О2-18- FORM PTO-1595 RECO (Rev. 6-93)	R SHEET U.S. DEPARTMENT OF COMMERCE Patent and Trademark Office
	2239
To The Commissioner of Patents and Trademarks: Please	e record the attached original documents or copy thereof.
1. Name of conveying party(ies): $2.13.04$	2. Name and address of receiving party(ies):
Laser Technology, Inc.	Name:
7070 South Tucson Way	Kama-Tech Corporation
Centennial, Colorado 80112	739 Design Court, Suite 503
Additional name(s) of conveying party(ies) attached? Yes X No	Chula Vista, California 91911
3. Nature of conveyance:	
Assignment Merger X Security Agreement Change of Name Other -	Additional name(s) & address(es) attached? Yes <u>X</u> No
Change of address	
Execution Date: 16 January 2004/20 January 20	
4. Application number(s) or patent number(s):	PR. EB
If this document is being filed together with a new applica	ation, the execution date of the application is: $\frac{1}{2}$
A. Patent Application No.(s) 09/883,677	B. Patent No.(s)
Additional numbers attached? Yes X	_No
 Name and address of party to whom correspondence concerning document should k mailed: 	6. Total number of applications and patents involved: <u>1</u>
Name: Lawrence A. Maxham	7. Total fee (37 C.F.R. 3.41)\$40.00
Street Address: THE MAXHAM FIRM	-
Symphony Towers, 750 "B" Street, Suite 3100	X Enclosed Authorized to be charged to deposit account
City: <u>San Diego,</u> State: <u>CA</u> Zip: <u>92101-81</u>	96 8. Deposit account number(for credit or extra
17/2004 BBYRNE 00000115 09883677	charge):
F0=8021 40.00 DP	02-0460 (Attached duplicate copy of this page if paying by deposit account)
DO NOT	USE THIS SPACE
copy is a true copy of the original document. Lawrence A. Maxham	pregoing information is true and correct and any attached
Total number of pages including cover sheet, attach	
	vith required cover sheet information to:

MAIL STOP: ASSIGNMENT RECORDATION SERVICES, DIRECTOR OF THE U.S. PATENT AND TRADEMARK OFFICE, P.O. BOX 1450, ALEXANDRIA, VA 22313-1450

SECURITY AGREEMENT PATENTS

WHEREAS, Laser Technology, Inc., a Delaware corporation (the "Debtor") with its principal place of business at 7070 South Tucson Way, Centennial, Colorado 80112, is the owner of all rights, title and interest in and to the following issued patents, patent applications, and applications in process, U.S. and foreign, all collectively referred to as the "Patents":

Patent No.	Issue Date	Title	Inventors
D390,483	02/10/98	COMPACT LASER-BASED	Dunne et al.
		DISTANCE MEASURING	
		EQUIPMENT	
5,291,262	03/01/94	LASER SURVEYING INSTRUMENT	Dunne
5,359,404	10/25/94	LASER-BASED SPEED MEASURING	Dunne
		DEVICE	
5,521,696	05/28/96	LASER-BASED SPEED MEASURING	Dunne
		DEVICE	
5,528,518	06/18/96	SYSTEM AND METHOD FOR	Bradshaw et al.
		COLLECTING DATA USED TO	
		FORM A GEOGRAPHIC	
		INFORMATION SYSTEM	
		DATABASE	
5,539,513	07/23/96	SYSTEM AND ASSOCIATED	Dunne
		METHOD FOR DETERMINING AND	
		TRANSMITTING POSITIONAL	
		DATA UTILIZING OPTICAL	
		SIGNALS	
5,574,552	11/12/96	SELF-CALIBRATING PRECISION	Dunne
		TIMING CIRCUIT AND METHOD	
		FOR A LASER RANGE FINDER	
5,612,779	03/18/97	AUTOMATIC NOISE THRESHOLD	Dunne
		DETERMINING CIRCUIT AND	
		METHOD FOR A LASER RANGE	
		FINDER	
5,617,199	04/01/97	DEVICE, AND ASSOCIATED	Dunne
		METHOD, FOR DETERMINING	
		DISTANCES BETWEEN MOVING	
		OBJECTS	

