELECTRONIC | | RO2349 | US | 2-Jun-88 | 4849373 | Canada, United
States | GROWTH OF SEMI-INSULATING
INP BY LIQUID PHASE EPITAXY | | l | | 1 | ſ | 1 | | | Disclosure
Number | Filed
Country | Filed Date | Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|---------|--|---| | RO2461 | US | 22-Jun-89 | 4969712 | United States | OPTOELECTRONIC APPARATUS
AND METHOD FOR ITS
FABRICATION | | RO2468 | US | 27-Jul-89 | 4953006 | Canada, United
States | PACKAGING METHOD AND
PACKAGE FOR EDGE COUPLED
OPTOELECTRONIC DEVICE | | RO2564 | US | 11-May-90 | 4989214 | France, Germany,
Great Britain,
United States | LASER DIODE STRUCTURE | | RO2579 | US | 14-Sep-90 | 5050953 | Great Britain,
United States | MULTICHANNEL FIBER OPTIC
TRANSMITTER RECEIVER | | RO2714 | US | 23-Dec-92 | 5350923 | United States | APPARATUS FOR USE WITH
ANALYTICAL MEASURING
INSTRUMENTS | | RO2785 | US | 15-Jul-93 | 5363457 | France, Germany,
Great Britain,
Japan, United States | OPTICAL PHASE MODULATING
DEVICES AND METHODS FOR
THEIR OPERATION | | RO2788 | US | 9-Sep-93 | 5345459 | United States | METHOD OF REDUCING THE
THERMALLY INDUCED SHIFT IN
THE EMISSION WAVELENGTH OF
LASER DIODES | | RO2799 | US | 16-Dec-93 | 5452318 | United States | GAIN COUPLED DFB LASER WITH
INDEX COUPLING COMPENSATION | | RO2809 | US | 29-Nov-93 | 5586207 | United States | METHODS AND ASSEMBLIES FOR
PACKAGING ELECTRONIC
DEVICES AND FOR COUPLING
OPTICAL FIBERS TO THE
PACKAGED DEVICES | | RO2817 | US | 29-Nov-93 | 5448581 | United States | CIRCULAR GRATING LASERS | | RO2875 | US . | 25-May-95 | 5526076 | United States | CHIRP CONTROL OF A MACH
ZEHNDER OPTICAL MODULATOR
USING NONEQUAL POWER
SPLITTING | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|--|--| | RO2879 | US | 10-May-94 | 5483547 | United States | SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE | | RO2956 | US | 8-Mar-96 | 5694504 | Canada, Great
Britain, Japan,
United States | SEMICONDUCTOR MODULATOR
WITH A 2-2 SHIFT | | RO2969 | US | 25-May-95 | 5567659 | United States | METHOD OF ETCHING PATTERNS
IN III-V MATERIAL WITH
ACCURATE DEPTH CONTROL | | RO2974 | US | 30-Mar-95 | 5536085 | United States | MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY | | RO2999 | US | 3-Jul-96 | | Canada, European
Patent Convention,
Japan, United States | COUPLING OF STRONGLY AND
WEAKLY GUIDING WAVEGUIDES
FOR COMPACT INTEGRATED
MACH ZEHNDER MODULATORS | | RO3007 | US | 11-Oct-96 | 6028875 | United States | BURIED HETEROSTRUCTURE
LASER WITH QUATERNARY
CURRENT BLOCKING G LAYER | | RO3015 | US | 24-Nov-97 | | | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS | | RO3066 | US | 9-Jun-98 | 6151347 | United States | LASER DIODE AND METHOD OF
FABRICATION THEREOF | | RO3090 | US | 7-Nov-96 | | · • | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3090 | US | 7-Nov-96 | 5991471 | | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3092 | US | 25-Jul-96 | 5777793 | | POLARIZATION INSENSITIVE
MULTILAYER PLANAR
REFLECTION FILTERS WITH NEAR
IDEAL SPECTRAL RESPONSE | | Disclosure
Number | Filed
Country | Filed Date | Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|---------|---|--| | RO3139 | US | 11-Jul-96 | 5825792 | Canada, France,
Germany, Great
Britain, Japan,
United States | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL TRANSMISSION
SYSTEMS | | RO3478 | US | 18-Sep-97 | 5936994 | European Patent
Convention, Japan,
United States | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | | RO3479 | US | 16-Oct-97 | 6026110 | United States | DISTRIBUTED FEEDBACK
SEMICONDUCTOR LASER WITH
GAIN MODULATION | | RO3610 | US | 24-Dec-97 | 6104739 | European Patent
Convention, Japan,
United States | SERIES OF STRONGLY COUPLED
DFB LASERS | | RO3746 | US | 19-Dec-97 | 5869398 | United States | ETCHING OF INDIUM PHOSPHIDE
MATERIALS FOR
MICROELECTRONIC FABRICATION | | RO3920 | US | 10-Nov-99 | Pending | Canada, European
Patent Convention,
Japan | A GAIN COUPLED DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASER | | RO4144 | US | 11-Dec-98 | 6201824 | United States | STRONGLY COMPLEX COUPLED
DFB LASERS SERIES | | RO4324 | US | 15-Dec-98 | Pending | United States | GENERATION OF SHORT OPTICAL
PULSES USING STRONGLY
COMPLEX COUPLED DFB LASERS | | RO4416 | US | 2-Sep-99 | 6246826 | United States | VARIABLE OPTICAL ATTENUATOR
WITH PROFILED BLADE | | RO4504 | US | 20-Jul-00 | | Canada, European
Patent Convention,
Japan, United States | COMPOUND CAVITY REFLECTION
MODULATION LASER SYSTEM | | 15502RO | Unfiled | Unfiled | Unfiled | Unfiled | A P-SUBSTRATE SELF-ALIGNED
LASER STRUCTURE WITH IRON
DOPED CURRENT BLOCKING
LAYERS | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number | Filed
Countries in
Family | Title | |----------------------|------------------|------------|------------------|---------------------------------|--| | 15507RO | Unfiled | Unfiled | Unfiled | Unfiled | A MAGNETO-OPTIC NONRECIPROCAL WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS | | 15558RO | Unfiled | Unfiled | Unfiled | Unfiled | MANUFACTURE OF A GRATING TEMPLATE AND ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR. | | 15592RO | Unfiled | Unfiled | Unfiled | Unfiled | ETCHING OF INDEX- OR GAIN-
COUPLED GRATINGS INTO
INGAASP MATERIAL USING IN-
SITU ETCHING IN A GROWTH
REACTOR | | 15649JD | Unfiled | Unfiled | Unfiled | Unfiled | LASER STRUCTURE WITH LARGE
OPTICAL SUPERLATTICE
WAVEGUIDE | | 15655RO | Unfiled | Unfiled | Unfiled | Unfiled | HIGH TEMPERATURE OPERATION
LASER DIODES | |
15656RO | Unfiled | Unfiled | Unfiled | Unfiled | FABRICATION OF A BURIED HETEROSTRUCTURE LASER WITH AN INGAASP ACTIVE LAYER USING IN-SITU ETCHING IN A GROWTH REACTOR | | 15683ID | Untiled | Unfiled | Unfiled | Unfiled | OPTICAL ATTENUATOR AND MODULATOR | | Disclosure
Number | Filed
Country | Filed
Date | Patent
Number | Filed
Countries
in Family | Title | Status /
Comment | |----------------------|------------------|---------------|------------------------------------|--|--|-------------------------| | ID0130 | US | 29-Oct-93 | 5355248 | Great Britain,
United States | OPTICAL
AMPLIFIER | Expired or
Abandoned | | ID0348 | US | 13-Jun-96 | 5844926 | United States | LASERS | Expired or
Abandoned | | RO1269 | US | 7-Jan-83 | 4528438 | United States | END POINT
CONTROL IN
PLASMA
ETCHING | Expired or Abandoned | | ID8907 | US | | 4911742 | United States,
Australia,
France, Great
Britain | OPTICAL
FIBER | Expired or
Abandoned | | 11 620ID | US | | Pending prior
to
abandonment | Patent
Cooperation
Treaty, United
States | VARIABLE
OPTICAL
ATTENUATOR | Expired or
Abandoned | | Disclosure
Number | Filed
Country | Filed Date | Patent
Number: | Filed Countries in
Family | Title | |----------------------|------------------|------------|-------------------|---|---| | 10163ID | US | 28-Sep-00 | 6424755 | Canada, United
States, European
Patent Convention | SLOTTED MONOLITHIC OPTICAL
WAVEGUIDES | | 11550RO | US | 28-Sep-00 | Pending | Canada, United
States | HYBRID ATTACH MIRRORS FOR
A MEMS OPTICAL SWITCH | | 12801AU | US | | 6014475 | United States,
European Patent
Convention | FIBRE OPTIC CIRCULATOR | | 12803AU | US | | 6263131 | United States,
Canada, European
Patent Convention | REFLECTIVE NON RECIPROCAL
OPTICAL DEVICE | | 12803AU | US | | 6415072 | United States | REFLECTIVE NON RECIPROCAL
OPTICAL DEVICE | | 13240AU | US | | | United States | POLARISATION SPLITTING
CIRCULATOR METHOD AND
DEVICE | | 140811D | US | | | United States | FIBRE OPTICAL COMPONENT | | 14669AU | US | | United States | VARIABLE ATTENUATION AND
SPECTRAL SLOPE OPTICAL
DEVICE | |---------|----|-----------|--|---| | ID0190 | US | 5703976 | United States,
Germany, France,
Great Britain, Japan | WAVELENGTH RESONANT FUSED
FIBRE COUPLER | | ID0226 | GB | 2281787 | Great Britain | OPTICAL WAVEGUIDE GRATINGS | | ID0291 | US | 5638473 | United States,
Germany, France,
Great Britain | OPTICAL WAVEGUIDE GRATING
FILTER | | ID0309 | US | 5730888 | United States | BRAGG GRATINGS IN
WAVEGUIDES | | ID0355 | US | 5708740 | United States,
Germany, France
Great Britain | ALL-FIBRE OPTICAL FILTER | | ID0421 | US | 5904491 | United States | PLANAR WAVEGUIDES | | ID0423 | US | 5885881 | United States | PLANAR WAVEGUIDE CLADDING | | ID0449 | US | 6044192 | United States,
Canada, Germany,
France, Great Britain,
Italy, Japan | WAVEGUIDE PAIR WITH
CLADDING | | ID8550 | GB | 2129152 | Great Britain | OPTICAL FIBRES | | ID9170 | US | 4756589 | United States,
Canada, Great Britain | BEAM SPLITTER/COMBERS | | ID9441 | US | 4801185 | United States,
Germany, France,
Great Britain, Japan | DIRECTIONAL COUPLER | | ID9579 | GB | 2207254 | Great Britain | GLASS CLAD OPTICAL FIBRE
DIRECTIONAL COUPLERS | | ID9730 | GB | 2222400 | Great Britain | DOPED ELEMENTS | | ID9758 | GB | 2238396 | Great Britain | OPTICAL WAVEGUIDE TAPER
HAVING CORE, INTERLAYER | | ID0444 | EР | EP0891570 | United States,
Canada, France,
Germany, Great
Britain, Italy, Japan | TAPERED SINGLE MODE
WAVEGUIDES COUPLED TO
PHOTODETECTOR BY
MULTIMODE FIBRE | | RO2922 | US | 5488679 | United States | POLARISATION INDEPENDENT
WAVELENGTH TUNABLE FILTER
BASED ON BIREFRINGENCE
COMPENSATION | | 12802AU | US | 6466704 | United States,
Canada, Patent
Cooperation Treaty | OPTICAL FILIERING METHOD
AND DEVICE | | 12804AU | US | | United States,
Canada | WAVELENGTH DEPENDENT
ISOLATOR | | L | | | 1 | 1 | | 15087ID | US | | United States | AN OPTICAL GRATING DEVICE | |---------|----|---------|---|--| | ID0509 | US | 6115518 | United States,
Canada, Great
Britain, Japan | OPTICAL WAVEGUIDE BRAGG
REFLECTION GRATINGS | | ID0997 | US | 6321000 | United States,
Canada, Germany,
France, Great Britain,
