PATENT ASSIGNMENT

Electronic Version v1.1 Stylesheet Version v1.1

SUBMISSION TYPE: NEW ASSIGNMENT

NATURE OF CONVEYANCE: **ASSIGNMENT**

CONVEYING PARTY DATA

Name	Execution Date
Cybernet Systems Corporation	02/22/1999

RECEIVING PARTY DATA

Name:	Cybernet Haptic Systems Corporation	
Street Address:	727 Airport Blvd	
City:	Ann Arbor	
State/Country:	MICHIGAN	
Postal Code:	48108	

PROPERTY NUMBERS Total: 5

Property Type	Number
Patent Number:	6104158
Patent Number:	6801008
Patent Number:	7345672
Patent Number:	6374255
Application Number:	11699116

CORRESPONDENCE DATA

501185978

(703)992-0896 Fax Number:

Correspondence will be sent via US Mail when the fax attempt is unsuccessful.

703-992-0895 Phone:

Email: tmedler@medlerferro.com

Teresa U. Medler Correspondent Name: Address Line 1: 8607 Rockdale Lane

Address Line 4: Springfield, VIRGINIA 22153

ATTORNEY DOCKET NUMBER: IMM G2

NAME OF SUBMITTER: Teresa U. Medler

PATENT

REEL: 024434 FRAME: 0058

Total Attachments: 5

source=Assignment Document Cybernet Systems Corp to Cybernet Haptic Systems#page1.tif source=Assignment Document Cybernet Systems Corp to Cybernet Haptic Systems#page2.tif source=Assignment Document Cybernet Systems Corp to Cybernet Haptic Systems#page3.tif source=Assignment Document Cybernet Systems Corp to Cybernet Haptic Systems#page4.tif source=Assignment Document Cybernet Systems Corp to Cybernet Haptic Systems#page5.tif

PATENT REEL: 024434 FRAME: 0059

BILL OF SALE AND ASSIGNMENT

FOR GOOD AND VALUABLE CONSIDERATION, as set forth herein, the receipt of which is hereby acknowledged, the undersigned, as Seller, does hereby grant, bargain, sell, assign, transfer and deliver to the Buyer, Cybernet Haptic Systems Corporation, a Michigan corporation, all of Seller's right, title and interest in and to the tangible and intangible personal property listed on the attached Exhibit A. Seller also hereby warrants title to the same to have and to hold the same unto the Buyer, its successors and assigns forever, free, clear and discharged of all former grants, charges, taxes, judgments, mortgages, liens and encumbrances of whatever nature.

IN WITNESS WHEREOF, the undersigned has executed this instrument this 22day of

rebruary, 199

WITNESSES:

SELLER:

CYBERNET SYSTEMS CORPORATION

By:

Its: PRESIDENT

S:\287\CYBERNET\BO\$

Exhibit A List of Assets

US Patents

Number

Issued

5,389,865

Feb 14, 1995 Method and System for Providing A Tactile

Virtual Reality and Manipulator Defining An

Interface Device Therefore

Inventors: C. Jacobus, A. Riggs, M. Taylor

Claims method and device structure allowing general purpose force feedback user input devices, like joysticks, from computer simulations. This patent describes the elements of Cybernet's original force feedback device. Innovations include:

Peak Force/Power Management

Intelligent deadman's functions (software, communications failure checking as well as user input)

Basic force feedback software systems architecture (how one structures a reactive servo system into layers, how one defines and instantiates special effects or geometrical objects in an general purposed, extensible way

Device geometry (kinematic chain) for a pistol grip sidearm stick Some design approaches for gravity compensation

Number

Issued

(Continuation of above)

5,459,382

Oct 17, 1995

Method and System for Providing A Tactile Virtual Reality and Manipulator Defining An

Interface Device Therefore

Inventors: C. Jacobus, A. Riggs, M. Taylor

Claims the enabling software method and architecture for 5,389,865. This patent has been re-examined by the Patent Office in 1997, has been restricted in a positive way and has passed the re-examination. Re-examination certificate has issued. As a continuation, the disclosure is the same as above. Claims are structured to emphasize software architecture needed to provide generalized reactive servo system composed of active objects (which define behaviors of surfaces, 3D objects, and temporal effects). Also emphasizes architecture layers which can be partitioned between processors interconnected through communications media (wires or share memory). Restriction of claims has been in the direction of more fully defining what is meant by "generalized and extensible" representation of haptic objects or effects.

Number

Issued

(Reexamination Certificate for above)

B1 5,459,382 June 9, 1998 See above discussion

Inventors: C. Jacobus, A. Riggs, M. Taylor

Number

Issued

(Continuation of 5,389,865)

5,629,594

May 13, 1997 Force Feedback System

Inventors: C. Jacobus, A. Riggs, M. Taylor

Claims basic software method and specific hardware implementation methods derived from 5,389,865. This continuation further refines the claims derived from 5,389,865 by defining in a more complete way, what is meant by a virtual object made up of virtual surfaces. Specifically, it is made clear that this encompasses computer models typical of computer-aided design systems. It also describes how forces are superimposed from separate decomposable effects and describes further power management features for

1

Confidential Information

PATENT REEL: 024434 FRAME: 0061 minimizing average power consumption while maintaining high peak forces. Identifies components of the architecture as to layer in which them are performed.

