PATENT ASSIGNMENT

Electronic Version v1.1
Stylesheet Version v1.1

SUBMISSION TYPE:
NEW ASSIGNMENT

NATURE OF CONVEYANCE:
Grant of Security Interest in U.S. Patents

CONVEYING PARTY DATA

<table>
<thead>
<tr>
<th>Name</th>
<th>Execution Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterasys Networks Inc.</td>
<td>11/09/2010</td>
</tr>
</tbody>
</table>

RECEIVING PARTY DATA

<table>
<thead>
<tr>
<th>Name</th>
<th>Wells Fargo Trust Corporation Limited, as security agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Address</td>
<td>One Plantation Place, 30 Fenchurch Street</td>
</tr>
<tr>
<td>City</td>
<td>London</td>
</tr>
<tr>
<td>State/Country</td>
<td>UNITED KINGDOM</td>
</tr>
<tr>
<td>Postal Code</td>
<td>EC3M 3BD</td>
</tr>
</tbody>
</table>

PROPERTY NUMBERS Total: 330

<table>
<thead>
<tr>
<th>Property Type</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent Number</td>
<td>RE36353</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5129842</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5148112</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5151899</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5179554</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5179577</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5185537</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5195181</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5227778</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5235617</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5241632</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5255287</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5255375</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5265092</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5265216</td>
</tr>
</tbody>
</table>

501346927
PATENT
REEL: 025339 FRAME: 0875
<table>
<thead>
<tr>
<th>Patent Number</th>
<th>5265257</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent Number</td>
<td>5267199</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5267237</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5276859</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5276868</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5278829</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5280478</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5280582</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5283571</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5287359</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5289347</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5291491</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5291529</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5293486</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5293487</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5301186</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5303302</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5303391</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5304939</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5305305</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5305306</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5307345</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5307355</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5309437</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5313465</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5313467</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5313641</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5315597</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5321693</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5323394</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5327424</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5327534</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5331636</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5333744</td>
</tr>
<tr>
<td>Patent Number</td>
<td>5335226</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5339307</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5339313</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5341405</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5349343</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5351243</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5353286</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5355124</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5357619</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5361372</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5365658</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5366388</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5367688</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5371868</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5373421</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5377190</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5377327</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5384779</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5386523</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5388009</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5390173</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5390299</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5394401</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5396239</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5398234</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5398242</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5398822</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5400333</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5401193</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5404353</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5404474</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5404536</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5408473</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5408500</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5410535</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5412691</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5414700</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5414704</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5418781</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5418784</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5418967</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5420862</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5420986</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5428611</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5428615</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5428766</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5430727</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5432784</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5432788</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5434855</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5434864</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5440691</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5450407</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5452330</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5453983</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5455826</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5455865</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5459713</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5459720</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5465340</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5471632</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5477540</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5481538</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5485455</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5485576</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5485586</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5485932</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5489162</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5491692</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5491694</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5491801</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5608726</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5610951</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5613129</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5617409</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5621734</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5631908</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5633865</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5638259</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5644571</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5648959</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5649109</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5649110</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5650997</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5668951</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5675735</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5675742</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5684800</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5724513</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5734659</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5734825</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5740467</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5745697</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5751971</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5781772</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5790546</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5796740</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5796966</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5802061</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5805808</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5809253</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5812771</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5812774</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5822612</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5825772</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5838989</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5844902</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5862206</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5867480</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5870386</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5894517</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5898686</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5898694</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5901045</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5905723</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5910690</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5918040</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5920900</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5922046</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5923851</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5940376</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5941952</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5946308</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5951649</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5953342</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5954301</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5954835</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5956322</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5956335</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5961345</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5963556</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5963719</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5966546</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5968128</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5970229</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5978357</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5987522</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5995995</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>5999980</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6000008</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6002675</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6008550</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6014409</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6014659</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6041042</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6044121</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6046982</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6047328</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6061737</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6067300</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6067557</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6067563</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6072772</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6078949</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6081508</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6081511</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6085215</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6097705</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6101170</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6112251</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6122281</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6125466</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6128665</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6147976</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6147995</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6151324</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6154589</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6167049</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6198751</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6249820</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6272109</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6301224</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6317427</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6331983</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6356680</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6359426</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>641483</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6415314</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6418480</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6425106</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6430194</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6442170</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6445710</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6449279</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6456624</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6466997</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6469987</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6510151</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6525286</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6528052</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6538996</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6539022</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6556329</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6560236</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6563837</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6567410</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6615271</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6618762</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6621799</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6650639</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6685498</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6711171</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6754171</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6822966</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6850490</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6865154</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6892309</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>6990592</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7009983</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7092943</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7093072</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7137743</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7152242</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7194183</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7222268</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7295556</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7328277</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7347628</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7386605</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7401086</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7457297</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7480917</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7526541</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7529243</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7580403</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7581249</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7606938</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7611292</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7647422</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7690040</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7706369</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7720076</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7739372</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7739402</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7756544</td>
</tr>
<tr>
<td>Patent Number:</td>
<td>7760652</td>
</tr>
<tr>
<td>Application Number:</td>
<td>10627328</td>
</tr>
<tr>
<td>Application Number:</td>
<td>10717838</td>
</tr>
<tr>
<td>Application Number:</td>
<td>10956304</td>
</tr>
<tr>
<td>Application Number:</td>
<td>10958761</td>
</tr>
<tr>
<td>Application Number:</td>
<td>11208372</td>
</tr>
<tr>
<td>Application Number:</td>
<td>12126249</td>
</tr>
<tr>
<td>Application Number:</td>
<td>12276098</td>
</tr>
<tr>
<td>Application Number:</td>
<td>12412677</td>
</tr>
<tr>
<td>Application Number:</td>
<td>12729740</td>
</tr>
<tr>
<td>Application Number:</td>
<td>12729986</td>
</tr>
<tr>
<td>CORRESPONDENCE DATA</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Fax Number:</td>
<td>(212)354-8113</td>
</tr>
<tr>
<td>Correspondence will be sent via US Mail when the fax attempt is unsuccessful.</td>
<td></td>
</tr>
<tr>
<td>Phone:</td>
<td>2128198200</td>
</tr>
<tr>
<td>Email:</td>
<td>fcutajar@whitecase.com</td>
</tr>
<tr>
<td>Correspondent Name:</td>
<td>White & Case LLP</td>
</tr>
<tr>
<td>Address Line 1:</td>
<td>1155 Avenue of the Americas</td>
</tr>
<tr>
<td>Address Line 2:</td>
<td>Patents & Trademarks</td>
</tr>
<tr>
<td>Address Line 4:</td>
<td>New York, NEW YORK 10036</td>
</tr>
</tbody>
</table>

