PATENT ASSIGNMENT

Electronic Version v1.1 Stylesheet Version v1.1

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT

CONVEYING PARTY DATA

Name	Execution Date
Innovation Management Sciences LLC	04/27/2007

RECEIVING PARTY DATA

Name:	Popkin Family Assets, L.L.C.	
Street Address:	2711 Centerville Road	
Internal Address:	Suite 400	
City:	Wilmington	
State/Country:	DELAWARE	
Postal Code:	19808	

PROPERTY NUMBERS Total: 1

Property Type	Number
Application Number:	08766095

CORRESPONDENCE DATA

Fax Number: (202)371-2540

Correspondence will be sent via US Mail when the fax attempt is unsuccessful.

 Phone:
 (202) 371 2600

 Email:
 gjperry@skgf.com

Correspondent Name: Sterne, Kessler, Goldstein & Fox P.L.L.C

Address Line 1: 1100 New York Avenue, N.W.

Address Line 4: Washington, DISTRICT OF COLUMBIA 20005

ATTORNEY DOCKET NUMBER: 2222.9840001/GJP/SH

NAME OF SUBMITTER: Glenn J. Perry

Total Attachments: 11

source=22229840001Assignment2#page1.tif source=22229840001Assignment2#page2.tif source=22229840001Assignment2#page3.tif

PATENT REEL: 020482 FRAME: 0411

500459585

OP \$40.00 08

source=22229840001Assignment2#page4.tif source=22229840001Assignment2#page5.tif source=22229840001Assignment2#page6.tif source=22229840001Assignment2#page7.tif source=22229840001Assignment2#page8.tif source=22229840001Assignment2#page9.tif source=22229840001Assignment2#page10.tif source=22229840001Assignment2#page11.tif

> PATENT REEL: 020482 FRAME: 0412

ASSIGNMENT OF PATENT RIGHTS

For good and valuable consideration, the receipt of which is hereby acknowledged, Innovation Management Sciences LLC, a California limited liability corporation organized and existing under the laws of California, having its offices at 650 Castro Street, Suite 120-333, Mountain View, CA 94041, ("Assignor"), does hereby sell, assign, transfer, and convey unto Popkin Family Assets, L.L.C., a Delaware limited liability company, having an office at 2711 Centerville Road, Suite 400, Wilmington, DE 19808 ("Assignee"), or its designees all right, title, and interest that exist today and may exist in the future in and to all of the following (collectively, the "Patent Rights"):

- (a) the invention disclosures, provisional patent applications, patent applications and patents listed below (the "Patents");
- (b) all provisional patent applications, patent applications, patents or other governmental grants or issuances (i) to which any of the Patents directly or indirectly claims priority and/or (ii) for which any of the Patents directly or indirectly forms a basis for priority;
- (c) reissues, reexaminations, extensions, continuations, continuing prosecution applications, requests for continuing examinations, and divisions of any item in the foregoing categories (a) and (b);
- (d) foreign patents, patent applications, and counterparts relating to any item in the foregoing categories (a) through (c), including, without limitation, certificates of invention, utility models, industrial design protection, design patent protection, and other governmental grants or issuances;
- (e) items in any of the foregoing in categories (a) through (d), whether or not expressly listed as Patents below and whether or not claims in any of the foregoing have been rejected, withdrawn, cancelled, or the like;
- (f) rights to all inventions, invention disclosures, and discoveries described in any item in the foregoing categories (a) through (e) and all other rights arising out of such inventions, invention disclosures, and discoveries;
- (g) rights to apply in any or all countries of the world for patents, certificates of invention, utility models, industrial design protections, design patent protections, or other governmental grants or issuances of any type related to any item in the foregoing categories (a) through (f), including, without limitation, under the Paris Convention for the Protection of Industrial Property, the International Patent Cooperation Treaty, or any other convention, treaty, agreement, or understanding;
- (h) causes of action (whether currently pending, filed, or otherwise) and other enforcement rights under, or on account of, any of the Patents and/or any item in any of the foregoing categories (a) through (g), including, without limitation, all causes of action and other enforcement rights for

- (i) damages,
- (ii) injunctive relief, and
- (iii) other remedies of any kind

for past, current, and future infringement; and

(i) all rights to collect royalties and other payments under or on account of any of the Patents and/or any item in the foregoing categories (b) through (h).