Italy | OPTICAL EQUALIZER | # AMENDMENT TO THE PATENT SECURITY AGREEMENT This Amendment (this "Amendment"), effective as of November 8, 2002, to the Patent Security Agreement made on November 8, 2002 (the "PSA") is hereby made by and among NORTEL NETWORKS CORPORATION, a corporation duly incorporated under the laws of Canada, having its executive offices at 8200 Dixie Road, Suite 100, Brampton, Ontario L6T 5P6 Canada (the "Pledgee") and BOOKHAM TECHNOLOGY PLC, a public limited company incorporated under the laws of England and Wales having its executive offices at 90 Milton Park, Abingdon, Oxfordshire OX14, 4RY United Kingdom (the "Pledgor") and each of its subsidiaries that are listed on the signature pages hereto (such subsidiaries collectively with the Pledgor, the "Pledgor Parties") (each of Pledgee and the Pledgor Parties, a "Party" and, collectively, the "Parties"). WHEREAS, the Parties, having entered into the PSA, desire to amend the PSA to update the schedule of patents, patent applications and invention disclosures attached thereto. NOW THEREFORE, in consideration of the foregoing premises and the mutual terms and conditions set forth herein, and for U.S. \$1.00 (ONE DOLLAR) and other good and valuable consideration, receipt and adequacy of which is hereby acknowledged, the Parties hereby agree that the PSA be, and is, amended as follows: - 1. <u>Schedule I</u> of the PSA is deleted in its entirety and replaced with the new <u>Schedule I</u> attached hereto. - 2. Except as expressly amended by this Amendment, all of the terms, covenants and conditions of the PSA shall remain unamended and in full force and effect. - 3. This Amendment is hereby incorporated in, and forms a part of, the PSA. For the avoidance of doubt, this Amendment shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles. - 4. This Amendment shall be binding on, and shall inure to the benefit of, the Parties and their respective successors and assigns. - 5. This Amendment may be executed in any number of counterparts, each of which shall be deemed to be an original but all of which shall constitute one and the same instrument. [Remainder of page intentionally left blank] IN WITNESS WHEREOF, the Parties have duly executed this Amendment as of the date first above written. NORTEL NETWORKS CORPORATION By: Name: Khush Dadyburjor, as Attorney-in- Fact | BOOKHAM TECHNOLOGY PLC | |---| | By: / / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | Name:
Title: | | BOOKHAM/TECHNOLOGY, INC. | | Pu M Imi | | By: / Vacco | | Title: | | Title. | | BOOKHAM ACQUISITION, INC. | | M_{Λ} M_{Λ} | | By: | | Name: | | Title: | | | | BOOKHAM (SWITZERLAND) AG | | V/8/ | | Ву: | | Name: | | Title: | | | | BOOKHAM TECHNOLOGY PLC | | | | Ву: | | Name: | | Title: | Hanny, Lois On this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of Nortel Networks Corporation with authority to do so. Privince State of Untrio) ss. of mil On this day of December, 2002, before me appeared this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of the Pledgor Parties with authority to do so. State of Kuyland) County of Confuelilium) ss. STUART P. B. CAPEL SOLICITOR & NOTARY PUBLIC 6 EAST SAINT HELEN STREET ABINGDON, OXON, OX14 5EW TEL: 01235 - 523411 FAX: 01235 - 533283 ## **SCHEDULE I** | DES. | ब्रि ड्लक्ष्मपुरु संग्र | G-A | 美術的作品 | · Printer (Co | Set
Line | AND AND THE STATE OF | Membership after | |---------|---|-----|------------|---------------|-------------
---|--| | | PHOTODETECTOR WITH
SPECTRALLY EXTENDED
RESPONSIVITY | | 2,269,298 | | | | PHOTODETECTOR WITH
SPECTRALLY EXTENDED
RESPONSIVITY | | 10289RO | PHOTODETECTOR WITH
SPECTRALLY EXTENDED
RESPONSIVITY | | 09/294,114 | 6,222,200 | | | PHOTODETECTOR WITH
SPECTRALLY EXTENDED
RESPONSIVITY | | 10412RO | EXTERNAL CAVITY
LASER | US | 09/688,873 | | | | EXTERNAL CAVITY LASER USING
ANGLE-TUNED FILTER AND
METHOD OF MAKING SAME | | 10413ID | FIBRE TERMINATION
COMPOUND GRADED
INDEX LENSES | US | 09/750,874 | | | | FIBRE TERMINATION COMPOUND GRADED INDEX LENSES | | 10485RO | ELECTRICALLY CONTROLLED OPTICAL ATTENUATOR WITH COPLANAR ELECTRODES | US | 09/726,409 | | | | ELECTROCHROMIC OPTICAL
ATTENUATOR | | 10509RO | ALIGNMENT METHOD
FOR SEMICONDUCTOR
OPTICAL DEVICES UPON
CARRIERS | US | 09/472,121 | 6,287,401 | | | ALIGNMENT METHOD FOR
SEMICONDUCTOR OPTICAL
DEVICES UPON CARRIERS | | 10509RO | ALIGNMENT METHOD
FOR SEMICONDUCTOR
OPTICAL DEVICES UPON
CARRIERS | CA | 2,328,279 | | | | ALIGNMENT METHOD FOR
SEMICONDUCTOR OPTICAL
DEVICES UPON CARRIERS | | 11006ID | MODULATOR
ASSEMBLIES | US | 09/496,917 | | | | MODULATOR ASSEMBLIES | | 11920ID | PUMPED OPTICAL AMPLIFICATION DEVICE | us | 09/557,891 | | | | PUMPED OPTICAL AMPLIFICATION DEVICE | | 11945ID | A RAMAN FIBRE LASER | US | 09/573,238 | | | | A RAMAN FIBRE LASER | | 11954ID | A RAMAN FIBRE LASER | US | 09/573,236 | | | | A RAMAN FIBRE LASER | | 12242RO | INVERTED INP/INGAAS
AVALANCHE
PHOTODIODE | US | 09/733,060 | | | | EPITAXIALLY GROWN
AVALANCHE PHOTODIODE | | 12339ID | OPTICAL FIBER DEVICE | US | 09/653,985 | | | | OPTICAL FIBER DEVICE | | 12349RO | COMPACT CHIP
LABELING USING
STEPPER TECHNOLOGY. | CĀ | 2,320,612 | | | | COMPACT CHIP LABELING
USING STEPPER TECHNOLOGY | | 12349RO | COMPACT CHIP
LABELING USING
STEPPER TECHNOLOGY. | US | 09/688,366 | | | | COMPACT CHIP LABELING
USING STEPPER TECHNOLOGY | | 12526RO | | US | 09/660,542 | 6,409,241 | | | APPARATUS FOR GRIPPING
CERAMIC SUBSTRATES | | 12615ID | PACKAGING
ATMOSPHERE AND
METHOD OF PACKAGING
A MEMS DEVICE | US | 09/676,256 | | | | PACKAGING ATMOSPHERE AND
METHOD OF PACKAGING A
MEMS DEVICE | | 12634RO | BE DOPING OF INP | US | 09/741,350 | | | | STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS | | 12665RO | PRINT QUALITY TEST
STRUCTURE FOR DEVICE
MANUFACTURING. | US | 09/667,620 | | | | PRINT QUALITY TEST STRUCTURE FOR LITHOGRAPHIC DEVICE MANUFACTURING | | 12686ID | GLASS FIBER FIXATIVE
AND FIXING PROCESS | US | 09/698,800 | | | | GLASS FIBER FIXATIVE AND
FIXING PROCESS | | 12715RO | | US | 09/667,622 | | | | METHODS FOR MAKING
PATTERNS IN RADIATION
SENSITIVE POLYMERS | 6 PATENT REEL: 013691 FRAME: 0588 | 76.6 | Defende The | 8 | | Talen (| Since | Appropries ver | Differior file | |---------|--|----|----------------|-----------|-----------------------|---|--| | 12800AU | SPLIT-BEAM FOURIER
FILTER | US | 08/793,729 | 5,930,441 | | | SPLIT-BEAM FOURIER FILTER | | 12841ID | INTEGRATED OPTICAL TRANSMITTER | US | 09/616,659 | | | | INTEGRATED OPTICAL
TRANSMITTER | | 12847RO | BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER | CA | 2,328,641 | | | | CONFINEMENT LAYER OF
BURIED HETEROSTRUCTURE
SEMICONDUCTOR LASER | | 12847RO | BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER | US | 10/014,807 | | | | CONFINEMENT LAYER OF
BURIED HETEROSTRUCTURE
SEMICONDUCTOR LASER | | 12849ID | OPTICAL AMPLIFIER METHOD AND APPARATUS | US | 09/710,372 | | | | OPTICAL AMPLIFIER METHOD AND APPARATUS | | 12849ID | OPTICAL AMPLIFIER METHOD AND APPARATUS | wo | PCT/GB01/04944 | | | | OPTICAL AMPLIFIER METHOD
AND APPARATUS | | 12948ID | OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE | US | 09/731,434 | | | , | OPTICAL AMPLIFIER, OPTICAL
AMPLIFIER HYBRID ASSEMBLY
AND METHOD OF
MANUFACTURE | | 12948ID | OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE | CA | 2,364,383 | | | | OPTICAL AMPLIFIER, OPTICAL
AMPLIFIER HYBRID ASSEMBLY
AND METHOD OF
MANUFACTURE | | | AGILE, WIDELY TUNABLE
DIODE LASER WITH
NARROW LINEWIDTH | | 08/726,049 | 6,041,071 | | | ELECTRO-OPTICALLY TUNABLE
EXTERNAL CAVITY MIRROR FOR
A NARROW LINEWIDTH
SEMICONDUCTOR LASER | | | AGILE, WIDELY TUNABLE
DIODE LASER WITH
NARROW LINEWIDTH | | 60/004,620 | | | | AGILE, WIDELY TUNABLE DIODE
LASER WITH NARROW
LINEWIDTH | | 13063CK | AGILE, WIDELY TUNABLE
DIODE LASER WITH
NARROW LINEWIDTH | US | 09/532,529 | | | | ELECTRO-OPTICALLY TUNABLE EXTERNAL CAVITY MIRROR FOR A NARROW LINEWIDTH SEMICONDUCTOR LASER | | 13144CK | LASER WITH SETTABLE
WAVELENGTHS | US | 0 | | Mailed
Application | TAYEBATI, PARVIZ
(7043-5010439),
VAKHSHOORI,
DARYOOSH (7068-
5010442) | LASER WITH SETTABLE WAVELENGTHS | | 13144CK | LASER WITH SETTABLE WAVELENGTHS | | | | | | LASER WITH SETTABLE
WAVELENGTHS | | 13144CK | WAVELENGTHS | US | 60/099,308 | | | | LASER WITH SETTABLE WAVELENGTHS | | 13144CK | WAVELENGTHS | US | 09/386,604 | | | | LASER WITH SETTABLE WAVELENGTHS | | 13144CK | WAVELENGTHS | CA | 2,317,133 | | | | LASER WITH SETTABLE WAVELENGTHS | | | SINGLE ETALON OPTICAL
WAVELENGTH
REFERENCE DEVICE | | 60/148,017 | | | | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | | SINGLE ETALON OPTICAL
WAVELENGTH
REFERENCE DEVICE | | 09/636,817 | | | | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13199CK | SINGLE ETALON OPTICAL
WAVELENGTH
REFERENCE DEVICE | wo | PCT/US00/21904 | ! | Nat'l Phase
Filed | | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13199CK | SINGLE ETALON OPTICAL
WAVELENGTH
REFERENCE DEVICE | CA | 2,381,662 | | | | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13199CK | SINGLE ETALON OPTICAL
WAVELENGTH
REFERENCE DEVICE | EP | 973357.7 | | | | SINGLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 363. (O) | जिल्ला स्मान स्मान | P. | 。
图1/2010年
1 | Tale and to | i Sa
Mai | at analysis and | विकास कि गाउ | |----------|---|----|--------------------|-------------|----------------------|-----------------|--| | 13201CK | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE | US | 60/148,148 | | | | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13201CK | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE | wo | PCT/US00/21905 | | Nat'l Phase
Filed | | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13201CK | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE | US | 09/636,807 | | | | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13201CK | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE | CA | 2,381,665 | | | | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | 13201CK | OPTICAL WAVELENGTH
REFERENCE DEVICE | EP | 00957375.9 | | | | DOUBLE ETALON OPTICAL
WAVELENGTH REFERENCE
DEVICE | | <u></u> | INTEGRATED OPTICALLY PUMPED EDGE EMITTING SEMICONDUCTOR LASER | | 09/987,785 | | | | MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE- EMITTING SEMICONDUCTOR LASER | | 13417RO | GRATING ETCHING WITH
INP MASKING | US | 09/750,124 | | | | METHOD OF ETCHING
PATTERNS INTO EPITAXIAL