| ATTORNEY DOCKET NUMBER: | 4455517-0011 |
| NAME OF SUBMITTER: | Frances B. Cutajar |

Total Attachments: 18

source=EnterasysNetworksToWellsFargoPatSecInt#page1.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page2.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page3.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page4.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page5.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page6.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page7.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page8.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page9.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page10.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page11.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page12.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page13.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page14.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page15.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page16.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page17.tif
source=EnterasysNetworksToWellsFargoPatSecInt#page18.tif
GRANT OF SECURITY INTEREST
IN UNITED STATES PATENTS

FOR GOOD AND VALUABLE CONSIDERATION, the receipt and sufficiency of which are hereby acknowledged, Enterasys Networks Inc., a Delaware corporation (the “Grantor”) with principal offices at 50 Minuteman Road, Andover, MA 01810, USA, hereby grants to Wells Fargo Trust Corporation Limited, as Security Agent, with principal offices at One Plantation Place, 30 Fenchurch Street, London, EC3M 3BD (the “Grantee”), a security interest in (i) all of the Grantor’s rights, title and interest in and to the United States patents (the “Patents”) set forth on Schedule A attached hereto, in each case together with (ii) all Proceeds (as such term is defined in the Security Agreement referred to below) and products of the Patents, and (iii) all causes of action arising prior to or after the date hereof for infringement of any of the Patents or unfair competition regarding the same.

THIS GRANT is made to secure the satisfactory performance and payment of all the Secured Obligations of the Grantor, as such term is defined in the Security Agreement among the Grantor, the other grantors from time to time party thereto and the Grantee, dated as of November 9, 2010 (as amended, modified, restated and/or supplemented from time to time, the “Security Agreement”).
This Grant has been granted in conjunction with the security interest granted to the Grantee under the Security Agreement. The rights and remedies of the Grantee with respect to the security interest granted herein are as set forth in the Security Agreement, all terms and provisions of which are incorporated herein by reference. In the event that any provisions of this Grant are deemed to conflict with the Security Agreement, the provisions of the Security Agreement shall govern.