PATENT NO / APPLICATION NO	COUNTRY	TITLE	FIRST NAMED INVENTOR
6,400,859	us	OPTICAL RING PROTECTION HAVING MATCHED NODES AND ALTERNATE SECONDARY PATH	EVERT DE BOER
6,381,385	US	POLARISATION MODE DISPERSION EMULATION	DANIEL A. WATLEY
6,426,659	US	APPARATUS FOR POWERING DOWN ELECTRONIC CIRCUITS	STEPAN ILIASEVITCH
6,366,390	US	PULSE INTERLEAVER	JONATHAN KING
6,380,644	US	SWITCHING CIRCUITRY PROVIDING IMPROVED SIGNAL PERFORMANCE AT HIGH FREQUENCIES AND METHOD OF OPERATION THEREOF	STEPAN ILIASEVITCH
6,429,638	us	N-DIODE PEAK DETECTOR	MARK WIGHT
6,359,595	us	FLAT PLATE ANTENNA	IAN ABRAHAM
6,356,066	US	VOLTAGE REFERENCE SOURCE	STEPAN ILIASEVITCH
6,418,009	us	BROADBAND MULTI-LAYER CAPACITOR	GILBERT BRUNETTE
6,376,779	US	EMC CONTAINMENT FOR PRINTED CIRCUIT BOARDS	SIMON SHEARMAN
6,373,621	US	METHOD AND APPARATUS FOR SAFER OPERATION OF RAMAN AMPLIFIERS	TIMOTHY LARGE
6,597,490	us	ELECTRICALLY TUNABLE FABRY-PEROT STRUCTURE UTILIZING A DEFORMABLE MULTI-LAYER MIRROR AND	PARVIS TAYEBATI

		METHOD OF MAKING THE SAME	
5,739,945	us	AN ELECTRICALLY TUNABLE OPTICAL FILTER UTILIZING A DEFORMABLE MULTI- LAYER MIRROR	PARVIS TAYEBATI
6,874,949	US	IN-LINE OPTOELECTRONIC DEVICE PACKAGING	MASUD AZIMI
6,390,689	US	IN-LINE OPTOELECTRONIC DEVICE PACKAGING	MASUD AZIMI
6,441,895	US	METHOD AND APPARATUS FOR PRECISION THREE- DIMENSIONAL OPTO- MECHANICAL ASSEMBLY	YAKOV KOGAN
6,384,634	US	ELASTIC STORE: RECOVERY AND BOUNDARY VERIFICATION	PATRICE BRISSETTE
5,734,656	US	METHOD AND APPARATUS FOR DYNAMICALLY ALLOCATING BANDWIDTH ON A TDM BUS	JEFF PRINCE
5,737,334	US	PIPELINE ARCHITECTURE FOR AN ATM SWITCH BACKPLANE BUS	JEFF PRINCE
5,761,084	us	A HIGHLY PROGRAMMABLE BACKUP POWER SCHEME	MICHAEL S. EDWARDS
5,731,960 ,	us	LOW INDUCTANCE DECOUPLING CAPACITOR ARRANGEMENT	LAURIE P. FUNG
6,366,618	US	METHOD AND APPARATUS PROVIDING HIGH QUALITY HIGH LEVEL SIGNALS USING LOW VOLTAGE INTEGRATED CIRCUIT DRIVERS BY SUMMING PARTIAL SIGNAL CURRENTS AND MAGNETOMOTIVE FORCES	LARRY D. MILLER
6,401,130	US	AUTO AGGREGATION METHOD FOR IP PREFIX/LENGTH PAIRS	BRAD CAIN
5,287,214	US	FABRY-PEROT OPTICAL FILTER	ALEXANDER J. ROBERTSON