MATERIAL | | 13444CK | MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS | US | 09/859,938 | | | | MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS | | 13444CK | MICROELATION FOR DWDM
TELECOMMUNICATIONS APPLICATIONS | wo | PCT/US01/14918 | | | | MICROELATION FOR DWDM
TELECOMMUNICATIONS
APPLICATIONS | | 13494ID | METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN | US | 09/8 21,580 | | | | METHOD AND APPARATUS FOR
MINIMIZING GAIN DEVIATION IN
OPTICAL FIBRE AMPLIFIERS | | 13494ID | METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN | EP | 02251194.3 | | | | METHOD AND APPARATUS FOR
MINIMIZING GAIN DEVIATION IN
OPTICAL FIBRE AMPLIFIERS | | 13494ID | METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN | CA | 2,374,557 | | | | METHOD AND APPARATUS FOR
MINIMIZING GAIN DEVIATION IN
OPTICAL FIBRE AMPLIFIERS | | 13495ID | OPTICAL MODULATORS | US | 09/679,165 | 6,377,717 | | | OPTICAL MODULATORS | | 13502RO | ANGLED OUTPUT BALL
TAPERED OPTICAL FIBER
TERMINATION | US | 09/735,571 | | | | OPTICAL FIBER TERMINATION | | 13524RO | A STATISTICAL MODEL USED TO CONTROL THE LASING WAVELENGTH OF SEMICONDUCTOR LASERS | US | 10/196,956 | | | | A METHOD AND SYSTEM FOR FABRICATING SEMICONDUCTOR LASERS | | 13544RO | SEMICONDUCTOR
LASERS | US | 10/141,914 | | | | SEMICONDUCTOR LASER | | 13584RO | ELECTRODE METAL
TERMINATION FOR
REDUCED LOCAL
HEATING | US | 09/709,646 | | | | ELECTRODE TERMINATION FOR
REDUCED LOCAL HEATING IN AN
OPTICAL DEVICE | | 13584RO | ELECTRODE METAL
TERMINATION FOR
REDUCED LOCAL
HEATING | CA | 2,36 1,683 | | | | ELECTRODE TERMINATION FOR
REDUCED LOCAL HEATING IN AN
OPTICAL DEVICE | | 13584RO | ELECTRODE METAL
TERMINATION FOR
REDUCED LOCAL
HEATING | EP | 01309541.9 | | | | ELECTRODE TERMINATION FOR
REDUCED LOCAL HEATING IN AN
OPTICAL DEVICE | | 13591ID | OPTICAL MODULATORS | GB | 0031241.3 | | | | OPTICAL MODULATORS | | | किस्मित्याचा पेति | 3.4 | | Principal (| 5 8 10 1
86 20 5 | ्रे कीर केराज्यको स्टाप्नकीय
स्टार्ट्स केराज | december de la company | |---------|---|-----|-------------------|-------------|-----------------------|---|---| | 13591ID | OPTICAL MODULATORS | wo | PCT/GB01/0558 | 2 | | | OPTICAL MODULATOR | | 13614ID | OPTICAL PULSE
GENERATION | US | 09/993,849 | | | | OPTICAL PULSE GENERATION | | 13614ID | OPTICAL PULSE
GENERATION | wo | PCT/GB02/03664 | ļ | | | OPTICAL PULSE GENERATION | | 13721RO | AN NON-DESTRUCTIVE AND FAST WAY TO DETECT DIFFUSION DEPTH AND UNIFORMITY CROSS A WAFER | US | 0 | | Mailed
Application | QIAN, YAHONG
(C115-0531819,1), AN,
SERGUEI (5C33-
0510038,1) | AN NON-DESTRUCTIVE AND
FAST WAY TO DETECT
DIFFUSION DEPTH AD
UNIFORMITY CROSS A WAFER | | 13813RO | HIGH POWER LASER
DIODE AND METHOD OF
FABRICATION THEREOF | US | 10/141,862 | | | | MONOLITHICALLY INTEGRATED
HIGH POWER LASER OPTICAL
DEVICE | | 13816RO | APPARATUS FOR
MONITORING THE
OUTPUT POWER OF
DIODE LASERS AND
MODULATORS | | | | Unfiled | | | | 14224ID | ISOLATION OF
MICROWAVE
TRANSMISSION LINES | US | 10/032,416 | | | | ISOLATION OF MICROWAVE
TRANSMISSION LINES | | 14404RO | HYBRID CONFINEMENT
LAYERS OF BURIED
HETEROSTRUCTURE
SEMICONDUCTOR LASER | US | 10/027,229 | | | | HYBRID CONFINEMENT LAYERS OF BURIED HETEROSTRUCTURE SEMICONDUCTOR LASER | | 14429ID | OPTICAL BEAM
SAMPLING MONITOR | US | 10/006,509 | | | | OPTICAL BEAM SAMPLING MONITOR | | 14433JD | TITANIUM NITRIDE
DIFFUSION BARRIER FOR
USE IN NON-SILICON
TECHNOLOGIES AND
METHOD | CA | 2,29 2,769 | | | | A TITANIUM NITRIDE DIFFUSION
BARRIER FOR USE IN NON-
SILICON TECHNOLOGIES AND
METALLIZATION METHOD | | 14433JD | TITANIUM NITRIDE
DIFFUSION BARRIER FOR
USE IN NON-SILICON
TECHNOLOGIES AND
METHOD | EP | 99919257.8 | | | | A TITANIUM NITRIDE DIFFUSION
BARRIER FOR USE IN NON-
SILICON TECHNOLOGIES AND
METALLIZATION METHOD | | 14433JD | TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD | JP | 11-552490 | | | | A TITANIUM NITRIDE DIFFUSION
BARRIER FOR USE IN NON-
SILICON TECHNOLOGIES AND
METALLIZATION METHOD | | 14433JD | TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD | US | 09/063,173 | 6,204,560 | | | TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON- SILICON TECHNOLOGIES AND METHOD | | 14433JD | TITANIUM NITRIDE
DIFFUSION BARRIER FOR
USE IN NON-SILICON
TECHNOLOGIES AND
METHOD | | 10-1999-7012042 | | | | A TITANIUM NITRIDE DIFFUSION
BARRIER FOR USE IN NON-
SILICON TECHNOLOGIES AND
METALLIZATION METHOD | | 14433JD | TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD | | PCT/EP99/02665 | | Nat'l Phase
Filed | | A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON- SILICON TECHNOLOGIES AND METALLIZATION METHOD | | 1320 km | ग ्रम्भव्यक्ति । । | 64 | e stage of the | Bayer Sta | \$.00
\$200.20 | THE HOUSE CONTRACTORS | नेप्रमास्त्रास्त्र है। | |---------|---|----|-------------------|-----------|----------------------|---|---| | 14433JD | DIFFUSION BARRIER FOR
USE IN NON-SILICON
TECHNOLOGIES AND
METHOD | | 0 | | | DAETWYLER, ANDREAS (- GPS4097856), DEUTSCH, URS (EXTR-GPS4097859), HARDER, CHRISTOPH (AA54-5050202), HEUBERGER, WILHELM (EXTR-GPS4097866), LATTA, ERNST-EBERHARD (EXTR-GPS4097878), JAKUBOWICZ, ABRAM (-GPS4097872), OOSENBRUG, ALBERTUS (- GPS4097875) | | | 14434JD | STABILIZED LASER
SOURCE | EP | 99810837.7 | | | | STABILIZED LASER SOURCE | | 14434JD | STABILIZED LASER
SOURCE | US | 10/049,886 | | | | STABILIZED LASER SOURCE | | 14435JD | SUPPORTING
STRUCTURE FOR FIBER
FIXING AND SUBMICRON
FINE ALIGNMENT | EP | 99811030.8 | | | | SUPPORTING STRUCTURE FOR
FIBER FIXING AND SUBMICRON
FINE ALIGNMENT | | 14435JD | SUPPORTING
STRUCTURE FOR FIBER
FIXING AND SUBMICRON
FINE ALIGNMENT | | PCT/IB00/01530 | | Nat'l Phase
Filed | | SUPPORTING STRUCTURE FOR
OPTICAL FIBER FIXING AND
SUBMICRONFINE ALIGNMENT | | 14435JD | SUPPORTING
STRUCTURE FOR FIBER
FIXING AND SUBMICRON
FINE ALIGNMENT | US | PCT/IB00/01530 | | Nat'l Phase
Filed | | SUPPORTING STRUCTURE FOR
FIBER FIXING AND SUBMICRON
FINE ALIGNMENT | | 14435JD | SUPPORTING
STRUCTURE FOR FIBER
FIXING AND SUBMICRON
FINE ALIGNMENT | CA | 2,390,916 | | Nat'l Phase
Filed | | SUPPORTING STRUCTURE FOR
FIBER FIXING AND SUBMICRON
FINE ALIGNMENT | | 14480RO | GAIN COUPLED DISTRIBUTED FEEDBACK LASER USING SELF- ASSEMBLED QUANTUM DOTS | | | Ī | Unfiled | | | | 14549JD | HIGH POWER
SEMICONDUCTOR LASER
DIODE | US | 09/852,994 | | | | HIGH POWER SEMICONDUCTOR
LASER DIODE | | 14549JD | HIGH POWER
SEMICONDUCTOR LASER
DIODE | CA | 2,38 5,653 | | | | HIGH POWER SEMICONDUCTOR
LASER DIODE | | 14549JD | HIGH POWER
SEMICONDUCTOR LASER
DIODE | EP | 2405380.3 | | | | HIGH POWER SEMICONDUCTOR LASER DIODE | | 14549JD | HIGH POWER
SEMICONDUCTOR LASER
DIODE | JP | 2002-134066 | | | | HIGH POWER SEMICONDUCTOR LASER DIODE | | 14551JD | CARRIER DESIGN FOR
MODULES WITH HIGH
POWER LASER DIODES | US | 10/026,150 | | | | HIGH POWER LASER CARRIER | | 14552JD | ANTI-REFLECTION
COATINGS FOR
SEMICONDUCTOR
LASERS | US | 09/993,824 | | | | ANTI-REFLECTION COATINGS
FOR SEMICONDUCTOR LASERS | | 14592ID | OPTICAL COMPONENT
ALIGNMENT TECHNIQUE | υs | 10/024,972 | | | | GIMBALLED LENS MOUNT AND
ALIGNMENT ASSEMBLY FOR A
SENSITIVE OPTICAL ALIGNMENT | | 14676RO | ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN- COUPLED GRATINGS | US | 60/334,013 | | | | ENHANCED LINK OPERATION OF
DIRECTLY MODULATED LASERS
USING GAIN-COUPLED
GRATINGS | | \$ 150g | राद महत्त्वाहरू विदेश | - A. C. | | किस्सन है। | Sign
Signi | N GOTTON THE | ালা-মতানাত | |---------|---|---------|------------|------------|---------------|--------------|--| | 14676RO | OPERATION OF
DIRECTLY MODULATED
LASERS USING GAIN-
COUPLED GRATINGS | US | 10/025,866 | | | | ENHANCED LINK OPERATION OF
DIRECTLY MODULATED LASERS
COUPLED-COUPLED GRATINGS | | 14681ID | THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES | US | 10/032,421 | | | | THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES | | 14716RO | WAVEGUIDE MODE
STRIPPER FOR
INTEGRATED OPTICAL
COMPONENTS | US | 10/073,101 | | | | WAVEGUIDE MODE STRIPPER
FOR INTEGRATED OPTICAL
COMPONENTS | | 14794RO | A METHOD FOR MAKING
FLOATING GRATINGS | US | 10/259,745 | | | | METHOD AND APPARATUS FOR
FLOATING GRATINGS IN DFB
(DISTRIBUTED FEEDBACK)
LASERS | | 14854RO | A METHOD FOR MINIMIZING CROSSTALK DUE TO LASER WAVELENGTH VARIATIONS WITH NON- IDEAL FILTERS | | | | Unfiled | | | | 14864RO | POLARIZATION AND WAVELENGTH INDEPENDENT MHZ SPEED OPTICAL ATTENUATOR | US | 10/190,592 | | | | CURRENT TUNED MACH-
ZEHNDER OPTICAL
ATTENUATOR | | 14942RO | OPTICAL PULSE
GENERATOR | US | 10/116,168 | | | | RE-CIRCULATING OPTICAL
PULSE GENERATOR | | 15004RO | DEFORMABLE POLYMER
MICRO MIRRORS (DPMM) | | 10/098,446 | | | | MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS | | | DEFORMABLE POLYMER
MICRO MIRRORS (DPMM) | | 10/098,446 | | | | MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL
COMPO ENTS COMPRISING MICRO-MIRRORS | | 15004RO | DEFORMABLE POLYMER
MICRO MIRRORS (DPMM) | | 10/098,446 | | | | MICRO-MIRRORS WITH VARIABLE FOCAL LENGTH, AND OPTICAL COMPONENTS COMPRISING MICRO-MIRRORS | | 15093RO | MULTIPLE-CONTACT
SEMICONDUCTOR
OPTICAL AMPLIFIERS | US | 60/414,404 | | | | MULTIPLE-CONTACT OPTICAL AMPLIFIERS | | 15095RO | FREQUENCY IDENTIFICATION WITH A FREQUENCY LOCKER | US | 10/108,856 | | | | FREQUENCY IDENTIFICATION WITH FREQUENCY LOCKER | | 15113CK | METHOD TO IMPROVE TEMPERATURE STABILITY OF FREQUENCY LOCKER IN OPTOELECTRONIC MODULES | US | 10/165,465 | | | | WAVELENGTH STABILIZED
OPTICAL DEVICE | | 15116JD | NEW STRAIGHT-FLARED-
STRAIGHT WAVEGUIDE
DESIGN | US | 10/131,335 | | _ | | HIGH POWER SEMICONDUCTOR
LASER DIODE AND METHOD FOR
MAKING SUCH A DIODE | | 15117JD | PUMP LASER DIODE
WITH IMPROVED
WAVELENGTH STABILITY | US | 0 | | | | *PUMP LASER DIODE WITH
IMPROVED WAVELENGTH
STABILITY | | 15138ID | AN IMPROVED METHOD
FOR TERMINATING AN
OPTICAL WAVEGUIDE
INTO AN OPTICAL
COMPONENT | US | 10/161,523 | | | | AN IMPROVED METHOD FOR
TERMINATING AN OPTICAL
WAVEGUIDE INTO AN OPTICAL
COMPONENT | | ମିଣ୍ଡାର
୯୦. | इंटिसेट्सिट सिंट | Ş. | न्द्रः क्या होता । | Pag holly | \$100
\$200 | · Aller Carry with | ेशमंदियों मिटिश है।