Issued U.S. Patents

5,652,651	07/19/97	LASER RANGE FINDER HAVING	Dunne	
		SELECTABLE TARGET		
		ACQUISITION CHARACTERISTICS		
		AND RANGE MEASURING		
		PRECISION		
5,696,705	12/09/97	SYSTEM AND METHOD FOR	Zykan	
, ,		RECONSTRUCTION OF THE	-	
		POSITION OF OBJECTS UTILIZING		
		A SIGNAL TRANSMITTING AND		
		RECEIVING DISTANCE		
	1	DETERMINING DEVICE		
5,703,678	12/30/97	SELF-CALIBRATING PRECISION	Dunne	
-,,		TIMING CIRCUIT AND METHOD		
		FOR A LASER RANGE FINDER		
5,715,045	02/03/98	COUNTERMEASURE DETECTING	Dunne	
<i>c</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CIRCUIT, AND ASSOCIATED		
		METHOD, FOR A LASER SPEED		
		DETECTING APPARATUS		
5,780,999	07/14/98	VOLTAGE CONVERSION CIRCUIT	Dunne	
5,700,222	0//1////	FOR A LASER BASED DISTANCE		
		MEASUREMENT AND RANGING		
		INSTRUMENT		
5,781,147	07/14/98	FOG PIERCING RANGING	Dunne et al.	
5,701,147	0//14/00	APPARATUS AND METHOD	Dunne et un	
5,790,244	08/04/98	PRE-BIASING TECHNIQUE FOR A	Dunne	
5,720,211	00/01/20	TRANSISTOR BASED AVALANCHE		
		CIRCUIT IN A LASER BASED		
		DISTANCE MEASUREMENT AND		
		RANGING INSTRUMENT		
5,806,020	09/08/98	LASER BASED SPEED AND	Zykan	
2,200,020	0,,00,,00	ACCIDENT RECONSTRUCTION		
		MEASURING APPARATUS AND		
		METHOD		
5,859,693	01/12/99	MODULARIZED LASER-BASED	Dunne et al.	
0,000,000	01/12/22	SURVEY SYSTEM		
5,880,821	03/09/99	SELF-CALIBRATING PRECISION	Dunne	
5,000,021	02/03/22	TIMING CIRCUIT AND METHOD		
		FOR A LASER RANGE FINDER		
5,889,583	03/30/99	DISTANCE MEASUREMENT AND	Dunne	
2,007,202		RANGING INSTRUMENT HAVING		
		A LIGHT EMITTING DIODE-BASED		
		TRANSMITTER		
5,926,260	07/20/99	COMPACT LASER-BASED	Miller et al.	
5,520,200	01120199	DISTANCE MEASURING		
		APPARATUS		
5,938,717	08/17/99	SPEED DETECTION AND IMAGE	Andrews et al.	
5,750,717	00/1//99	SPEED DETECTION AND IMAGE	Andrews et al.	

<u> </u>		CAPTURE SYSTEM FOR MOVING	
		VEHICLES	
5,949,529	09/07/99	MODULARIZED LASER-BASED	Dunne et al.
5,549,525	05/07/55	SURVEY SYSTEM	D'unité et ui.
6,043,868	03/28/00	DISTANCE MEASUREMENT AND	Dunne
0,045,000	03/20/00	RANGING INSTRUMENT HAVING	Dunne
		A LIGHT EMITTING DIODE-BASED	
		TRANSMITTER	
6,055,490	04/25/00	APPARATUS AND METHOD FOR	Dunne
0,000,400	0-4/25/00	DETERMINING PRECISION	Dunne
		REFLECTIVITY OF HIGHWAY	
		SIGNS AND OTHER REFLECTIVE	
		OBJECTS UTILIZING AN OPTICAL	
		RANGE FINDER INSTRUMENT	
6,057,777	05/02/00	INDUSTRIAL POSITION SENSOR	Dunne et al.
6,057,910	05/02/00	SELF-CALIBRATING PRECISION	Dunne
0,057,910	03/02/00	TIMING CIRCUIT AND METHOD	Dunne
		FOR A LASER RANGE FINDER	
6 064 220	05/16/00		NGII an at al
6,064,330	05/16/00	FOG PIERCING RANGING	Miller et al.
6.072.252	00/12/00	APPARATUS AND METHOD	77 1- (-1
6,073,352	06/13/00	LASER BOW SIGHT APPARATUS	Zykan et al.
6,144,308	11/07/00	TILT COMPENSATION APPARATUS	Dunne
		AND METHOD FOR USE WITH A	
	Į	MONOPOD MOUNTED LASER	
<u> </u>		RANGE FINDER APPARATUS	
6,212,480	04/03/01	APPARATUS AND METHOD FOR	Dunne
		DETERMINING PRECISION	
		REFLECTIVITY OF HIGHWAY	
		SIGNS AND OTHER REFLECTIVE	
		OBJECTS UTILIZING AN OPTICAL	
< AA < AB		RANGE FINDER INSTRUMENT	
6,226,077	05/01/01	SELF-CALIBRATING PRECISION	Dunne
		TIMING CIRCUIT AND METHOD	
		FOR A LASER RANGE FINDER	
6,282,803	09/04/01	SELF CALIBRATION CIRCUIT FOR	Dunne
		DETERMINING AN ACCURATE	
		ZERO COMPENSATION FOR A	
		FLUXGATE COMPASS	
6,377,186	04/23/02	INDUSTRIAL POSITION SENSOR	Dunne et al.
6,445,444	09/03/02	SELF-CALIBRATING PRECISION	Dunne
		TIMING CIRCUIT AND METHOD	
		FOR A LASER RANGE FINDER	