[Remainder of this page intentionally left blank; signature page follows]
IN WITNESS WHEREOF, the undersigned have executed this Grant as of the _9_th day of November, 2010.

Enterasys Networks Inc., Grantor

By C.F. C
Name: Chris F. Cortez
Title: President

By T.A. L
Name: Thomas A. Lameiras
Title: Vice President & Gen. Counsel

Signature Page to Patent Security Agreement – Enterasys Networks, Inc.
Wells Fargo Trust Corporation Limited,
as Security Agent and Grantee

By: [Signature]

Name: Assistant Vice President
Title: Assistant Vice President

Grant Carter
Wells Fargo Trust Corporation Limited
One Plantation Place
30 Fenchurch Street
London EC3M 3BD
SCHEDULE A

U.S. PATENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Application No.</th>
<th>Patent No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. METHOD AND APPARATUS FOR USE IN A NETWORK OF THE ETHERNET TYPE, TO IMPROVE FAIRNESS BY CONTROLLING COLLISION BACKOFF TIME</td>
<td></td>
<td>RE36353</td>
</tr>
<tr>
<td>2. MODULAR PATCH PANEL</td>
<td>5129842</td>
<td></td>
</tr>
<tr>
<td>3. EFFICIENT ARBITER</td>
<td>5148112</td>
<td></td>
</tr>
<tr>
<td>4. TRACKING SEQUENCE NUMBERS IN PACKET DATA COMMUNICATION SYSTEM</td>
<td>5151899</td>
<td></td>
</tr>
<tr>
<td>5. AUTOMATIC ASSOCIATION OF LOCAL AREA NETWORK STATION ADDRESSES WITH A REPEATER PORT</td>
<td>5179554</td>
<td></td>
</tr>
<tr>
<td>6. DYNAMIC THRESHOLD DATA RECEIVER FOR LOCAL AREA NETWORKS</td>
<td>5179577</td>
<td></td>
</tr>
<tr>
<td>7. GATE EFFICIENT DIGITAL GLITCH FILTER FOR MULTIPLE INPUT APPLICATIONS</td>
<td>5185537</td>
<td></td>
</tr>
<tr>
<td>8. MESSAGE PROCESSING SYSTEM HAVING SEPARATE MESSAGE RECEIVING AND TRANSMITTING PROCESSORS WITH MESSAGE PROCESSING BEING</td>
<td>5195181</td>
<td></td>
</tr>
<tr>
<td>9. SERVICE NAME TO NETWORK ADDRESS TRANSLATION IN COMMUNICATIONS NETWORK</td>
<td>5227778</td>
<td></td>
</tr>
<tr>
<td>10. TRANSMISSION MEDIA DRIVING SYSTEM</td>
<td>5235617</td>
<td></td>
</tr>
<tr>
<td>11. PROGRAMMABLE PRIORITY ARBITER</td>
<td>5241632</td>
<td></td>
</tr>
<tr>
<td>12. TRANSCEIVER APPARATUS AND METHODS</td>
<td>5255287</td>
<td></td>
</tr>
<tr>
<td>13. HIGH PERFORMANCE INTERFACE BETWEEN AN ASYNCHRONOUS BUS AND ONE OR MORE Processors OR THE LIKE</td>
<td>5255375</td>
<td></td>
</tr>
<tr>
<td>14. SYNCHRONIZATION MECHANISM FOR LINK STATE PACKET ROUTING</td>
<td>5265092</td>
<td></td>
</tr>
<tr>
<td>15. HIGH PERFORMANCE ASYNCHRONOUS BUS INTERFACE</td>
<td>5265216</td>
<td></td>
</tr>
<tr>
<td>16. FAST ARBITER HAVING EASY SCALING FOR LARGE NUMBERS OF REQUESTERS, LARGE NUMBERS OF RESOURCE TYPES WITH MULTIPLE INSTANS</td>
<td>5265257</td>
<td></td>
</tr>
<tr>
<td>17. APPARATUS FOR SIMULTANEOUS WRITE ACCESS TO A SINGLE BIT MEMORY</td>