इस | |----------------|---|----|--------------------|-----------|-----------------------|---|--| | 15142RO | SINGLE MODE, HIGH
INDEX CONTRAST
POLYMER FLEXIBLE
WAVEGUIDES | US | 60/352,572 | | | | FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS | | 15142RO | SINGLE MODE, HIGH
INDEX CONTRAST
POLYMER FLEXIBLE
WAVEGUIDES | US | 60/352,572 | | | | FLEXIBLE POLYMER WAVEGUIDES FOR OPTICAL WIRE BONDS | | 15150RO | METHOD FOR INTEGRATING A LASER WITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP | US | 0 | | Mailed
Application | GLEW, RICK (C116-
2819324), BETTY, IAN
(5C33-0519725),
GREENSPAN,
JONATHAN (C116-
0262541) | METHOD FOR INTEGRATING OPTICAL DEVICES IN A SINGLE EPITAXIAGROWTH STEP | | 15150RO | METHOD FOR
INTEGRATING A LASER
WITH A WAVEGUIDE IN A
SINGLE EPITAXIAL
GROWTH STEP | US | 0 | | Mailed
Application | GLEW, RICK (C116-
2819324), BETTY, IAN
(5C33-0519725),
GREENSPAN,
JONATHAN (C116-
0262541) | METHOD FOR INTEGRATING
OPTICAL DEVICES IN A SINGLE
EPITAXIAGROWTH STEP | | 15164RO | A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF- ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER. | US | O | | Mailed
Application | BENOIT (5C32-
0531388),
LICHTENSTEIN,
NORBERT L (AA55-
5050260), FILY,
ARNAUD (AA55-
5053568) | A GUIDED SELF-ALIGNED LASER
STRUCTURE WITH INTEGRAL
CURRENT BLOCKING LAYER | | 15164RO | A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF- ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER. | ບຮ | 0 | | Mailed
Application | GLEW, RICK (C116-
2819324), REID,
BENOIT (5C32-
0531388),
LICHTENSTEIN,
NORBERT L (AA55-
5050260), FILY,
ARNAUD (AA55-
5053568) | A GUIDED SELF-ALIGNED LASER
STRUCTURE WITH INTEGRAL
CURRENT BLOCKING LAYER | | 15181ID | LASER TRANSMITTER | us | 60/391,648 | | | | LASER TRANSMITTER | | 15181ID | LASER TRANSMITTER | บร | 60/391,648 | | | | LASER TRANSMITTER | | 15193RO | OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER | US | 60/380,261 | | | | OPTIMIZED PERFORMANCE OF
INGAASP/INP COMPACT ON-CHIP
POLARIATION CONVERTER | | 15193RO | OPTIMIZED PERFORMANCE OF INGAASP/INP COMPACT ON-CHIP POLARIZATION CONVERTER | US | | | Mailed
Application | EL-REFAEI, HATEM
(5C33-0273812),
JONES, TREVOR
(C115-1342592,2),
YEVICK, D (EXTR-
GPS0380642,2) | OPTIMIZED PERFORMANCE OF
INGAASP/INP COMPACT ON-CHIP
POLARIATION CONVERTER | | 15320RO | ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP | US | 0 | | Mailed
Application | PROSYK, KELVIN
(5C33-0526051),
BETTY, IAN (5C33-
0519725) | ELECTRO-OPTIC MODULATOR WITH CONTINUOUSLY ADJUSTABLE CHIRP | | 15338RO | HIGH POWER DISTRIBUTED FEEDBACK LASER | | | | Unfiled | | | | 15386JD | RIDGE WAVEGUIDE
LASER DIODE WITH
COMPLEX INDEX
GUIDING LAYER | US | 0 | | Mailed
Application | | HIGH POWER SEMICONDUCTOR
LASER DIODE AND METHOD FOR
MAKING SUCH A DIODE | | 15389JD | LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBACK | | | | Unfiled | | | | | ा विद्यालया है। | 124 | \$ 1960 | Y. CONTRACTOR | i. 3.4
Aug. | ী। ক্ষেত্ৰালক মুট্টা
ইউটাই হৈছে | अंगल्यक त्यांक | |---------|--|------|------------|---------------|-----------------------|--|--| | 15390RC | ON-CHIP POLARIZATION
SPLITTER/COMBINER
DEVICE | V US | 60/404,166 | | | | ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE | | 15390RC | ON-CHIP POLARIZATION
SPLITTER/COMBINER
DEVICE | V US | 60/404,166 | | | | ON-CHIP POLARIZATION SPLITTER/COMBINER DEVICE | | 15399JD | A GUIDED SELF-ALIGNEI
LASER STRUCTURE WIT
INTEGRAL CURRENT
BLOCKING LAYER | | 60/390,882 | | | | A GUIDED SELF-ALIGNED LASER
STRUCTURE WITH INTEGRAL
CURRENT BLOCKING LAYER | | 15399JD | A GUIDED SELF-ALIGNEI
LASER STRUCTURE WITI
INTEGRAL CURRENT
BLOCKING LAYER | | | | Mailed
Application | LICHTENSTEIN, NORBERT L (AA55- 5050260), FILY, ARNAUD (AA55- 5053568,1), SCHMIDT BERTHOLD (AA54- 5050359,2), REID, BENOIT (5C32- 0531388,2), KNIGHT, D. GORDON (C116- 1529664,1) | | | 15502RO | ALIGNED LASER
STRUCTURE WITH IRON
DOPED CURRENT
BLOCKING LAYERS | | | | Unfiled | 1323004,1/ | | | 15507RO | A MAGNETO-OPTIC NONRECIPROCAL WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS | | | | Unfiled | | | | 15558RO | MANUFACTURE OF A GRATING TEMPLATE AND ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR. | | | | Unfiled | | | | 15592RO | ETCHING OF INDEX- OR
GAIN-COUPLED
GRATINGS INTO
INGAASP MATERIAL
USING IN-SITU ETCHING
IN A GROWTH REACTOR | | | | Unfiled | | | | 15649JD | LASER STRUCTURE WITH LARGE OPTICAL SUPERLATTICE WAVEGUIDE | | | | Unfiled | | | | 15655RO | HIGH TEMPERATURE
OPERATION LASER
DIODES | | | | Unfiled | | | | | FABRICATION OF A BURIED HETEROSTRUCTURE LASER WITH AN INGAASP ACTIVE LAYER USING IN- SITU ETCHING IN A GROWTH REACTOR | | | | unfiled | | | | HQ0054 | SUPERIMPOSED
GRATING WDM TUNABLE
LASERS | СА | 2,228,683 | 2,228,683 | | | SUPERIMPOSED GRATING WDM
TUNABLE LASERS | | HQ0054 | SUPERIMPOSED
GRATING WDM TUNABLE
LASERS | US | 09/253,129 | 6,141,370 | | | SUPERIMPOSED GRATING WDM
TUNABLE LASERS | | 1534
365 | Figure Files | | अनुसार देश | Frenc'fr | n Sair
Suide | The forest to be defined as the first of | Tradiction find | |-------------|---|----|--------------------|-----------------|----------------------|--|---| | ID0032 | OPTO ELECTRONIC COMPONENTS | US | 08/319,435 | 5,534,442 | | | OPTO ELECTRONIC COMPONENTS | | ID0079 | SEMICONDUCTOR -
SLICE CLEAVING | GB | 9216363.3 | 2 269 268 | | | SEMICONDUCTOR - SLICE
CLEAVING | | ID0079 | SEMICONDUCTOR -
SLICE CLEAVING | US | 08/093,766 | 5,393,707 | | |
SEMICONDUCTOR - SLICE
CLEAVING | | ID0094 | HYBRID OPTIC SOLUTION | DE | 95307824.3 | 695 04
280.7 | | | HYBRID OPTIC SOLUTION | | ID0094 | HYBRID OPTIC SOLUTION | FR | 95307824.3 | 0 713 271 | | | HYBRID OPTIC SOLUTION | | 1D0094 | HYBRID OPTIC SOLUTION | GB | 9423282.4 | 2 295 265 | | | HYBRID OPTIC SOLUTION | | ID0094 | HYBRID OPTIC SOLUTION | JP | 293046/1995 | | | | HYBRID OPTIC SOLUTION | | ID0094 | HYBRID OPTIC SOLUTION | υs | 08/560,312 | 5,668,823 | | | HYBRID OPTIC SOLUTION | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | FR | 94301114.8 | 0 614 214 | | | SEMICONDUCTOR ETCHING PROCESS | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | GB | 94301114.8 | 0 614 214 | | | SEMICONDUCTOR ETCHING PROCESS | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | DE | 69401370.6 | 69401370.6 | 5 | | SEMICONDUCTOR ETCHING PROCESS | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | GB | 9303257.1 | 2 275 364 | | | SEMICONDUCTOR ETCHING PROCESS | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | JP | 6-45068 | | | | SEMICONDUCTOR ETCHING
PROCESS | | ID0134 | SEMICONDUCTOR
ETCHING PROCESS | บร | 08/197,071 | 5,419,804 | | | SEMICONDUCTOR ETCHING PROCESS | | ID0137 | PROVIDING OPTICAL
COUPLING BETWEEN
OPTICAL COMPONENTS | GB | 9417975.1 | 2 293 248 | | | PROVIDING OPTICAL COUPLING
BETWEEN OPTICAL
COMPONENTS | | ID0137 | PROVIDING OPTICAL
COUPLING BETWEEN
OPTICAL COMPONENTS | US | 08/507,613 | 5,574,811 | | | PROVIDING OPTICAL COUPLING
BETWEEN OPTICAL
COMPONENTS | | ID0170 | INJECTION LASER AND
PHOTOSENSOR
ASSEMBLY | US | 08/201,473 | 5,365,534 | | | INJECTION LASER AND PHOTOSENSOR ASSEMBLY | | ID0193 | FILAMENT COOLER | GB | 9404290.0 | 2 287 244 | | | FILAMENT COOLER | | ID0193 | FILAMENT COOLER | US | 08/388,151 | 5,568,728 | _ | | FILAMENT COOLER | | ID0199 | CO & COUNTER-PUMPED
OPTICAL AMPLIFIER | US | 08/303,367 | 5,542,011 | | | CO & COUNTER-PUMPED
OPTICAL AMPLIFIER | | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | US | 08/303,374 | 5,530,580 | | | ELECTRO ABSORPTION OPTICAL
MODULATORS | | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | EP | 9430621 6.6 | 0 643 317 | Nat'l Phase
Filed | | ELECTRO ABSORPTION OPTICAL
MODULATORS | | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | GB | 9417001.6 | 2 281 785 | | | ELECTRO ABSORPTION OPTICAL
MODULATORS | | 10 | Design to | . E1*; | Sept Min | Ferriga. | Sair
Beach | Modern Carlo
2000 1619 | र्वणाहितको मुख् | |--------|---|--------|------------|-----------------|----------------------|---------------------------|--| | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | DE | 94306216.6 | 694 26
796.1 | | | ELECTRO ABSORPTION OPTICAL
MODULATORS | | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | FR | 94306216.6 | 0 643 317 | | | ELECTRO ABSORPTION OPTICAL MODULATORS | | ID0206 | ELECTRO ABSORPTION OPTICAL MODULATORS | JP | 216309/94 | | | | ELECTRO ABSORPTION OPTICAL MODULATORS | | ID0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | DE | 94305060.9 | 694 10
032.3 | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | ID0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | FR | 94305060.9 | 0 636 912 | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | ID0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | GB | 9315789.9 | 2 280 544 | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | ID0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | GB | 94305060.9 | 0 636 912 | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | ID0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | JР | 180288/94 | | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | 1D0216 | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS | บร | 08/283,264 | 5,522,000 | | | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCERS | | ID0237 | DIRECT AMPLITUDE
MODULATION OF LASERS | US | 08/216,301 | 5,502,741 | | | DIRECT AMPLITUDE
MODULATION OF LASERS | | ID0261 | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING | EΡ | 96301377.6 | 0 732 739 | Nat'l Phase
Filed | | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0261 | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING | JР | 52013/96 | | | | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0261 | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING | US | 08/612,314 | 5,933,707 | | _ | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0261 | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING | GB | 96301377.6 | 0 732 739 | | | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0261 | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING | DE | 96301377.6 | 696 18