Pending U.S. Patent Applications

Serial No.	Filing Date	Title	Inventors
09/812,228	03/19/01	COMPACT SPEED	Frischman et al.
		MEASUREMENT SYSTEM WITH	
		ONSITE DIGITAL IMAGE	
		CAPTURE, PROCESSING, AND	
		PORTABLE DISPLAY	
09/883,677	06/18/01	UPPER STEM DIAMETER	Carr et al.
	:	MEASUREMENT AND BASAL	
		AREA DETERMINATION DEVICE	
		AND METHOD FOR	
		UTILIZATION IN TIMBER	
		CRUISING APPLICATIONS	
In process		COMPACT SPEED	Clifford et al.
		MEASUREMENT SYSTEM WITH	
		ONSITE DIGITAL IMAGE	
		CAPTURE, PROCESSING, AND	
		PORTABLE DISPLAY	

Issued Foreign Patents

Country	Patent No.	Issue Date	Title	Inventor
EPO	0,776,458	11/07/01	SYSTEM AND ASSOCIATED	Dunne
			METHOD FOR DETERMINING	
			AND TRANSMITTING	
			POSITIONAL DATA	
			UTILIZING OPTICAL SIGNALS	
Singapore	45,799	08/21/01	DEVICE, AND ASSOCIATE	Dunne
			METHOD, FOR DETERMINING	
			DISTANCES BETWEEN	
			MOVING OBJECTS	
Korea	278,806	10/24/00	LASER RANGE FINDER	Dunne
			HAVING SELECTABLE	
			TARGET ACQUISITION	
			CHARACTERISTICS AND	
			RANGE MEASURING	
			PRECISION	
Australia	690,003	07/23/98	LASER RANGE FINDER	Dunne
			HAVING SELECTABLE	
			TARGET ACQUISITION	
			CHARACTERISTICS AND	
			RANGE MEASURING	
			PRECISION	
Australia	714,599	04/20/00	COUNTERMEASURE	Dunne

		DETECTING CIRCUIT, AND	
		ASSOCIATED METHOD, FOR	
		A LASER SPEED DETECTING	
		APPARATUS	
718,038	07/20/00	HIGH EFFECIENCY VOLTAGE	Dunne
		CONVERSION CIRCUIT FOR A	
		LASER BASED DISTANCE	
		MEASUREMENT AND	
		RANGING INSTRUMENT	
729,572	05/17/01	PRE-BIASING TECHNIQUE	Dunne
		FOR A TRANSISTOR BASED	
		AVALANCHE CIRCUIT	
729,605	05/24/01	LASER BASED SPEED AND	Zykan
		ACCIDENT	
		RECONSTRUCTION	
		MEASURING APPARATUS	
		AND METHOD	
729,740	05/24/01	COMPACT LASER-BASED	Zykan et al.
-		DISTANCE MEASURING	
		EQUIPMENT	
735,001	10/11/01	MODULARIZED LASER-	Dunne et al.
		BASED SURVEY SYSTEM	
	729,572 729,605 729,740	729,572 05/17/01 729,605 05/24/01 729,740 05/24/01	ASSOCIATED METHOD, FOR A LASER SPEED DETECTING APPARATUS718,03807/20/00HIGH EFFECIENCY VOLTAGE CONVERSION CIRCUIT FOR A LASER BASED DISTANCE MEASUREMENT AND RANGING INSTRUMENT729,57205/17/01PRE-BIASING TECHNIQUE