<td>5267199</td>
<td></td>
</tr>
<tr>
<td>18. COLLISION DETECTION AND SIGNALING CIRCUIT</td>
<td>5267237</td>
<td></td>
</tr>
<tr>
<td>19. ACCELERATED TOKEN RING NETWORK</td>
<td>5276859</td>
<td></td>
</tr>
<tr>
<td>20. METHOD AND APPARATUS FOR POINTER COMPRESSION IN STRUCTURED DATABASES</td>
<td>5276868</td>
<td></td>
</tr>
<tr>
<td>21. REDUCED BROADCAST ALGORITHM FOR ADDRESS RESOLUTION PROTOCOL</td>
<td>5278829</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>22. NO-OWNER FRAME AND MULTIPLE TOKEN REMOVAL MECHANISM FOR TOKEN RING NETWORKS</td>
<td></td>
<td>5280478</td>
</tr>
<tr>
<td>23. NO-OWNER FRAME AND MULTIPLE TOKEN REMOVAL MECHANISM FOR TOKEN RING NETWORKS</td>
<td></td>
<td>5280582</td>
</tr>
<tr>
<td>24. TESTING A COMMUNICATIONS NETWORK FOR DUPLICATE STATION ADDRESSES</td>
<td></td>
<td>5283571</td>
</tr>
<tr>
<td>25. SYNCHRONOUS DECODER FOR SELF-CLOCKING SIGNALS</td>
<td></td>
<td>5287359</td>
</tr>
<tr>
<td>26. ENCLOSURE FOR ELECTRONIC MODULES</td>
<td></td>
<td>5289347</td>
</tr>
<tr>
<td>27. AVOIDANCE OF FALSE RE-INITIALIZATION OF A COMPUTER NETWORK</td>
<td></td>
<td>5291491</td>
</tr>
<tr>
<td>28. HANDSHAKE SYNCHRONIZATION SYSTEM</td>
<td></td>
<td>5291529</td>
</tr>
<tr>
<td>29. DETERMINISTIC METHOD FOR ALLOCATION OF A SHARED RESOURCE</td>
<td></td>
<td>5293486</td>
</tr>
<tr>
<td>30. NETWORK ADAPTER WITH HIGH THROUGHPUT DATA TRANSFER CIRCUIT TO OPTIMIZE NETWORK DATA TRANSFERS, WITH HOST RECEIVE RING</td>
<td></td>
<td>5293487</td>
</tr>
<tr>
<td>31. HIGH SPEED TRANSMISSION LINE INTERFACE</td>
<td></td>
<td>5301186</td>
</tr>
<tr>
<td>32. NETWORK PACKET RECEIVER WITH BUFFER LOGIC FOR REASSEMBLING INTERLEAVED DATA PACKETS</td>
<td></td>
<td>5303302</td>
</tr>
<tr>
<td>33. FAST ARBITER HAVING EASY SCALING FOR LARGE NUMBERS OF REQUESTERS, LARGE NUMBERS OF RESOURCE TYPES WITH MULTIPLE INSTANCES</td>
<td></td>
<td>5303391</td>
</tr>
<tr>
<td>34. TRACKING PEAK DETECTOR</td>
<td></td>
<td>5304939</td>
</tr>
<tr>
<td>35. MESSAGE SWITCHING NETWORK MONITORING</td>
<td></td>
<td>5305305</td>
</tr>
<tr>
<td>36. STATION-TO-STATION FULL DUAL COMUNICATIONS IN A TOKEN RING LOCAL AREA NETWORK</td>
<td></td>
<td>5305306</td>
</tr>
<tr>
<td>37. METHOD AND APPARATUS FOR CUT-THROUGH DATA PACKET TRANSFER IN A BRIDGE DEVICE</td>
<td></td>
<td>5307345</td>
</tr>
<tr>
<td>38. METHOD AND APPARATUS FOR GENERATING A 48-BIT FRAME CHECK SEQUENCE</td>
<td></td>
<td>5307355</td>
</tr>
<tr>
<td>39. BRIDGE-LIKE INTERNET PROTOCOL ROUTER</td>
<td></td>
<td>5309437</td>
</tr>
<tr>
<td>40. METHOD OF MERGING NETWORKS ACROSS A COMMON BACKBONE NETWORK</td>
<td></td>
<td>5313465</td>
</tr>
<tr>
<td>41. INTEGRATED COMMUNICATION LINK HAVING A DYNAMICALLY ALLOCATABLE BANDWIDTH AND PROTOCOL FOR TRANSMISSION OF ALLOCATION</td>