264.5 | | | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | 1 | To supplied Phys | . C | 48KP 15. | Better He | ्र क्षित्र
इस्तिक | - Mingainer all
Declar | जनगरनिक्ति विकास | |--------|---|-----|--------------------|-----------------|----------------------|---------------------------|--| | ID0261 | IMPROVEMENTS IN
CRYSTAL SUBSTRATE
PROCESSING | FR | 96301377.6 | 0 732 739 | | | IMPROVEMENTS IN CRYSTAL
SUBSTRATE PROCESSING | | ID0287 | POLARISATION-
INSENSITIVE OPTICAL
MODULATORS | DE | 195 28 165.9 | | | | POLARISATION-INSENSITIVE
OPTICAL MODULATORS | | ID0287 | POLARISATION-
INSENSITIVE OPTICAL
MODULATORS | GB | 9515400.1 | 2 291 979 | | | POLARISATION-INSENSITIVE
OPTICAL MODULATORS | | ID0287 | POLARISATION-
INSENSITIVE OPTICAL
MODULATORS | FR | 9509417 | 2723485 | | | POLARISATION-INSENSITIVE
OPTICAL MODULATORS | | ID0287 | POLARISATION-
INSENSITIVE OPTICAL
MODULATORS | US | 08/510,752 | 6,275,321 | | | POLARISATION-INSENSITIVE OPTICAL MODULATORS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | EP | 95308872.1 | 0 717 297 | Nat'l Phase
Filed | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | GB | 9425022.2 | 2 296 101 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | US | 08/570,983 | 5,570,444 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | DE | 95308872.1 | 695 26
563.6 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | GB | 95308872.1 | 0 717 297 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | FR | 95308872.1 | 0 717 297 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0295 | OPTICALLY COUPLING
OPTICAL FIBRES TO
INJECTION LASERS | ΙΤ | 95308872.1 | 0 717 297 | | | OPTICALLY COUPLING OPTICAL
FIBRES TO INJECTION LASERS | | ID0311 | OPTICAL AMPLIFIER | DE | 96308900.8 | 696 03
935.4 | | | OPTICAL AMPLIFIER | | ID0311 | OPTICAL AMPLIFIER | EP | 96308900.8 | 0 779 689 | Nat'l Phase
Filed | | OPTICAL AMPLIFIER | | ID0311 | OPTICAL AMPLIFIER | IT | 96308900.8 | 0 779 689 | | | OPTICAL AMPLIFIER | | ID0311 | OPTICAL AMPLIFIER | FR | 96308900.8 | 0 779 689 | | | OPTICAL AMPLIFIER | | ID0311 | OPTICAL AMPLIFIER | GB | 9525766.3 | 2 308 222 | | | OPTICAL AMPLIFIER | | 1D0311 | OPTICAL AMPLIFIER | US | 08/7 60,175 | 5,872,649 | | | OPTICAL AMPLIFIER | | ID0348 | LASERS | EB | PCT/GB96/01406 | | Nat'l Phase
Filed | | LASERS | | ID0384 | HERMETIC OPTICAL
FIBRE FEED-THROUGH | GB | 9515004.1 | 2 303 467 | | | HERMETIC OPTICAL FIBRE FEED-
THROUGH | | ID0384 | HERMETIC OPTICAL
FIBRE FEED-THROUGH | US | 08/684,128 | 5,664,043 | | | HERMETIC OPTICAL FIBRE FEED-
THROUGH | | \$ (\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ | में होता का स्मृत | Ž. | ROBY 14, | हितार के जिल्
र | \$ (\$)
 \$\frac{1}{2} (\frac{1}{2}) | ्राभी अपूर्णनेशास्त्रात्त्रीयः
विद्यासः स्थान | Authralian Med 1003 | |---|--|----|-------------|--------------------|--|--|--| | ID0426 | ETALON ARRANGEMENT | EP | 97305110.5 | | | | ETALON ARRANGEMENT | | ID0426 | ETALON ARRANGEMENT | JP | 179766/1997 | | | | ETALON ARRANGEMENT | | ID0426 | ETALON ARRANGEMENT | JP | 179766/1997 | | | | ETALON ARRANGEMENT | | ID0426 | ETALON ARRANGEMENT | ÇA | 2,203,845 | 2,203,845 | | | ETALON ARRANGEMENT | | ID0426 | ETALON ARRANGEMENT | US | 08/848,337 | 5,828,689 | | | ETALON ARRANGEMENT | | ID0431 | SEMICONDUCTOR
LASERS | DE | 97901693.8 | 697 00
830.4 | | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | EP | 97901693.8 | 0 876 696 | Nat'l Phase
Filed | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | FR | 97901693.8 | 0 876 696 | | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | GB | 9601703.3 | 2 309 581 | | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | GB | 97901693.8 | 0 876 696 | | | SEMICONDUCTOR LASERS | | ID0431 |
SEMICONDUCTOR
LASERS | IT | 97901693.8 | 0 876 696 | | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | JP | 526680/1997 | | | | SEMICONDUCTOR LASERS | | ID0431 | SEMICONDUCTOR
LASERS | us | 09/091,684 | 6,058,125 | | | SEMICONDUCTOR LASERS | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | EΡ | 97902473.4 | 0 879 435 | Nat'l Phase
Filed | | SECURING AN OPTICAL FIBRE IN
A V-GROOVE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | GВ | 9602564.8 | 2 310 052 | | | CONTROLLED DISPENSE OF
GLUE ONTO A SILICON V-
GROOVE SUBSTRATE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | JР | 528272/1997 | | | | CONTROLLED DISPENSE OF
GLUE ONTO A SILICON V-
GROOVE SUBSTRATE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | US | 08/952,676 | 5,985,086 | | İ | CONTROLLED DISPENSE OF
GLUE ONTO A SILICON V-
GROOVE SUBSTRATE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | DE | 97902473.4 | 697 10
047,2 | | | SECURING AN OPTICAL FIBRE IN
A V-GROOVE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | ΙT | 97902473.4 | 0 879 435 | | | SECURING AN OPTICAL FIBRE IN
A V-GROOVE | | PIES | Departs for | 37.5 | 18,200 Fee | Taraction (Inc. | Sec. | ি প্রশাসন্তর্ভার্তির প্রস্তৃত্তি ।
ইয়া হয়ে এক্টের | अस्टान्स्ति सिक् | |--------|--|------|--------------------|-----------------|----------------------|--|--| | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | FR | 97902473.4 | 0 879 435 | | | SECURING AN OPTICAL FIBRE IN
A V-GROOVE | | ID0467 | CONTROLLED DISPENSE
OF GLUE ONTO A
SILICON V-GROOVE
SUBSTRATE | wo | PCT/GB97/00320 | | Nat'l Phase
Filed | | CONTROLLED DISPENSE OF
GLUE ONTO A SILICON V-
GROOVE SUBSTRATE | | ID0519 | SEMICONDUCTOR PHOTODETECTOR PACKAGING | JP | 507707/1998 | | | | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | ID0519 | SEMICONDUCTOR PHOTODETECTOR PACKAGING | US | 09/214,634 | 6,188,118 | | | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | (D0519 | SEMICONDUCTOR PHOTODETECTOR PACKAGING | CA | 2,258,178 | | | | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | ID0519 | SEMICONDUCTOR PHOTODETECTOR PACKAGING | EP | 97933796.1 | | | | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | ID0519 | SEMICONDUCTOR PHOTODETECTOR PACKAGING | wo | PCT/GB97/02053 | | Nat'l Phase
Filed | | SEMICONDUCTOR PHOTODETECTOR PACKAGING | | ID0651 | DIRECT AMPLITUDE
MODULATION OF LASERS | EP | 98303274.9 | | | | DIRECT AMPLITUDE MODULATION OF LASERS | | ID0651 | DIRECT AMPLITUDE
MODULATION OF LASERS | US | 08/86 5,760 | 5,901,164 | | | DIRECT AMPLITUDE
MODULATION OF LASERS | | ID0651 | DIRECT AMPLITUDE
MODULATION OF LASERS | CA | 2,23 5,179 | | | | DIRECT AMPLITUDE
MODULATION OF LASERS | | ID0651 | DIRECT AMPLITUDE
MODULATION OF LASERS | JP | 146072/1998 | | | | DIRECT AMPLITUDE MODULATION OF LASERS | | ID0687 | OPTICAL TRANSMITTER OUTPUT MONITORING TAP | US | 08/984,894 | 6,124,956 | | | OPTICAL TRANSMITTER OUTPUT MONITORING TAP | | ID0691 | BONDING RIDGE
STRUCTURE LASER
DIODES TO SUBSTRATES | υs | 09/072,810 | 6,075,800 | | | BONDING RIDGE STRUCTURE
LASER DIODES TO SUBSTRATES | | ID0764 | A REMOVABLY COATED
OPTICAL FIBRE | US | 09/374,807 | 6,351,589 | | | REMOVABLY COATED OPTICAL FIBRE | | ID0803 | ELECTRICALLY
CONTROLLABLE OPTICAL
ATTENUATOR | EP | 98309206.5 | | | | ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR | | ID0803 | ELECTRICALLY
CONTROLLABLE OPTICAL
ATTENUATOR | JP | 365470/1998 | | | | ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR | | ID0803 | ELECTRICALLY
CONTROLLABLE OPTICAL
ATTENUATOR | US | 08/997,752 | 5,956,437 | | | ELECTRICALLY CONTROLLABLE OPTICAL ATTENUATOR | | ID0803 | ELECTRICALLY
CONTROLLABLE OPTICAL
ATTENUATOR | CA | 2,254,148 | | | | ELECTRICALLY CONTROLLABLE
OPTICAL ATTENUATOR | | | हा में हम हमें हैं। | ŧ Ņ. | \$4.50 94. | Tropport (10) | - 305
- 3600 | Memorialista | Applied on Title | |--------|--|------|---------------------|---------------|-----------------|--------------|---| | ID0908 | SEMICONDUCTOR OPTO
ELECTRONIC DEVICE
PACKAGING | US | 09/070,899 | 6,407,438 | | | SEMICONDUCTOR OPTO-
ELECTRONIC DEVICE
PACKAGING | | ID1107 | INTEGRATED OPTICAL
MACH ZENDER
STRUCTURES | EP | 00301124.4 | | | | INTEGRATED OPTICAL MACH
ZEHNDER STRUCTURES | | ID1107 | INTEGRATED OPTICAL
MACH ZENDER
STRUCTURES | US | 09/280,360 | 6,240,221 | | | INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES | | ID1107 | INTEGRATED OPTICAL
MACH ZENDER
STRUCTURES | CA | 2,299,794 | | | | INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES | | ID8512 | INJECTION LASER
PACKAGES | US | 06/514,066 | 4,615,031 | | | INJECTION LASER PACKAGES | | ID8512 | INJECTION LASER
PACKAGES | GB | 8317959 | 2 124 402 | | | INJECTION LASER PACKAGES | | ID8850 | OPTICAL AMPLIFIERS | บร | 06/888,274 | 4,720,684 | | | OPTICAL AMPLIFIERS | | ID8850 | OPTICAL AMPLIFIERS | CA | 469,211 | 1,245,328 | | | OPTICAL AMPLIFIERS | | ID8852 | MANUFACTURING
OPTICAL FIBRE | US | 06/736,327 | 4,608,276 | | | MANUFACTURING OPTICAL
FIBRE | | ID8852 | MANUFACTURING
OPTICAL FIBRE | CA | 482,229 | 1,261,632 | | | MANUFACTURING OPTICAL
FIBRE | | ID8960 | OPTICAL FIBRE MANUFACTURE | US | 06/940,232 | 4,735,648 | | | OPTICAL FIBRE MANUFACTURE | | ID9003 | COATING OPTICAL
FIBRES | DE | 85306977.1 | 356 83 25.2 | | | COATING OPTICAL FIBRES | | ID9003 | COATING OPTICAL
FIBRES | JP | 222908/85 | 2029150 | | | COATING OPTICAL FIBRES | | ID9003 | COATING OPTICAL
FIBRES | US | 06/782,930 | 4,631,078 | | | COATING OPTICAL FIBRES | | ID9003 | COATING OPTICAL
FIBRES | GB | 8530 6977.1 | 0 178 107 | | | COATING OPTICAL FIBRES | | ID9003 | COATING OPTICAL
FIBRES | CA | 492,574 | 1,226,411 | | | COATING OPTICAL FIBRES | | ID9186 | LASER MANUFACTURE | us | 07/296,946 | 4,949,352 | | | LASER MANUFACTURE | | ID9186 | LASER MANUFACTURE | GB | 8512321 | 2 175 442 | | | LASER MANUFACTURE | | ID9209 | TUBE FURNACE | us | 06/858,617 | 4,748,307 | | | TUBE FURNACE | | ID9312 | OPTICAL FIBRE
MANUFACTURE | US | 06/896,518 | 4,793,840 | | | OPTICAL FIBRE MANUFACTURE | | ID9312 | OPTICAL FIBRE
MANUFACTURE | GB | 85 20945 | 2 179 339 | | | OPTICAL FIBRE MANUFACTURE | | ID9315 | OPTICAL FIBRE CABLE
HAVING SLOTTED CORE | DÉ | 365 0 2 56.1 | 365 02 56.1 | | | OPTICAL FIBRE CABLE HAVING
SLOTTED CORE | | ID9315 | OPTICAL FIBRE CABLE
HAVING SLOTTED CORE | FR | 86306868.0 | 0 216 548 | | | OPTICAL FIBRE CABLE HAVING
SLOTTED CORE | | 3 (3).