Pending Foreign Patent Applications

Country	Serial No.	Filed	Title	Inventor
Canada	2,203,278	11/29/95	LASER RANGE FINDER	Dunne
Canada	2,254,897	05/13/97	COUNTERMEASURE	Dunne
			DETECTING CIRCUIT, AND	
			ASSOCIATED METHOD, FOR	
			A LASER SPEED DETECTING	
			APPARATUS	
Canada	2,263,853	08/22/97	COMPACT LASER-BASED	Zykan et al.
			DISTANCE MEASURING	
			EQUIPMENT	
Canada	2,263,918	08/21/97	HIGH EFFICIENCY VOLTAGE	Dunne
			COVERSION CIRCUIT FOR A	
			LASER BASED DISTANCE	
			MEASUREMENT AND	
			RANGING INSTRUMENT	
Canada	2,263,920	08/21/97	PRE-BIASING TECHNIQUE	Dunne
			FOR A TRANSISTOR BASED	
			AVALANCHE CIRCUIT	
Canada	2,288,128	04/15/98	LASER BASED SPEED AND	Zykan
			ACCIDENT	
			RECONSTRUCTION	

			MEASURING APPARATUS	
			AND METHOD	
Canada	2,303,843	08/07/98	MODULARIZED LASER-	Zykan et al.
			BASED SURVEY SYSTEM	
Canada	2,330,626	04/28/99	REMOTE SENSOR HEAD FOR	Clifford
			LASER LEVEL	
			MEASUREMENT DEVICES	
Canada	2,330,831	04/28/99	TILT COMPENSATION	Dunne
			APPARATUS AND METHOD	
			FOR USE WITH A MONOPOD	
			MOUNTED LASER RANGE	
			FINDER APPARATUS	
Canada	2,338,647	07/26/99	APPARATUS AND METHOD	Dunne
			FOR DETERMINING	
			PRECISION REFLECTIVITY OF	
			HIGHWAY SIGNS AND OTHER	
			REFLECTIVE OBJECTS	
			UTILIZING AN OPTICAL	
			RANGE FINDER INSTRUMENT	
Australia	35301/99	04/28/99	REMOTE SENSOR HEAD FOR	Clifford
			LASER LEVEL	
			MEASUREMENT DEVICES	
Japan	531812/97	02/20/97	SPEED DETECTION AND	Dunne et al.
			IMAGE CAPTURE SYSTEM	
			FOR MOVING VEHICLES	
EPO	97907861.5	02/20/97	SPEED DETECTION AND	Dunne et al.
			IMAGE CAPTURE SYSTEM	
			FOR MOVING VEHICLES	
EPO	97927619.3	05/13/97	COUNTERMEASURE CIRCUIT	Dunne
			FOR A LASER SPEED	
			DETECTOR	
Malaysia	PI9702073	05/13/97	SPEED DETECTION AND	Dunne et al.
			IMAGE CAPTURE SYSTEM	
			FOR MOVING VEHICLES	
Malaysia	PI9700826	02/28/97	SPEED DETECTION AND	Dunne et al.
			IMAGE CAPTURE SYSTEM	
			FOR MOVING VEHICLES	

WHEREAS, Kama-Tech Corporation, a California corporation ("Secured Party"), with an office located at 739 Design Court, Suite 503, Chula Vista, California 91911, has contemporaneously herewith entered into a Term Loan Agreement with Debtor, whereby Secured Party has loaned and contracted to loan Debtor a certain aggregate sum of money as defined in the Term Loan Agreement; and

WHEREAS, Secured Party desires to obtain a security interest in the Patents in the amounts of money identified in the Term Loan Agreement in the event that such amounts of money are not paid in accordance with the terms of the Term Loan Agreement.

NOW, THEREFORE, in consideration of the mutual promises and covenants set forth hereafter, the parties agree as follows:

1. Debtor hereby grants to Secured Party a security interest in the Patents to secure the payment and other obligations of Debtor to Secured Party as set forth in the Term Loan Agreement (the "Obligation").

2. Subject to its good faith and reasonable judgment, Debtor hereby covenants that it will diligently prosecute all pending and to be filed patent applications, and pay the annuities and maintenance fees required to be paid on a timely basis in order to maintain, and prevent the revocation of, the Patents, which Debtor in its discretion reasonably deems necessary in connection with its business.

3. Subject to its good faith reasonable judgment, Debtor hereby covenants that during the continuation of this security interest it will participate, at its own expense, in any interferences, opppositions, or re-examination proceedings instituted by any third party in connection with the Patents, which Debtor in its discretion reasonably deems necessary in connection with its business.