<td></td>
<td>5313467</td>
</tr>
<tr>
<td>42. FAST ARBITER HAVING EASY SCALING FOR LARGE NUMBERS OF REQUESTERS, LARGE NUMBERS OF RESOURCE TYPES WITH MULTIPLE INSTANCES</td>
<td></td>
<td>5313641</td>
</tr>
<tr>
<td>43. METHOD AND MEANS FOR AUTOMATICALLY DETECTING AND CORRECTING A POLARITY ERROR IN TWISTED-PAIR MEDIA</td>
<td></td>
<td>5315597</td>
</tr>
<tr>
<td>44. MULTICAST ADDRESS IN A LOCAL AREA NETWORK WHERE THE LOCAL AREA NETWORK HAS INADEQUATE MULTICAST ADDRESSING CAPABILITY</td>
<td></td>
<td>5321693</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>45. SELECTING OPTIMAL ROUTES IN SOURCE ROUTING BRIDGING WITHOUT EXPONENTIAL FLOODING OF EXPLORER PACKETS</td>
<td></td>
<td>5323394</td>
</tr>
<tr>
<td>46. Automatically configuring parallel bridge numbers</td>
<td></td>
<td>5327424</td>
</tr>
<tr>
<td>47. Detection of duplicate alias addresses</td>
<td></td>
<td>5327534</td>
</tr>
<tr>
<td>48. FRAME REMOVAL MECHANISM USING COUNT OF FRAMES AND DELIMITER FRAME FOR TOKEN RING NETWORKS</td>
<td></td>
<td>5331636</td>
</tr>
<tr>
<td>49. MODULAR EQUIPMENT SUPPORT SYSTEM</td>
<td></td>
<td>5333744</td>
</tr>
<tr>
<td>50. COMMUNICATIONS SYSTEM WITH RELIABLE COLLISION DETECTION METHOD AND APPARATUS</td>
<td></td>
<td>5335226</td>
</tr>
<tr>
<td>51. DATA COMMUNICATION SYSTEM WITH A LOCAL NETWORK INTERFACE</td>
<td></td>
<td>5339307</td>
</tr>
<tr>
<td>52. METHOD AND APPARATUS FOR TRAFFIC CONGESTION CONTROL IN A COMMUNICATION NETWORK BRIDGE DEVICE</td>
<td></td>
<td>5339313</td>
</tr>
<tr>
<td>53. DATA RECOVERY APPARATUS AND METHODS</td>
<td></td>
<td>5341405</td>
</tr>
<tr>
<td>54. FLEXIBLE MODULE INTERCONNECT SYSTEM</td>
<td></td>
<td>5349343</td>
</tr>
<tr>
<td>55. Monitor for packets on a communications network</td>
<td></td>
<td>5351243</td>
</tr>
<tr>
<td>56. CONFIGURATION CONTROLLER FOR A COMMUNICATIONS NETWORK</td>
<td></td>
<td>5353286</td>
</tr>
<tr>
<td>57. WIRING CONCENTRATOR FOR DATA NETWORKS</td>
<td></td>
<td>5355124</td>
</tr>
<tr>
<td>58. PAGED MEMORY SCHEME</td>
<td></td>
<td>5357619</td>
</tr>
<tr>
<td>59. Memory management for data transmission networks</td>
<td></td>
<td>5361372</td>
</tr>
<tr>
<td>60. METHOD FOR FORMING AN ELECTRICAL INTERCONNECTION</td>
<td></td>
<td>5365658</td>
</tr>
<tr>
<td>61. WIRING DISTRIBUTION SYSTEM AND DEVICES FOR BUILDING WIRING</td>
<td></td>
<td>5366388</td>
</tr>
<tr>
<td>62. BOOT SYSTEM FOR DISTRIBUTED DIGITAL DATA PROCESSING SYSTEM</td>
<td></td>
<td>5367688</td>
</tr>
<tr>
<td>63. METHOD AND APPARATUS FOR DERIVING ADDRESSES FROM STORED ADDRESS INFORMATION FOR USE IN IDENTIFYING DEVICES DURING COMM</td>
<td></td>
<td>5371868</td>
</tr>
<tr>
<td>64. FIBER OPTIC TRANSCEIVER MOUNTING BRACKET</td>
<td></td>
<td>5373421</td>