PATENT REEL: 019605 FRAME: 0028 REEL: 020482 FRAME: 0415

			
5,304,887	US	CRYSTAL RESONATOR DEVICE	RUDOLF A.H. HEINECKE
5,809,010	US	TRIBUTARY PROTECTION SYSTEM	PAUL A. BRUCE
5,781,587	us	CLOCK EXTRACTION CIRCUIT	PAUL BRUCE
5,757,333	us	COMMUNICATIONS ANTENNA STRUCTURE	DEAN KITCHENER
2,153,465	CA	COMMUNICATIONS ANTENNA STRUCTURE	DEAN KITCHENER
5,715,265	us	DISPERSION COMPENSATION	RICHARD E. EPWORTH
2,185,865	CA	DSPERSION COMPENSATION	RICHARD EDWARD EPWORTH
2,305,773	GB	DISPERSION COMPENSATION	RICHARD EDWARD EPWORTH
6,349,090	us	TRAFFIC ROUTING IN A TELECOMMUNICATIONS NETWORK	KEVIN LEWIS
0 852 862	FR	TRAFFIC ROUTING IN A TELECOMMUNICATIONS NETWORK	KEVIN LEWIS
69627677.1	DE	TRAFFIC ROUTING IN A TELECOMMUNICATIONS NETWORK	KEVIN LEWIS
5,777,773	US	OPTICAL FREQUENCY CONTROL SYSTEM AND METHOD	RICHARD EPWORTH
9-311469	JP	SYSTEM AND METHOD FOR CONTROLLING LASER FREQUENCY AND SYSTEM AND METHOD FOR PROCESSING SIGNAL	RICHARD EDWARD EPWORTH
5,717,799	US	OPTICAL WAVEGUIDE FILTERS	ALAN ROBINSON
2,262,681	CA	OPTICAL WAVEGUIDE FILTERS	ALAN ROBINSON
6,438,110	US	RESERVATION OF CONNECTIONS IN A COMMUNICATIONS	SUMAN RAI

		NETWORK	
6,411,665	US	PHASE LOCKED LOOP CLOCK EXTRACTION	JOSEPH CHAN
6,370,437	US	DYNAMIC PREDICTION FOR PROCESS CONTROL	MALCOLM EDWARD CARTER
5,311,005	US	OPTICAL TRANSMITTERS	PASQUALINO VISOCCHI
5,287,366	US	BINARY MODULATION OF INJECTION LASERS	RICHARD E. EPWORTH
5,345,498	US	MOBILE COMMUNICATIONS SYSTEMS AND INTERCONNECTIONS STRATEGIES FOR USE BETWEEN NETWORKS AND DIFFERENT TARIFFS OF SUCH SYSTEMS	ROY H. MAUGER
2,044,436	CA	MOBILE COMMUNICATIONS	ROY HAROLD MAUGER
5,384,775	US	APPARATUS FOR, AND METHOD OF, PACKING AND UNPACKING INFORMATION IN TRANSMISSION LINES	THOMAS C. SHEPPARD
6,381,249	us	TANDEM PASS THROUGH IN A SWITCHED CALL	CHRISTINA KWOK- HAN CHAN
5,291,487	US	APPARATUS FOR, AND METHOD OF, PACKING AND UNPACKING INFORMATION IN TRANSMISSION LINES	THOMAS C. SHEPPARD
69229571.2	DE	APPARATUS FOR, AND METHOD OF, PACKING AND UNPACKING INFORMATION IN TRANSMISSION LINES	THOMAS C. SHEPPARD
0 496 428	FR	APPARATUS FOR, AND METHOD OF, PACKING AND UNPACKING INFORMATION IN TRANSMISSION LINES	THOMAS C. SHEPPARD
0 496 428	GB	APPARATUS FOR, AND METHOD OF, PACKING AND UNPACKING INFORMATION IN TRANSMISSION LINES	THOMAS C. SHEPPARD
5,734,299	US	MICROWAVE VCO HAVING REDUCED SUPPLY VOLTAGE	ANTHONY K. D. BROWN