4. Subject to its good faith reasonable judgment, Debtor covenants that during the continuation of this security interest, it will not disclaim any claims of the

-7-

Patents, or otherwise dedicate the same to the public, except to the extent that Debtor in its discretion reasonable deems such action necessary in connection with its business and in the normal pursuit of claims in any pending patent applications.

5. Debtor warrants that it is the sole owner of the Patents and covenants that the interests transferred herein are not subject to any prior or superior interest, that it is the owner of all rights hereby transferred, and is authorized to make this transfer. Debtor further covenants that during the continuation of this security interest, any sale, assignment, transfer, pledge, license, or other transfer of any interest in the Patents to any third party will be subordinate to the interests conveyed herein.

6. At such time as Debtor shall fail to timely pay the amounts of money identified in the Term Loan Agreement to Secured Party in accordance with the terms of the Term Loan Agreement, Secured Party will be entitled to sell the Patents in a commercially reasonable manner, following notice to Debtor of the date, time, place and manner of sale, given at least thirty days in advance of the sale date. Debtor will have the right, following such notice, to redeem its interest in the Patents by making payment in full of all amounts remaining to be paid under the Term Loan Agreement, together with any attorneys' fees and costs of sale incurred by Secured Party prior to redemption.

7. Concurrent with the execution of this Security Agreement, Secured Party will execute a Release document suitable for recording in the U.S. Patent and Trademark Office to give notice to the public that the security interest has been extinguished. This Release document will be maintained by The Maxham Firm at their offices. Upon timely payment of the amounts due under the Term Loan Agreement, or upon redemption of the security as provided in Paragraph 6 above, Debtor will cause this Release document to be

-8-

recorded. Prior to recording the Release document, The Maxham Firm will confirm with Secured Party that the debts have been paid. The cost of recording this Release document will be borne by Debtor.

8. Debtor authorizes Secured Party, in its sole discretion, without a. notice to Debtor, irrespective of any change in the financial condition of Debtor since the date hereof, and without affecting or impairing in any way the liability of Debtor or Secured Party's right to the Patents hereunder, from time to time (a) create new Obligations, and renew, compromise, extend, accelerate or otherwise change the time for payment of, or otherwise change the terms of any of the Obligations, including any increase or decrease in the rate of interest thereon; (b) take and hold other security for the payment of the Obligations and exchange, enforce, waive or release any such security; (c) apply such security to any of the Obligations and direct the order or manner of sale thereof; (d) purchase such security at public or private sale; (e) otherwise exercise any right or remedy it may have against any such security, including, without limitation, the right to foreclose upon any such security by judicial or non-judicial sale; (f) settle, compromise with, release or substitute any one or more makers, endorsers or guarantors of any of the Obligations.

b. Debtor waives (a) any right to require Secured Party to (i) proceed against or exhaust any security received from other parties, or (ii) pursue any other remedy in Secured Party's power whatsoever; (b) any defense resulting from the absence, impairment or loss of any right of reimbursement or subrogation or other right or remedy of Debtor against any security, whether resulting from an election by Secured Party to foreclose upon security by non-judicial sale, or otherwise; (c) any right to exoneration of

-9-

sureties which would otherwise be applicable; (d) any right of subrogation and, if there are any co-sureties, any right of contribution, any right to enforce any remedy which Secured Party has or may hereafter have, and any benefit of, and any right to participate in, any security now or hereafter received by Secured Party; and (e) all presentments, demands for performance, notices of nonperformance, protests, notices of protest, notices of dishonor and notices of acceptance of the security interest created hereby, except as required by law, and of the existence, creation or incurring of new or additional Obligations.

9. Debtor hereby covenants to notify the Secured Party, within ten (10) days following the end of each calendar quarter, of any material events which have occurred with respect to the Patents, including, without limitation, any events described in Paragraphs 2 through 4 above. Debtor further covenants to execute any additional agreements, assignments, notices, filings, or documents reasonably required by Secured Party to obtain and maintain a perfected security interest in the Patents, and any U.S. or foreign patents issued to Debtor in the future, or to preserve and protect the Secured Party's rights hereunder.

EXECUTED as of 2 January 2004.

Secured Party:

Kama-Tech Corporation, a California corporation

Masaki Kamakura Executive Vice President

Witness

EXECUTED as of <u>///</u> January 2004.

Debtor:

Laser Technology, Inc., a Delaware corporation

By:

David Williams President

Tamle John