PATENT ASSIGNMENT

Electronic Version v1.1 Stylesheet Version v1.1

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT

CONVEYING PARTY DATA

Name	Execution Date
Ircon, Inc.	07/14/2008

RECEIVING PARTY DATA

Name:	Fluke Corporation
Street Address:	P.O. Box 9090
City:	Everett
State/Country:	WASHINGTON
Postal Code:	98206

PROPERTY NUMBERS Total: 1

Property Type	Number
Patent Number:	5144122

CORRESPONDENCE DATA

Fax Number: (312)474-0448

Correspondence will be sent via US Mail when the fax attempt is unsuccessful.

Phone: 312-474-6801

Email: rvascik@marshallip.com

Correspondent Name: Randall G. Rueth

Address Line 1: 233 S. Wacker Drive, Suite 6300

Address Line 4: Chicago, ILLINOIS 60606

ATTORNEY DOCKET NUMBER: 29123/10010

Randall G. Rueth

NAME OF SUBMITTER: **Total Attachments: 3**

source=Ircon Assignment#page1.tif source=Ircon Assignment#page2.tif source=Ircon Assignment#page3.tif

> **PATENT REEL: 021266 FRAME: 0382**

500599315

ASSIGNMENT

This assignment ("Assignment") is by and between IRCON, Inc., located at 7300 North Natchez Avenue, Niles, IL 60714 ("Assignor") and Fluke Corporation, located at PO Box 9090, Everett, WA 98206 ("Assignee") and is effective as of the date signed below ("Effective Date").

For good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, Assignor hereby sells, assigns, transfers and sets over to Assignee, the entire right, title and interest in and to the patents and patent applications listed on the attached Exhibit A ("Patent Rights"), all U.S. and foreign applications claiming priority thereto, including provisionals, continuations, continuations-in-part and divisionals, all patents issuing therefrom, including any reexaminations and reissues as well as term extensions of and supplementary protection certificates on any of the foregoing for the United States and all other countries, for Assignee's own use and enjoyment, and for the use and enjoyment of its successors, assigns or other legal representatives, as fully and entirely as the same would have been held and enjoyed by Assignor if this Assignment and sale had not been made; together with all income, royalties, damages or payments due or payable as of the Effective Date or thereafter, including, without limitation, all claims for damages by reason of past, present or future infringement or other unauthorized use of the Patent Rights, with the right to sue for, and collect the same for its own use and enjoyment, and for the use and enjoyment of its successors, assigns, or other legal representatives.

Assignor executes and delivers this Assignment by its signatory below.

James M. Rupp, Assistant Secretary

14 July 2008 Date

STATE OF <u>Mashing ton</u>) SS.
COUNTY OF <u>Snohomish</u>)

On this 4th day of ______, 2008, there appeared before me James M. Rupp, known to me, who stated he signed this Assignment as a voluntary act and deed.

Sandra K. Darling Notary Public

1

PATENT REEL: 021266 FRAME: 0383

Exhibit A

Patent Rights

Granted Patents

Title	Patent No.	Jurisdiction
Measuring Apparatus	3,973,122	
Infrared Thermometer With Fiber Optic Remote	4,919,505	
Pickup	,	
Infrared Thermometer With Fiber Optic Remote	JP 3505255	Japan
Pickup		•
Method of Using Infrared Thermometer With	5,011,296	United States
Remote Fiber Optic Pickup		
Scanning Infrared Temperature Sensor With	5,085,525	United States
Sighting Apparatus		
Scanning Infrared Thermometer With DC Offset	5,094,544	United States
and Emissivity Correction		
Scanning Radiation Sensor With Automatic Focus	5,144,122	United States
Control For Optimal Focus and Method		11
Scanning Radiation Sensor For Multiple Spots and	5,173,868	United States
Apparatus and Method of Averaging Radiation		111
Samples of Same		1.
Autocalibrating Dual Sensor Non-Contact	5,216,625	United States
Temperature Measuring Device		194
Autocalibrating Dual Sensor Non-Contact	5,294,200	United States
Temperature Measuring Device		
Autocalibrating Dual Sensor Non-Contact	JP 2033311	Japan
Temperature Measuring Device		-
Autocalibrating Dual Sensor Non-Contact	JP 3292523	Japan
Temperature Measuring Device		•
Autocalibrating Non-Contact Temperature	5,464,284	United States
Measuring Technique Employing Dual Recessed		
Heat Flow Sensors		
Autocalibrating Non-Contact Temperature	EP 563489	EPO: France,
Measuring Technique Employing Dual Recessed		Germany, UK, Italy
Heat Flow Sensors		•
Non-Contacting Infrared Temperature	5,653,537	United States
Thermometer Detector Apparatus	To add the second	
Window Contamination Detector	5,812,270	United States
Apparatus and Method of Sensing the Temperature	6,837,616	United States
of a Molten Metal Vehicle		
Air Purge System for Optical Sensor	6,890,080	United States
Method and Apparatus for Obtaining a		United States
Temperature Measurement Using an InGaAs	, ,	
Detector		

2

PATENT REEL: 021266 FRAME: 0384

Pending Patent Applications

Title	Appl. No.	Filing Date	Jurisdiction
Air Purge System for Optical Sensor	3734994.1	1/24/2003	Europe
An Improved Method and Apparatus for	11/697,167	4/5/07	United States
Analyzing Thermographic Images to Detect			
Defects in Thermally Sealed Packaging			
Method and Apparatus for Capturing and	11/243,258	10/4/2005	United States
Analyzing Thermographic Images of a		•	
Moving Object			
Method and Apparatus for Capturing and	80011697.6	2/13/06	China
Analyzing Thermographic Images of a			
Moving Object			
Method and Apparatus for Capturing and	722036.1	2/13/06	Great Britain
Analyzing Thermographic Images of a			
Moving Object			
Method and Apparatus for Monitoring and	11/159,871	6/23/2005	United States
Detecting Defects in Plastic Package Sealing			
Method and Apparatus for Monitoring and	80028565.X	6/23/2005	China
Detecting Defects in Plastic Package Sealing			
Method and Apparatus for Monitoring and	5762699.8	6/23/05	Europe
Detecting Defects in Plastic Package Sealing			
Method and Apparatus for Monitoring and	307CHENP07	6/23/05	India
Detecting Defects in Plastic Package Sealing	0000000		
Method and Apparatus for Monitoring and	2007518263	6/23/05	Japan
Detecting Defects in Plastic Package Sealing	7.7001.700		
Method and Apparatus for Monitoring and	7-7001758	6/23/05	South Korea
Detecting Defects in Plastic Package Sealing	11/01/ 414	10/17/0004	
Method and Device for Normalizing	11/016,414	12/17/2004	United States
Temperature Variations	(0/040 (/2	7/0/2007	•••
Optical Multiwavelength Window	60/948,662	7/9/2007	United States
Contamination Monitor for Optical Control			
Sensors and Systems System and Method of Providing a	60/946,653	(107/07	TI : I G
Thermally Stabilized Fixed Frequency	00/940,033	6/27/07	United States
Piezoelectric Optical Modulator			
r rezociectife Optical Modulator			

3

PATENT REEL: 021266 FRAME: 0385