PATENT REEL: 01960**5 PRAME**: 0030 REEL: 020482 FRAME: 0417

09200599	JP	TRANSCONDUCTANCE AMPLIFIER AND VOLTAGE- CONTROLLED OSCILLATOR	ANTHONY KEVIN DALE BROWN
5,734,284	US	RC CIRCUIT	PETRE POPESCU
5,715,145	US	ELECTRONIC CIRCUIT PACKS AND MOUNTING FRAMES	ERIC H. WONG
2,253,000	CA	SEARCH OPTIMIZATION SYSTEM AND METHOD FOR CONTINUOUS SPEECH RECOGNITION	JEAN-FRANCOIS CRESPO
6,373,847	US	COMPUTER TELEPHONY INTEGRATION SERVER WITH DIAL-UP NETWORK ACCESS	SHWU-CHANG SCOGGINS
2,253,735	CA	COMPUTER TELEPHONE INTEGRATION SERVER WITH DIAL-UP NETWORK ACCESS	SHWU-YAN CHANG SCOGGINS
5,285,527	US	PREDICTIVE HISTORICAL CACHE MEMORY	WILLIAM R. CRICK
5,333,192	US	LINE INTERFACE CIRCUIT	DONALD S. MCGINN
5,315,176	US	DIFFERENTIAL ECL CIRCUIT	PETRE POPESCU
5,287,024	US	FET BIDIRECTIONAL SWITCHING ARRANGEMENTS AND METHODS FOR PREVENTING PN JUNCTIONS OF FETS FROM BEING FORWARD-BIASED	DOUGLAS C. WADSWORTH
5,329,252	US	SLEW-RATE LIMITED VOLTAGE CONTROLLED OSCILLATOR CONTROL VOLTAGE CLAMP CIRCUIT	CLAUDE L. MAJOR
5,283,707	US	INRUSH CURRENT LIMITING CIRCUIT	CHRISTOPHER R. CONNERS
5,506,869	US	METHODS AND APPARATUS FOR ESTIMATING CARRIER- TO-INTERFERENCE RATIOS AT CELLULAR RADIO BASE STATIONS	CLAUDE ROYER
5,745,564	US	ECHO CANCELLING	QUENTIN J. MEEK

PATENT REEL: 019605 PRAME: 0031 REEL: 020482 FRAME: 0418

		ARRANGEMENT	
2,205,926	CA	ECHO CANCELLING ARRANGEMENTS	QUENTIN JAMES MEEK
687661	AU	ADAPTATION CONTROL FOR ECHO CANCELLER	QUENTIN JAMES MEEK
0 806 093	FR	ADAPTATION CONTROL FOR ECHO CANCELLER	QUENTIN JAMES MEEK
0 806 093	GB	ADAPTATION CONTROL FOR ECHO CANCELLER	QUENTIN JAMES MEEK
696 00 919.6	DE	ADAPTATION CONTROL FOR ECHO CANCELLER	QUENTIN JAMES MEEK
5,770,971	US	DISTORTION COMPENSATION CONTROL FOR A POWER AMPLIFIER	JOHN D. MCNICOL
5,751,190	US	GAIN-CONTROLLED AMPLIFIER AND DISTRIBUTED AMPLIFIER	THE L. NGUYEN
5,777,846	US	CIRCUIT PACKS AND CIRCUIT PACK AND SHELF ASSEMBLIES	HASLER R. HAYES
5,721,670	US	ELECTRONIC EQUIPMENT HAVING AIR FLOW COOLING PASSAGES	PAUL D. COCHRANE
5,769,644	US	SHELF FOR HOUSING PRINTED CIRCUIT BOARDS	RICHARD G. MURPHY
5,770,320	US	ASSEMBLING SHEET METAL MEMBERS	RICHARD P.HUGHES
5,777,841	US	METHOD OF QUALIFICATION TESTING OF DC-DC CONVERTERS	KEVIN PATRICK STONE
5,761,612	us	WIRELESS RECEIVER	CLIFFORD D. READ
2,185,864	CA	WIRELESS RECEIVER	CLIFFORD D. READ
6,404,735	us	METHODS AND APPARATUS FOR DISTRIBUTED CONTROL OF A MULTI- CLASS NETWORK	MAGED E. BESHAI
6,404,767	US	ARCHITECTURE FOR ABR PROCESSING WITHIN AN	GARY MICHAEL DEPELTEAU