(10) | Distriction of the | es. | · September | Promote | Sini
Sode | Mariana and Maria | जिल्लाहरणित सहित्र । जन्म | |----------------|---|-----|----------------------------|-------------|--------------|---|--| | ID9315 | OPTICAL FIBRE CABLE
HAVING SLOTTED CORE | GB | 86306868.0 | 0 216 548 | | The second se | OPTICAL FIBRE CABLE HAVING SLOTTED CORE | | ID9315 | OPTICAL FIBRE CABLE
HAVING SLOTTED CORE | NZ | 217514 | 217514 | | | OPTICAL FIBRE CABLE HAVING SLOTTED CORE | | ID9315 | OPTICAL FIBRE CABLE
HAVING SLOTTED CORE | US | 07/636,902 | RE34,516 | | | OPTICAL FIBRE CABLE HAVING
SLOTTED CORE | | ID9379 | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER | US | 06/934,440 | 4,772,086 | | | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER | | ID9379 | OPTICAL FIBRE
INTEGRATED OPTICAL
DEVICE COUPLER | GB | 8530797 | 2 184 255 | | | OPTICAL FIBRE INTEGRATED
OPTICAL DEVICE COUPLER | | ID9495 | LASER ARRAY | DE | 87302417.8 | 376 44 10.6 | | | LASER ARRAY | | ID9495 | LASER ARRAY | JP | 129591/87 | 2511969 | | | LASER ARRAY | | ID9495 | LASER ARRAY | US | 07/032,779 | 4,760,580 | | | LASER ARRAY | | ID9552 | OPTICAL FIBRE CABLES | DE | 3883556.8 | 3883556.8 | | | OPTICAL FIBRE CABLES | | ID9552 | OPTICAL FIBRE CABLES | FR | 88300817.9 | 0 278 648 | | | OPTICAL FIBRE CABLES | | ID9552 | OPTICAL FIBRE CABLES | GB | 8703255 | 2 201 008 | | | OPTICAL FIBRE CABLES | | ID9552 | OPTICAL FIBRE CABLES | US | 07/154,866 | 4,830,459 | | | OPTICAL FIBRE CABLES | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | DE | 8830 6994. 0 | 388 13 01.7 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | FR | 88306994.0 | 0 304 182 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | GB | 8719590 | 2 208 944 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | GB | 88306994.0 | 0 304 182 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | NL | 88306994.0 | 0 304 182 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | SE | 88306994.0 | 0 304 182 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9604 | FIBRE TAILED OPTO-
ELECTRONIC
TRANSDUCER | US | 07/230,057 | 4,988,159 | | | FIBRE TAILED OPTO-
ELECTRONIC TRANSDUCER | | ID9617 | EDGE EMITTING LIGHT
EMISSIVE DIODE | US | 07/239,403 | 4,937,638 | | | EDGE EMITTING LIGHT EMISSIVE
DIODE | | ID9661 | WAVEGUIDE TO OPTO-
ELECTRONIC
TRANSDUCER | GB | 8823873.8 | 2 213 957 | | | WAVEGUIDE TO OPTO-
ELECTRONIC TRANSDUCER | | 3 C | ्रहोस्ट के
हिंदुभुद्धे व्यक्ति | 175 | - 1 3 C | क्रिक्टिंग होड | S | " Therefore, gifts
References | न्याकामित्रीं हैं दिन | |--------|--|-----|---------------------|-----------------|---|----------------------------------|---| | ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | DE | 690 20 050.1 | 690 20
050.1 | | | CONTACTLESS MEASUREMENT
OF THE ELECTRICAL
RESISTANCE PERUNIT LENGTH | | ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | FR | 90305474.0 | 0 400 853 | | | CONTACTLESS MEASUREMENT
OF THE ELECTRICAL
RESISTANCE PERUNIT LENGTH | | ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | GB | 8912458.0 | 2 232 260 | | | CONTACTLESS MEASUREMENT
OF THE ELECTRICAL
RESISTANCE PERUNIT LENGTH | | ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | JР | 141220/1990 | 2991238 | | | CONTACTLESS MEASUREMENT
OF THE ELECTRICAL
RESISTANCE PERUNIT LENGTH | | ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | US | 07/531,791 | 5,083,090 | | | CONTACTLESS MEASUREMENT
OF THE ELECTRICAL
RESISTANCE PERUNIT LENGTH | | ID9716 | CARB ON COATING OF
OPTICAL FIBRES | DE | 690 10 282.8 | 0 400 938 | | | CARB ON COATING OF OPTICAL
FIBRES | | ID9716 | CARB ON COATING OF
OPTICAL FIBRES | FR | 90305776.8 | 0 400 938 | | | CARB ON COATING OF OPTICAL
FIBRES | | ID9716 | CARB ON COATING OF
OPTICAL FIBRES | GB | 9011933.0 | 2 236 331 | | | CARB ON COATING OF OPTICAL
FIBRES | | ID9716 | CARB ON COATING OF
OPTICAL FIBRES | JP | 141221/1990 | 2866707 | | | CARB ON COATING OF OPTICAL FIBRES | | ID9716 | CARB ON COATING OF
OPTICAL FIBRES | US | 07/531,859 | 5,062,687 | | | CARB ON COATING OF OPTICAL FIBRES | | ID9731 | BONDING A
SEMICONDUCTOR TO A
SUBSTRATE | GB | 8818522.8 | 2 221 570 | | | BONDING A SEMICONDUCTOR
TO A SUBSTRATE | | ID9742 | OPTICAL FILTERS | GB | 8823078.4 | 2 223 324 | | | OPTICAL FILTERS | | ID9750 | DIFFRACTION GRATING | DE | 68928711.9 | 0365125 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | FR | 89308702.3 | 0 365 125 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | GB | 8821898.7 | 2 222 891 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | ΙΤ | 22874/BE/98 | 0 365 125 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | JР | 239789/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | JP | 23978 9/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | JP | 239789/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | US | 07/579,081 | 5,029,981 | | | DIFFRACTION GRATING | | \$\$\$@
 @: | eretime the | idg çr | Sign The | | 1 29.44
10.00 a | स्त्री विकेत्यकार हेट व्यक्ति
स्त्री संस्कृतिकारी | विकास निर्देश विकास मिल्ली हैं। | |----------------|--|--------|--------------------|-----------------|--------------------|--|--| | ID9750 | DIFFRACTION GRATING | JP | 239789/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | JP | 239789/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | JP | 239789/1989 | 2889608 | | | DIFFRACTION GRATING | | ID9750 | DIFFRACTION GRATING | NL | 89308702.3 | 0 365 125 | | | DIFFRACTION GRATING | | ID9752 | VAPOUR PHASE
PROCESSING | GB | 8823233.5 | 2 223 509 | | | VAPOUR PHASE PROCESSING | | ID9763 | MULTICHANNEL CAVITY
LASER | DE | 89312024.6 | 689 18
238.4 | | | MULTICHANNEL CAVITY LASER | | ID9763 | MULTICHANNEL CAVITY
LASER | FR | 89312024.6 | 0 370 739 | | | MULTICHANNEL CAVITY LASER | | ID9763 | MULTICHANNEL CAVITY
LASER | GB | 8827385.9 | 2 225 482 | | | MULTICHANNEL CAVITY LASER | | ID9763 | MULTICHANNEL CAVITY
LASER | US | 07/625,818 | 5,115,444 | | | MULTICHANNEL CAVITY LASER | | ID9774 | INTEGRATED OPTICS ASYMMETRIC Y- COUPLER | GB | 8902391.5 | 2 227 854 | | | INTEGRATED OPTICS
ASYMMETRIC Y-COUPLER | | ID9806 | OPTICAL FIBRE CABLE | US | 07/544,678 | 5,082,380 | | | OPTICAL FIBRE CABLE | | ID9837 | AERIAL OPTICAL FIBRE
CABLE | US | 07/596,381 | 5,050,960 | | | AERIAL OPTICAL FIBRE CABLE | | ID9856 | SEMICONDUCTOR
OPTICAL SOURCE | GB | 8924725.8 | 2 237 654 | | | SEMICONDUCTOR OPTICAL SOURCE | | ID9870 | RING LASER | FR | 90309362.3 | 0 419 059 | | | RING LASER | | ID9870 | RING LASER | GB | 8921295.5 | 2 236 426 | | | RING LASER | | ID9870 | RING LASER | DE | 6900378 0.5 | 0 419 059 | | | RING LASER | | ID9870 | RING LASER | JP | 249922/1990 | 3004336 | | | RING LASER | | ID9870 | RING LASER | US | 07/583,590 | 5,056,096 | | | RING LASER | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | FR | 90304772.8 | 0401971 | | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS
MANUFACTURE | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | CA | 2,013,849 | 2,013,849 | | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS
MANUFACTURE | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | DE | 90304772.8 | 0401971 | | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS
MANUFACTURE | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | EΡ | 90304772.8 | 0401971 | | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS
MANUFACTURE | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | US | 07/363,006 | 4,934,774 | | | OPTICAL WAVEGUIDE AND
METHOD FOR ITS
MANUFACTURE | | 3/5/4 | The Property of the | | i Syris Sw | 5 (2 jr.) | s Silv | Markeys The Comment | ीर्वेहिक्किसीक्ष्मिक | |--------|---|----|--------------------|-------------------|--------|---------------------|--| | MO0068 | B OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | US | 07/501,990 | 5,035,916 | | | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE | | MO0068 | OPTICAL WAVEGUIDE
AND METHOD FOR ITS
MANUFACTURE | GB | 90304772.8 | 0401971 | | | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE | | MO0166 | A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM AN OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER | | 08/710,775 | 5,703,980 | | | A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER | | MO0167 | A METHOD FOR THE
HYBRID INTEGRATION OF
DISCRETE ELEMENTS ON
A SEMICONDUCTOR
SUBSTRATE | | 2,209,548 | | | | A METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | MO0167 | A METHOD FOR THE
HYBRID INTEGRATION OF
DISCRETE ELEMENTS ON
A SEMICONDUCTOR
SUBSTRATE | 1 | 97111629.8 | | | | A METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | MO0167 | A METHOD FOR THE
HYBRID INTEGRATION OF
DISCRETE ELEMENTS ON
A SEMICONDUCTOR
SUBSTRATE | 4 | 9-185588 | | | | A METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE | | 08/677,922 | 5,793,913 | | | A METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE | | 09/079,480 | 6,158,901 | | | A METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE | | 09/584,792 | 6,391,214 | | | METHOD FOR THE HYBRID
INTEGRATION OF DISCRETE
ELEMENTS ON A
SEMICONDUCTOR SUBSTRATE | | RE1009 | FIBER OPTIC COUPLER | CA | 476,580 | 1,258,787 | | | FIBER OPTIC COUPLER | | RE1009 | FIBER OPTIC COUPLER | US | 07/442,878 | 4,950,046 | | | FIBER OPTIC COUPLER | | RE1037 | OPTICAL SIGNAL
MODULATORS | CA | 507,411 | 1,257,923 | | | OPTICAL SIGNAL MODULATORS | | RE1037 | OPTICAL SIGNAL
MODULATORS | US | 06/856,887 | 4,730,171 | | | OPTICAL SIGNAL MODULATORS | | RO1624 | HERMETIC OPTICAL
ATTENUATOR | US | 06/23 3,500 | 4,695,125 | | | HERMETIC OPTICAL
ATTENUATOR | | 17(€)-
J0 | न्त्रिक्षणं विद | ê, | \$89.70.74 | Tigera a. | Shur
Shur | Maggandia (M) :
ESG (194 | somether is | |--------------|--|----|------------------|-----------|--------------|-----------------------------|--| | RO1807 | DIFFUSION EQUIPMENT | CA | 416,834 | 1,204,986 | | | DIFFUSION EQUIPMENT | | RO1807 | DIFFUSION EQUIPMENT | us | 06/446,441 | 4,493,287 | | | DIFFUSION EQUIPMENT | | RO1809 | A PLANAR NARROW-
STRIPE LASER WITH
IMPROVED CHARGE
CARRIER
CONFINEMENT | US | 06/448,383 | 4,530,099 | | | A PLANAR NARROW-STRIPE
LASER WITH IMPROVED CHARGE
CARRIER
CONFINEMENT | | RO1882 | MELT DISPENSING
LIQUID PHASE EPITAXY
BOAT | CA | 448,169 | 1,201,220 | | | MELT DISPENSING LIQUID PHASE EPITAXY BOAT | | RO1882 | MELT DISPENSING
LIQUID PHASE EPITAXY
BOAT | US | 06/583,985 | 4,574,730 | | | MELT DISPENSING LIQUID PHASE EPITAXY BOAT | | RO1903 | METHOD FOR
SCREENING LASER
DIODES | CA | 447,814 | 1,196,080 | | | METHOD FOR SCREENING
LASER DIODES | | RO1903 | METHOD FOR
SCREENING LASER
DIODES | US | 06/582,956 | 4,489,477 | | | METHOD FOR SCREENING
LASER DIODES | | RO1944 | PHASED LINEAR
LASER
ARRAY | CA | 465,981 | 1,238,707 | | | PHASED LINEAR LASER ARRAY | | RO1944 | PHASED LINEAR LASER
ARRAY | US | 06/663,424 | 4,661,962 | | | PHASED LINEAR LASER ARRAY | | RO1961 | ZINC DIFFUSION INTO
INDIUM PHOSPHIDE | CA | 495,084 | 1,290,656 | | | ZINC DIFFUSION INTO INDIUM
PHOSPHIDE | | RO1961 | ZINC DIFFUSION INTO
INDIUM PHOSPHIDE | US | 07/243,138 | 4,889,830 | | | ZINC DIFFUSION INTO INDIUM
PHOSPHIDE | | RO1987 | DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE | CA | 483,077 | 1,238,973 | | | DOUBLE HETEROSTRUCTURE
SURFACE EMITTING LASER
STRUCTURE | | RO1987 | DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE | US | 06/673,644 | 4,660,207 | | | DOUBLE HETEROSTRUCTURE
SURFACE EMITTING LASER
STRUCTURE | | RO1994 | A SURFACE EMITTING
LASER | CA | 4 74, 029 | 1,238,971 | | | A SURFACE EMITTING LASER | | RO1994 | A SURFACE EMITTING