Number

Issued

5,754,023

May 19, 1998 Gyrostabilized Platforms for Force

Feedback Application

Inventors: G. Roston, C. Jacobus

Claims a gyrostabilized platform architecture which allows generation of forces without direct attachment to a ground platform (table top, floor, etc.). The basic innovation here is how one can implement an impulsive force feedback device without having the device physically attached to a fixed reference frame (like a table top). The approach can implement good sports equipment or gun recoil effects with a relatively unrestricted range of motion area.

Number

Issued

5,769,640

June 23, 1998 Method and System for Simulating Medical

Procedures including Virtual Reality and

Control Method and System for use Therein

Inventors: C. Jacobus, J. Griffin

Claims cover how medical image data and touch data are combined to make a force feedback or haptic medical training system. A force feedback enable endoscopic training system is disclosed in detail including:

generation of realistic three dimensional imagery

generation of realistic forces on instruments synchronized with the three dimensional imagery

the mechanical architecture for a 4 degree of freedom haptic device which allows the insertion of realistic endoscopic instruments into typically three trocars

Number

Issued

(Continuation of 5,389,865)

Nov. 3 1998 Force Feedback System

Inventors: C. Jacobus, A. Riggs, M. Taylor

Additional software method claims derived from 5,389,865. Include refinement of claims for multiaxis force generation as a superposition of independent forces generated from virtual objects like surfaces or effect. Includes additional refinment of the intelligent deadman concept, and further claborates power versus peak force control.

Number

Issued

Dec. 1, 1998 Haptic Browsing

Inventors: T. Peurach, D. Haanpaa, T. Yocum, C. Jacobus

Claims cover the methods needed to translate three dimensional object descriptions into haptic (or force feedback) controls that simulate touching of the three dimensional objects. The complete software architecture and data object structure to implement effects and three dimensional space forms (splines, planes, conics, voxels, etc.) into a haptic system such as described in 5,389,865, 5,459,382, and 5,629,594 are described in depth. The primary innovations are partitioning of the systems into layers, and layers into independent superpositioned force functions (or in the case of geometrical entities, geometry elements).

Number

5,822,438

Feb. 16, 1999 Whole Body Kinesthetic Display

Inventors: G. Roston

Confidential Information

Claims cover a three dimensional treadmill or "foot haptic" device which allows free walking and running in any direction. The innovative technology disclosed includes how to make an electro-mechanical system with high strength and speed to weight ratio using electric motors and drives rather than eletro-hydraulics. The architecture disclosed includes two independent mechanisms (for each foot) which operate in concert without collision to mirror the walking function. Control algorithms and how such a system connects into a distributed interactive simulation is described.

US Patents Pending

Number

Filed

(Continuation of 5,389,865)

09/185,301

Nov. 3, 1998 Force Feedback Systems

Examiner: P. Ip Group Art Unit: 2837

Attorney Docket Code; cyb-00605/03

Inventors: C. Jacobus, A. Riggs, M. Taylor

Additional software method claims derived from 5,389,865.

Number

Filed

08/859,137

May 20, 1997 Haptic Device Attribute Control

Examiner:

Group Art Unit: 2107

Attorney Docket Code: cyb-3102/03

Inventors: T. Peurach, D. Haanpaa, T. Yocum, C. Jacobus

Claims cover using GUI elements to parameterize haptic (force feedback) control elements (software or hardware). This is required to make a "feel" editor. The innovative idea is to attach directly manipulatable physical or virtual (on computer screen) attribute control objects to parts or parameters in a force feedback control system (for instance, an intensity control which changes the value of a vibration effect or a stiffness control which changes the clasticity of the surface repulsive effect). This work was derivative of Cybernet's first GUI based haptic demonstration interfaces.

Number

Filed

08/859,877

May 21, 1997 Haptic Authoring

Examiner: W. Amsbury Group Art Unit: 2771

Attorney Docket Code: cyb-03402/03

Inventors: T. Peurach, D. Haanpaa, T. Yocum, C. Jacobus

Claims cover the methods needed to author or create three dimensional object descriptions which include haptic (or force feedback) descriptions needed to simulate touching of the three dimensional objects (including a range of haptic texture methods). The innovative idea is the combination of methods needed to attach haptic parameters or specifications to effect and geometric object entities in an editing system such as a CAD/CAM system. Claims cover key requirements to combine graphical elements with haptic properties and how these combined entities are represented to drive a system such as that described in Haptic Browsing (above).

Number

Filed

09/185,152

Nov. 3, 1998 Haptic Pointing Devices

Examiner:

Confidential Information

3

PATENT **REEL: 024434 FRAME: 0063** Group Art Unit: 2837 Attorney Docket Code: cyb-04802

Inventors: Douglas Haanpaa, Gary Siebert, Terry Cussen, Kirk Fifer, Mike Dinsmore, Charles Jacobus

Describes a very low cost three dimensional force feedback CAD/CAM/pointing device design which is supported by Cybernet software methods patents. Its uses are similar to the Phantom by Sensable, but is implemented using an innovative drive method which provides substantially better quality force feedback of virtual objects and haptic textures, and has a cost of goods below \$100.

RECORDED: 05/25/2010