PATENT REEL: 01960 PATAME: 0032 REEL: 020482 FRAME: 0419

		ATM SWITCH	
6,374,294	US	METHOD AND APPARATUS FOR NEGATING INVALID NETWORKING ADDRESSES	ALAN RICHARD QUIRT
6,393,590	US	METHOD AND APPARATUS FOR ENSURING PROPER FUNCTIONALITY OF A SHARED MEMORY, MULTIPROCESSOR SYSTEM	BARRY EVERETT WOOD
6,167,271	US	INTERFACE BETWEEN CELLULAR AND WIRED NETWORKS WITH ENHANCED SUBSCRIBER MOBILITY	JERRY JOE PARKER
6,374,110	us	GSM WIRED ACCESS	JERRY PARKER
5,983,109	US	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN CELLULAR COMMUNICATIONS NETWORKS	ALEXANDER JOHN MONTOYA
6,400,943	us	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN CELLULAR COMMUNICATION NETWORKS	ALEXANDER JOHN MONTOYA
524546	SE	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN CELLULAR COMMUNICATION NETWORKS	ALEXANDER JOHN MONTOYA
2,228,580	CA	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN CELLULAR COMMUNICATION NETWORKS	ALEXANDER JOHN MONTOYA
2,328,585	GB	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN CELLULAR COMMUNICATION NETWORKS	ALEXANDER JOHN MONTOYA
0 801 221	FR	METHOD AND APPARATUS FOR USING ADVANCED POSITIONING SYSTEMS IN	ALEXANDER JOHN MONTOYA

PATENT REEL: 019605 ARAME: 0033 REEL: 020482 FRAME: 0420

			
		CELLULAR COMMUNICATION NETWORKS	
6,381,634	US	APPARATUS AND METHOD FOR ELECTRONIC MAIL ADDRESS PORTABILITY	ANTONIO G. TELLO
6,421,333	US	CHANNEL CODING AND INTERLEAVING FOR TRANSMISSION ON A MULTI- CARRIER SYSTEM	AHMAD JALALI
1100550.1	НК	CHANNEL CODING AND INTERLEAVING FOR TRANSMISSION ON A MULTI- CARRIER SYSTEM	AHMAD JALALI
6,393,288	US	METHOD OF IDENTIFYING MOBILE STATION LOCATION TO ESTABLISH HOMEZONE FEATURE	PATRICK N. SOLLEE
6,360,094	US	METHOD FOR LOCATING ANTENNA PROBLEMS IN A CELLULAR COMMUNICATIONS NETWORK	PRASANNA JAYARAJ SATARASINGHE
6,370,654	US	METHOD AND APPARATUS TO EXTEND THE FAULT- TOLERANT ABILITIES OF A NODE	ALBERT G. LAW
6,366,780	US	REAL-TIME SPECTRUM USAGE DATA COLLECTION IN A WIRELESS COMMUNICATION SYSTEM	PREM A. OBHAN
6,396,921	US	METHOD AND SYSTEM FOR ENCODING AND DECODING TYPOGRAPHIC CHARACTERS	GARY LONGSTER
5,768,365	US	CIRCUIT SENSING TELEPHONE LINE CONDITIONS	RYSZARD KURDZIEL
5,768,367	US	METHOD AND APPARATUS FOR REMOVING FSK IN- BAND SIGNALING	DAVID JEFFREY WESTERGAARD
6,366,654	us	METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL	SETH WHITNEY CRAMER