LASER | US | 06/701,839 | 4,675,877 | | | A SURFACE EMITTING LASER | | RO2005 | A BRAGG DISTRIBUTED
FEEDBACK SURFACE
EMITTING LASER | US | 06/701,707 | 4,675,876 | | | A BRAGG DISTRIBUTED
FEEDBACK SURFACE EMITTING
LASER | | RO2005 | A BRAGG DISTRIBUTED
FEEDBACK SURFACE
EMITTING LASER | CA | 474,030 | 1,238,972 | | | A BRAGG DISTRIBUTED
FEEDBACK SURFACE EMITTING
LASER | | RO2268 | AN INTERRUPTED LIQUID
PHASE EPITAXY
TECHNIQUE | CA | 562,885 | 1,293,179 | | | AN INTERRUPTED LIQUID PHASE
EPITAXY TECHNIQUE | | RO2268 | AN INTERRUPTED LIQUID
PHASE EPITAXY
TECHNIQUE | US | 07/179,834 | 4,859,628 | | | AN INTERRUPTED LIQUID PHASE
EPITAXY TECHNIQUE | | \$1614
\$161 | ्रिक्षित्रसम्बद्धाः स्टब्स्
स | · K | | taring \$ | i Shi
Silee | We tand a later with the later of | कार्रास्त्रीक विकास | |-----------------|---|-----|------------|-----------------|----------------|---|---| | RO2314 | MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES | US | 07/176,120 | 4,847,665 | | | MONOLITHIC INTEGRATION OF
OPTOELECTRONIC AND
ELECTRONIC
DEVICES | | RO2349 | GROWTH OF SEMI-
INSULATING INP BY
LIQUID PHASE EPITAXY | US | 07/201,155 | 4,849,373 | | | GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY | | RO2349 | GROWTH OF SEMI-
INSULATING INP BY
LIQUID PHASE EPITAXY | CA | 568,369 | 1,313,107 | | | GROWTH OF SEMI-INSULATING INP BY LIQUID PHASE EPITAXY | | RO2461 | OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION | US | 07/369,883 | 4,969,712 | | | OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION | | RO2468 | PACKAGING METHOD
AND PACKAGE FOR
EDGE COUPLED
OPTOELECTRONIC
DEVICE | CA | 2,018,900 | 2,018,900 | | | PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE | | RO2468 | PACKAGING METHOD
AND PACKAGE FOR
EDGE COUPLED
OPTOELECTRONIC
DEVICE | US | 07/385,599 | 4,953,006 | | | PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE | | RO2564 | LASER DIODE
STRUCTURE | FR | 91908207.3 | 0 530 212 | | | LASER DIODE STRUCTURE | | RO2564 | LASER DIODE
STRUCTURE | DE | 91908207.3 | 691 07
845.9 | | | LASER DIODE STRUCTURE | | RO2564 | LASER DIODE
STRUCTURE | GB | 91908207.3 | 0 530 212 | | | LASER DIODE STRUCTURE | | RO2564 | LASER DIODE
STRUCTURE | US | 07/522,015 | 4,989,214 | | | LASER DIODE STRUCTURE | | RO2579 | MULTICHANNEL FIBER
OPTIC TRANSMITTER
RECEIVER | US | 07/582,464 | 5,050,953 | | | MULTICHANNEL FIBER OPTIC
TRANSMITTER RECEIVER | | RO2579 | MULTICHANNEL FIBER
OPTIC TRANSMITTER
RECEIVER | GB | 91185124 | 2 248 968 | | | MULTICHANNEL FIBER OPTIC
TRANSMITTER RECEIVER | | RO2714 | APPARATUS FOR USE
WITH ANALYTICAL
MEASURING
INSTRUMENTS | US | 07/996,411 | 5,350,923 | | | APPARATUS FOR USE WITH
ANALYTICAL MEASURING
INSTRUMENTS | | RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | DE | 94915483.5 | 694 08
144.2 | | | OPTICAL PHASE MODULATING
DEVICES AND METHODS FOR
THEIR
OPERATION | | RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | FR | 94915483.5 | 0 708 930 | | | OPTICAL PHASE MODULATING
DEVICES AND METHODS FOR
THEIR
OPERATION | | E Color | ्र विद्यासम्बद्धाः जिल्ला | FBF. | 3.24g · · | ិក្សាស្ត្រ វិក្សា
ស | r Fri | Mingrafia ya
Kake Mete | रप्रवेदिसीय बार्टर | |---------|--|------|-------------|------------------------|-------|---------------------------|--| | RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | GB | 94915483.5 | 0 708 930 | | | OPTICAL PHASE MODULATING
DEVICES AND METHODS FOR
THEIR
OPERATION | | RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | JP | 7-504252-95 | 2691638 | | | OPTICAL PHASE MODULATING
DEVICES AND METHODS FOR
THEIR
OPERATION | | RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | US | 08/091,708 | 5,363,457 | | | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION | | RO2788 | METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES | | 08/118,273 | 5,345,459 | | | METHOD OF REDUCING THE THERMALLY INDUCED SHIFT IN THE EMISSION WAVELENGTH OF LASER DIODES | | RO2799 | GAIN COUPLED DFB
LASER WITH INDEX
COUPLING
COMPENSATION | US | 08/170,074 | 5,452,318 | | | GAIN COUPLED DFB LASER WITH
INDEX COUPLING
COMPENSATION | | RO2809 | METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES | US | 08/158,545 | 5,586,207 | · | | METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES | | RO2817 | CIRCULAR GRATING
LASERS | US | 08/158,543 | 5,448,581 | | | CIRCULAR GRATING LASERS | | RO2875 | CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER SPLITTING | US | 08/450,841 | 5,524,076 | | | CHIRP CONTROL OF A MACH
ZEHNDER OPTICAL MODULATOR
USING NON
EQUAL POWER SPLITTING | | RO2879 | SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE | 1 1 | 08/242,653 | 5,483,547 | | | SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE | | RO2956 | SEMICONDUCTOR
MODULATOR WITH A 2-2
SHIFT | GB | 9513146.2 | 2 302 738 | | | SEMICONDUCTOR MODULATOR
WITH A 2-2 SHIFT | | RO2956 | SEMICONDUCTOR
MODULATOR WITH A 2-2
SHIFT | JP | 8-188293 | | | | SEMICONDUCTOR MODULATOR
WITH A 2-2 SHIFT | | RO2956 | SEMICONDUCTOR
MODULATOR WITH A 2-2
SHIFT | CA | 2,176,099 | 2,176,099 | | | SEMICONDUCTOR MODULATOR
WITH A SHIFT | | 7.64
No. | TERMONIC. | \$ | e said | May 10 martin | Sur
Deloc | Marketer statiff | Throughout the same | |-------------|---|----|--------------------|---------------|--------------|------------------|---| | RO2956 | SEMICONDUCTOR
MODULATOR WITH A 2-2
SHIFT | US | 08/612,555 | 5,694,504 | | | SEMICONDUCTOR MODULATOR
WITH A 2-2 SHIFT | | RO2969 | METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL | US | 08/450,839 | 5,567,659 | | | METHOD OF ETCHING
PATTERNS IN III-V MATERIAL
WITH ACCURATE
DEPTH CONTROL | | RO2974 | MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY | US | 08/413,555 | 5,536,085 | | | MULTI WAVELENGTH
GAIN
COUPLED DISTRIBUTED
FEEDBACK LASER
ARRAY WITH FINE TUNABILITY | | RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | CA | 2,209,455 | | | | COUPLING OF STRONGLY AND
WEAKLY GUIDING WAVEGUIDES
FOR
COMPACT INTEGRATED MACH
ZEHNDER MODULATORS | | RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | EP | 97304743.4 | | | | COUPLING OF STRONGLY AND
WEAKLY GUIDING WAVEGUIDES
FOR
COMPACT INTEGRATED MACH
ZEHNDER MODULATORS | | RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | JP | 9-174942 | | | | COUPLING OF STRONGLY AND
WEAKLY GUIDING WAVEGUIDES
FOR
COMPACT INTEGRATED MACH
ZEHNDER MODULATORS | | RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | US | 08/675,757 | 5,799,119 | | | COUPLING OF STRONGLY AND
WEAKLY GUIDING WAVEGUIDES
FOR
COMPACT INTEGRATED MACH
ZEHNDER MODULATORS | | RO3007 | BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKING LAYER | US | 08/728,991 | 6,028,875 | | | BURIED HETEROSTRUCTURE
LASER WITH QUATERNARY
CURRENT BLOCKI G LAYER | | RO3015 | THIN FILM RESISTOR
FOR OPTOELECTRONIC
INTEGRATED CIRCUITS | GB | 9700 985.6 | 2 309 335 | | | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS | | RO3015 | THIN FILM RESISTOR
FOR OPTOELECTRONIC
INTEGRATED CIRCUITS | JР | 9-00 9795 | | | | THIN FILM RESISTOR FOR
OPTOELECTRONIC INTEGRATED
CIRCUITS | | RO3015 | THIN FILM RESISTOR
FOR OPTOELECTRONIC
INTEGRATED CIRCUITS | US | 08/977,371 | 5,960,014 | | | THIN FILM RESISTOR FOR
OPTOELECTRONIC INTEGRATED
CIRCUITS | | RO3066 | LASER DIODE AND
METHOD OF
FABRICATION THEREOF | US | 09/09 3,399 | 6,151,347 | | | LASER DIODE AND METHOD OF
FABRICATION THEREOF | | | TREGING AND | | The Hallest Strait | 第一成的 社 | Spir. | an archive and a dealer are also | |--------|---|----|--------------------|-----------------|----------------------|---| | RO3090 | CONFIGURABLE CHIRP
MACH-ZEHNDER
OPTICAL MODULATOR | CA | 2,220,240 | 2,220,240 | | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3090 | CONFIGURABLE CHIRP
MACH-ZEHNDER
OPTICAL MODULATOR | EP | 97308615.0 | | | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3090 | CONFIGURABLE CHIRP
MACH-ZEHNDER
OPTICAL MODULATOR | US | 08/745,168 | 5,778,113 | | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3090 | CONFIGURABLE CHIRP
MACH-ZEHNDER
OPTICAL MODULATOR | US | 09/057,602 | 5,991,471 | | CONFIGURABLE CHIRP MACH-
ZEHNDER OPTICAL MODULATOR | | RO3092 | POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE | US | 08/686,355 | 5,777,793 | | POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | CA | 2,209, 558 | | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | EP | 97111630.6 | 0 818 859 | Nat'l Phase
Filed | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL TRANSMISSION
SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | US | 08/680,284 | 5,825,792 | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | JP | 9-186204 | | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | GB | 97111630.6 | 0 818 859 | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | DE | 97111630.6 | 697 11
126.1 | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | RO3139 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS | FR | 97111630.6 | 0 818 859 | | WAVELENGTH MONITORING AND
CONTROL ASSEMBLY FOR WDM
OPTICAL
TRANSMISSION SYSTEMS | | THE VIEW | Time we did | | | Fig. day. | 300
32.600 | The management of the Example (1985) | Content of the Conten | |----------|--|----|----------------|-----------|---------------|--------------------------------------|--| | RO3478 | TWO SECTION COMPLE COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASE WITH ENHANCED WAVELENGTH TUNING RANGE | R | 98307439.4 | | | | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | | RO3478 | TWO SECTION COMPLE;
COUPLED DISTRIBUTED
FEEDBACK
SEMICONDUCTOR LASE;
WITH ENHANCED
WAVELENGTH TUNING
RANGE | | 10-264323 | | | | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | | RO3478 | TWO SECTION COMPLE) COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASEF WITH ENHANCED WAVELENGTH TUNING RANGE | | 08/933,529 | 5,936,994 | | | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | | RO3479 | DISTRIBUTED FEEDBACK
SEMICONDUCTOR LASEF
WITH GAIN
MODULATION | | 08/953,015 | 6,026,110 | | | DISTRIBUTED FEEDBACK
SEMICONDUCTOR LASER WITH
GAIN
MODULATION | | RO3610 | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | EP | 98310111.4 | | | | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | | RO3610 | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | JР | 10-366380 | | | | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | | RO3610 | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | US | 08/998,071 | 6,104,739 | | | SERIES OF STRONGLY
COMPLEX COUPLED DFB
LASERS | | RO3746 | ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION | US | 08/994,453 | 5,869,398 | | | ETCHING OF INDIUM PHOSPHIDE
MATERIALS FOR
MICROELECTRONICS
FABRICATION | | RO3920 | HIGH ORDER GAIN
COUPLED DFB LASERS | wo | PCT/CA99/01067 | | | | A GAIN COUPLED DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASER | | RO3920 | HIGH ORDER GAIN
COUPLED DFB LASERS | CA | 2,310,604 | | | | A GAIN COUPLED DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASER | | RO3920 | HIGH ORDER GAIN
COUPLED DFB LASERS | EΡ | 99973441.1 | | | | A GAIN COUPLED DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASER | | RO3920 | HIGH ORDER GAIN
COUPLED DFB LASERS | JP | 2000-588867 | | | | A GAIN COUPLED DISTRIBUTED
FEEDBACK SEMICONDUCTOR
LASER | | 1167 | e en | 511 | ं इन्हर्नाति।
: | The fifth | Situal | of majerious | Application and a second | |--------|---|-----|--------------------|-----------|----------------------|--------------|---| | RO4144 | COMPACT PROGRAMMABLE MATRIX OF STRONGLY COMPLEX COUPLED DFB LASERS FOR WIDE AND CONTINUOUS SINGLE WAVELENGTH | US | 09/209,860 | 6,201,824 | | | STRONGLY COMPLEX COUPLED