PATENT REEL: 01960**8 ARAME**: 0034

REEL: 019008 FRAME: 0034
REEL: 020482 FRAME: 0421

		· .
DE	METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL	SETH WHITNEY CRAMER
FR	METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL	SETH WHITNEY CRAMER
GB	METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL	SETH WHITNEY CRAMER
US	HIGH AVAILABILITY ASYNCHRONOUS COMPUTER SYSTEM	RUTH BEYERLEIN
US	CHARGE PUMP CIRCUIT	WILLIAM BEREZA
US	GAIN-CONTROLLED AMPLIFIER AND AUTOMATIC GAIN CONTROL AMPLIFIER USING GCLBT	M. JAMAL DEEN
US	PROTECTIVE PLASTIC PACKAGE FOR PRINTED CIRCUIT BOARDS	BIAGIO ARSENA
us	SEARCH OPTIMIZATION FOR CONTINUOUS SPEECH RECOGNITION	JEAN-FRANCOIS CRESPO
US	SPATIALLY-ORIENTED SUBSCRIBER CONFIGURATION IN A FIXED WIRELESS SYSTEM	CHU-RUI CHANG
	FR GB US US US	CONDUCTING A MULTIMEDIA PHONE CALL FR METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL GB METHOD AND SYSTEM FOR CONDUCTING A MULTIMEDIA PHONE CALL US HIGH AVAILABILITY ASYNCHRONOUS COMPUTER SYSTEM US CHARGE PUMP CIRCUIT US GAIN-CONTROLLED AMPLIFIER AND AUTOMATIC GAIN CONTROL AMPLIFIER USING GCLBT US PROTECTIVE PLASTIC PACKAGE FOR PRINTED CIRCUIT BOARDS US SEARCH OPTIMIZATION FOR CONTINUOUS SPEECH RECOGNITION US SPATIALLY-ORIENTED SUBSCRIBER CONFIGURATION IN A FIXED

Assignor represents, warrants and covenants that:

- (1) Assignor has the full power and authority, and has obtained all third party consents, approvals and/or other authorizations required to enter into this Agreement and to carry out its obligations hereunder, including the assignment of the Patent Rights to Assignee; and
- (2) Assignor owns, and by this document assigns to Assignee, all right, title, and interest to the Patent Rights, including, without limitation, all right, title, and interest to sue for infringement of the Patent Rights. Assignor has obtained and properly recorded previously executed assignments for the Patent Rights as necessary to fully perfect its rights and title therein in accordance with governing law and regulations in each respective jurisdiction. The Patent Rights are free and clear of all liens, claims, mortgages, security interests or other encumbrances, and restrictions. There are no actions, suits, investigations, claims or proceedings threatened, pending or in progress relating in any way to the Patent Rights. There are no existing contracts, agreements, options, commitments, proposals, bids, offers, or rights with, to, or in any person to acquire any of the Patent Rights.

PATENT REEL: 01960 PARAME: 0035 REEL: 020482 FRAME: 0422 Assignor hereby authorizes the respective patent office or governmental agency in each jurisdiction to issue any and all patents, certificates of invention, utility models or other governmental grants or issuances that may be granted upon any of the Patent Rights in the name of Assignee, as the assignee to the entire interest therein.

Assignor will, at the reasonable request of Assignee and without demanding any further consideration therefor, do all things necessary, proper, or advisable, including without limitation, the execution, acknowledgment, and recordation of specific assignments, oaths, declarations, and other documents on a country-by-country basis, to assist Assignee in obtaining, perfecting, sustaining, and/or enforcing the Patent Rights. Such assistance will include providing, and obtaining from the respective inventors, prompt production of pertinent facts and documents, giving of testimony, execution of petitions, oaths, powers of attorney, specifications, declarations or other papers, and other assistance reasonably necessary for filing patent applications, complying with any duty of disclosure, and conducting prosecution, reexamination, reissue, interference or other priority proceedings, opposition proceedings, cancellation proceedings, public use proceedings, infringement or other court actions and the like with respect to the Patent Rights. With prior written approval by Assignee, Assignee will pay Assignor's reasonable costs and expenses.

The terms and conditions of this Assignment of Patent Rights will inure to the benefit of Assignee, its successors, assigns, and other legal representatives and will be binding upon Assignor, its successors, assigns, and other legal representatives.

RECORDED: 02/08/2008