DFB LASERS SERIES | | RO4324 | CONTINUOUSLY TUNABLE HIGH REPETITION RATE SHORT PULSE GENERATION USING DUAL MODE HIGHLY GAIN-COUPLED DFB LASER
DIODES | US | 09/213,088 | | | | GENERATION OF SHORT
OPTICAL PULSES USING
STRONGLY COMPLEX COUPLED
DFB LASERS | | RO4416 | VARIABLE OPTICAL
ATTENUATOR | US | 09/388,628 | 6,246,826 | | | VARIABLE OPTICAL ATTENUATOR WITH PROFILED BLADE | | RO4504 | ACTIVE REFLECTION
MODULATOR | US | 09/409,036 | | | | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM | | RO4504 | ACTIVE REFLECTION
MODULATOR | wo | PCT/CA00/00856 | | Nat'l Phase
Filed | | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM | | RO4504 | ACTIVE REFLECTION
MODULATOR | CA | 2,351,381 | | | | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM | | RO4504 | ACTIVE REFLECTION
MODULATOR | EP | 947728.2 | | | | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM | | RO4504 | ACTIVE REFLECTION
MODULATOR | JР | 2001-527411 | | | | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM | | DEG
VO | Elektrono HIRO | A17: | STABLE . | Professor | .સાઇસવાલ | 49. Mestinative | |-----------|---|------|-------------------|-----------|----------|--| | 10163ID | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES | CA | 2,311,961 | | | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES | | 10163ID | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES | EP | 304657 | | | PHASE ADJUSTER USING SLOTTED,
CONCATENATED WAVEGUIDES AND THERMO-
OPTIC OR ELECTRO-OPTIC INSERTS | | 10163ID | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES | US | 09/346,320 | 6,424,755 | | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES | | 11550RO | HYBRID ATTACH MIRRORS
FOR A MEMS OPTICAL
SWITCH | CA | 2,355,450 | | | HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL
SWITCH | | 11550RO | HYBRID ATTACH MIRRORS
FOR A MEMS OPTICAL
SWITCH | US | 09/672,703 | | | HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL
SWITCH | | 12801AU | FIBRE OPTIC CIRCULATOR | EP | 96940631.3 | | | FIBRE OPTIC CIRCULATOR | | 12801AU | FIBRE OPTIC CIRCULATOR | US | 08/942,601 | 6,014,475 | | FIBRE OPTIC CIRCULATOR | | 12802AU | OPTICAL FILTERING METHOD
AND DEVICE | CA | 2,318,674 | | | OPTICAL FILTERING METHOD AND DEVICE | | 12802AU | OPTICAL FILTERING METHOD AND DEVICE | US | 09/660,147 | 6,466,704 | | OPTICAL FILTERING METHOD AND DEVICE | | 12802AU | OPTICAL FILTERING METHOD AND DEVICE | wo | PCT/AU00/00735 | | | OPTICAL FILTERING METHOD AND DÉVICE | | 12803AU | REFLECTIVE NON
RECIPROCAL OPTICAL
DEVICE | CA | 2,313 ,311 | | | REFLECTIVE NON RECIPROCAL OPTICAL DEVICE | | 12803AU | REFLECTIVE NON
RECIPROCAL OPTICAL
DEVICE | EP | 202289.5 | | | REFLECTIVE NON RECIPROCAL OPTICAL DEVICE | | TREE . | The Tender of the | 9 | Street Co. | Transarie. | Su Seins | mileton alex | |---------|--|----|---------------------|-----------------|----------------------|---| | 12803AU | REFLECTIVE NON
RECIPROCAL OPTICAL
DEVICE | US | 09/345,027 | 6,263,131 | | REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE | | 12803AU | REFLECTIVE NON
RECIPROCAL OPTICAL
DEVICE | US | 09/610,601 | 6,415,077 | | REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE | | 12804AU | WAVELENGTH DEPENDENT ISOLATOR | CA | 10/129828 | | Nat'l Phase
Filed | WAVELENGTH DEPENDENT ISOLATOR | | 12804AU | WAVELENGTH DEPENDENT ISOLATOR | US | PCT/AU00/01380 | | Nat'l Phase
Filed | WAVELENGTH DEPENDENT ISOLATOR | | 12804AU | WAVELENGTH DEPENDENT ISOLATOR | wo | PCT/AU00/01380 | | Nat'l Phase
Filed | WAVELENGTH DEPENDENT ISOLATOR | | 13240AU | POLARISATION SPLITTING
CIRCULATOR METHOD AND
DEVICE | US | 09/736,095 | | | POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE | | 14081ID | FIBRE OPTICAL COMPONENT | US | 09/888,888 | | | FIBRE OPTICAL COMPONENT | | 14669AU | VARIABLE ATTENUATION
AND SPECTRAL SLOPE
OPTICAL DEVICE | US | 10/218,267 | | | VARIABLE ATTENUATION AND SPECTRAL SLOPE
OPTICAL DEVICE | | 15087ID | AN OPTICAL GRATING
DEVICE | US | 10/109,916 | | | AN OPTICAL GRATING DEVICE | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | DE | 95308065.2 | 695 27
251.9 | | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | EP | 95308065.2 | 0 713 109 | Nat'l Phase
Filed | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | FR | 95308065.2 | 0 713 109 | | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | GB | 9521916.8 | 2 295 245 | | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | JР | 293047/1995 | | | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0190 | WAVELENGTH RESONANT
FUSED FIBRE COUPLER | US | 08/55 7,8 57 | 5,703,976 | | WAVELENGTH RESONANT FUSED FIBRE COUPLER | | ID0226 | OPTICAL WAVEGUIDE
GRATINGS | GB | 9318670.8 | 2 281 787 | | OPTICAL WAVEGUIDE GRATINGS | | ID0291 | OPTICAL WAVEGUIDE
GRATING FILTER | DE | 95308201.3 | 695 25
223.2 | | OPTICAL WAVEGUIDE GRATING FILTER | | ID0291 | OPTICAL WAVEGUIDE
GRATING FILTER | EP | 95308201.3 | 0 713 110 | Nat'l Phase
Filed | OPTICAL WAVEGUIDE GRATING FILTER | | ID0291 | OPTICAL WAVEGUIDE
GRATING FILTER | FR | 95308201.3 | 0 713 110 | | OPTICAL WAVEGUIDE GRATING FILTER | | ID0291 | OPTICAL WAVEGUIDE
GRATING FILTER | GB | 9523489.4 | 2 295 247 | | OPTICAL WAVEGUIDE GRATING FILTER | | ID0291 | OPTICAL WAVEGUIDE
GRATING FILTER | US | 08/55 8,70 9 | 5,638,473 | | OPTICAL WAVEGUIDE GRATING FILTER | | ID0309 | BRAGG GRATINGS IN
WAVEGUIDES | US | 08/647,795 | 5,730,888 | | BRAGG GRATINGS IN WAVEGUIDES | | ID0355 | ALL-FIBRE OPTICAL FILTER | DE | 96302352.8 | 696 22
778.9 | | OPTICAL NOTCH FILTER MANUFACTURE | | 1D0355 | ALL-FIBRE OPTICAL FILTER | EP | 96302352.8 | 0 736 784 | Nat'l Phase
Filed | OPTICAL NOTCH FILTER MANUFACTURE | | 165 | ्राध्यक्षित्रकृतिक | G. | | Pient. | 311.3211 | applies of file 1997 | |--------|--|----|----------------|-----------------|----------------------|--| | ID0355 | ALL-FIBRE OPTICAL FILTER | FR | 96302352.8 | 0 736 784 | | OPTICAL NOTCH FILTER MANUFACTURE | | ID0355 | ALL-FIBRE OPTICAL FILTER | GB | 96302352.8 | 0 736 784 | | OPTICAL NOTCH FILTER MANUFACTURE | | ID0355 | ALL-FIBRE OPTICAL FILTER | US | 08/628,579 | 5,708,740 | | ALL-FIBRE OPTICAL FILTER | | ID0421 | PLANAR WAVEGUIDES | US | 08/842,021 | 5,904,491 | | PLANAR WAVEGUIDES | | ID0423 | PLANAR WAVEGUIDE
CLADDING | US | 08/842,022 | 5,885,881 | | PLANAR WAVEGUIDE CLADDING | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | CA | 2,241,189 | | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | DE | 97906822.8 | 697 09
330.1 | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | EP | 97906822.8 | 0 891 570 | Nat'l Phase
Filed | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | FR | 97906822.8 | 0 891 570 | 187 | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | GB | 9605320.2 | 2 311 145 | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | GB | 97906822.8 | 0 891 570 | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | IT | 97906822.8 | 0 891 570 | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | JP | 532348/1997 | | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | US | 09/101,276 | | | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0444 | WAVEGUIDES TO
PHOTODETECTOR
ASSEMBLY | wo | PCT/GB97/00606 | | Nat'l Phase
Filed | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | CA | 2,239,118 | | | WAVEGUIDE PAIR WITH CLADDING | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | DE | 97900292 | 697 02
299.4 | Nat'l Phase
Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE
PAIR ASSEMBLY | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | EP | 97900292 | 0 873 531 | Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE
PAIR ASSEMBLY | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | FR | 97900292 | 0 873 531 | Nat'l Phase
Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE
PAIR ASSEMBLY | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | GB | 97900292 | 0 873 531 | Nat'l Phase
Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE
PAIR ASSEMBLY | | \$125
125 | Modern Ch | 67.9 | E 1 1 1 1 1 | Bankete. | क्षार श्रीवंस | Applesion Tib | |--------------|---|------|---------------------|-----------------|----------------------|---| | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | IT | 97900292 | 0 873 531 | Nat'l Phase
Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE
PAIR ASSEMBLY | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | JР | 5249 74/1997 | | | WAVEGUIDE PAIR WITH CLADDING | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | US | 09/091,257 | 6,044,192 | | WAVEGUIDE PAIR WITH CLADDING | | ID0449 | WAVEGUIDE PAIR WITH
CLADDING | wo | PCT/GB97/00040 | | Nat'l Phase
Filed | WAVEGUIDE PAIR WITH CLADDING | | ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | CA | 2,211,244 | | | OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS | | ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | GB | 9715185.6 | 2 316 185 | | MANUFACTURE OF PLANAR WAVEGUIDE
COMPONENTS WITH DISPERSIVE ELEMENTS AND
FINE LOCAL REF. INDEXCON. | |
ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | JP | 209343/97 | | | MANUFACTURE OF PLANAR WAVEGUIDE
COMPONENTS WITH DISPERSIVE ELEMENTS AND
FINE LOCAL REF. INDEXCON. | | ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | US | 08/896,092 | 6,115,518 | | OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | CA | 2,282,939 | | | OPTICAL EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | DE | 99306728.9 | 699 01
419.0 | | OPTICAL GAIN EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | EP | 99306728.9 | 1 009 078 | Nat'l Phase
Filed | OPTICAL GAIN EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | FR | 99306728.9 | 1 009 078 | | OPTICAL GAIN EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | GB | 99306728.9 | 1 009 078 | | OPTICAL GAIN EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | IT | 99306728.9 | 1 009 078 | | OPTICAL GAIN EQUALIZER | | ID0997 | SERIAL FILTERING FOR
WAVELENGTH FLATTENING
OF E.D.F.A. | US | 09/209,387 | 6,321,000 | | OPTICAL EQUALIZER | | ID8550 | OPTICAL FIBRES | GB | 8230675 | 2 129 152 | | OPTICAL FIBRES | | They see | निवस्य भागः चित्रः, | 30 4 | े किंदिलाहरू.
- | ित्रको देश | अंगे अंग्रेस | Application of | |----------|--|------|--------------------|-------------|--------------|---| | ID9170 | BEAM SPLITTER/COMBERS | CA | 500,513 | 1,288,267 | | BEAM SPLITTER/COMBERS | | ID9170 | BEAM SPLITTER/COMBERS | GB | 850 3506 | 2 170 920 | | BEAM SPLITTER/COMBERS | | ID9170 | BEAM SPLITTER/COMBERS | US | 06/819,125 | 4,756,589 | | BEAM SPLITTER/COMBERS | | ID9441 | DIRECTIONAL COUPLER | DE | 378 25 37.2 | 378 25 37.2 | | DIRECTIONAL COUPLER | | ID9441 | DIRECTIONAL COUPLER | FR | 87302418.6 | 0 246 737 | | DIRECTIONAL COUPLER | | ID9441 | DIRECTIONAL COUPLER | GB | 8612660 | 2 190 762 | | DIRECTIONAL COUPLER | | ID9441 | DIRECTIONAL COUPLER | JP | 118687/87 | 2022576 | | DIRECTIONAL COUPLER | | ID9441 | DIRECTIONAL COUPLER | US | 07/032,783 | 4,801,185 | | DIRECTIONAL COUPLER | | ID9579 | GLASS CLAD OPTICAL FIBRE DIRECTIONAL COUPLERS | GB | 8716382 | 2 207 254 | | GLASS CLAD OPTICAL FIBRE DIRECTIONAL
COUPLERS | | ID9730 | DOPED ELEMENTS | GB | 8820848.3 | 2 222 400 | | DOPED ELEMENTS | | ID9758 | "OPTICAL WAVEGUIDE
TAPER HAVING CORE,
INTERLAYER AND
CLADDING" | GB | 8926061.6 | 2 238 396 | | "OPTICAL WAVEGUIDE TAPER HAVING CORE,
INTERLAYER AND CLADDING" | | RO2922 | POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION | US | 08/329,923 | 5,488,679 | | POLARIZATION INDEPENDENT WAVELENGTH
TUNABLE FILTER BASED ONBIREFRINGENCE
COMPENSATION | **RECORDED: 01/28/2003**.