</tr>
<tr>
<td>65. FRAME REMOVAL MECHANISM USING FRAME COUNT FOR TOKEN RING NETWORKS</td>
<td></td>
<td>5377190</td>
</tr>
<tr>
<td>66. CONGESTION AVOIDANCE SCHEME FOR COMPUTER NETWORKS</td>
<td></td>
<td>5377327</td>
</tr>
<tr>
<td>67. STATE MACHINES FOR CONFIGURATION OF A COMMUNICATIONS NETWORK</td>
<td></td>
<td>5384779</td>
</tr>
<tr>
<td>68. ADDRESSING SCHEME FOR ACCESSING A PORTION OF A LARGE MEMORY SPACE</td>
<td></td>
<td>5386523</td>
</tr>
<tr>
<td>69. BACKPLANE WIRING FOR HUB IN PACKET DATA COMMUNICATIONS SYSTEM</td>
<td></td>
<td>5388099</td>
</tr>
<tr>
<td>70. PACKET FORMAT IN HUB FOR PACKET DATA COMMUNICATIONS SYSTEM</td>
<td></td>
<td>5390173</td>
</tr>
<tr>
<td>71. SYSTEM FOR USING THREE DIFFERENT METHODS TO REPORT</td>
<td></td>
<td>5390299</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>BUFFER MEMORY OCCUPANCY INFORMATION REGARDING FULLNESS-RELATED AND:</td>
<td></td>
<td>5394401</td>
</tr>
<tr>
<td>ARRANGEMENT FOR A TOKEN RING COMMUNICATIONS NETWORK</td>
<td></td>
<td>5396239</td>
</tr>
<tr>
<td>DATA AND FORWARD ERROR CONTROL CODING TECHNIQUES FOR DIGITAL SIGNALS</td>
<td></td>
<td>5398234</td>
</tr>
<tr>
<td>DS-0 LOOP-BACK DETECTION ON A DS-1 LINE</td>
<td></td>
<td>5398242</td>
</tr>
<tr>
<td>Automatically configuring LAN numbers</td>
<td></td>
<td>5398822</td>
</tr>
<tr>
<td>Enclosure for electronic modules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detecting LAN number misconfiguration</td>
<td></td>
<td>5400333</td>
</tr>
<tr>
<td>PATCH PANEL SYSTEM</td>
<td></td>
<td>5401193</td>
</tr>
<tr>
<td>DYNAMIC DEFER TECHNIQUE FOR TRAFFIC CONGESTION CONTROL IN A COMMUNICATION NETWORK BRIDGE DEVICE</td>
<td></td>
<td>5404353</td>
</tr>
<tr>
<td>APPARATUS AND METHOD FOR ADDRESSING A VARIABLE SIZED BLOCK OF MEMORY</td>
<td></td>
<td>5404474</td>
</tr>
<tr>
<td>SCHEDULING MECHANISM FOR NETWORK ADAPTER TO MINIMIZE LATENCY AND GUARANTEE BACKGROUND PROCESSING TIME</td>
<td></td>
<td>5404536</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR TRANSMISSION OF COMMUNICATION SIGNALS OVER TWO PARALLEL CHANNELS</td>
<td></td>
<td>5408473</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR TRANSMISSION OF LOCAL AREA NETWORK SIGNALS OVER A SINGLE UNSHIELDED TWISTED PAIR</td>
<td></td>
<td>5408500</td>
</tr>
<tr>
<td>AUTOMATIC SELECTION OF AN INTERFACE FOR ETHERNET STATIONS</td>
<td></td>
<td>5410535</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR EQUALIZATION FOR TRANSMISSION OVER A BAND-LIMITED CHANNEL</td>
<td></td>
<td>5412691</td>
</tr>
<tr>
<td>NEGOTIATION PROTOCOL FOR ESTABLISHMENT OF FULL DUPLEX COMMUNICATION ON A TOKEN RING NETWORK</td>
<td></td>
<td>5414700</td>
</tr>
<tr>
<td>ADDRESS LOOKUP IN PACKET DATA COMMUNICATIONS LINK, USING HASHING AND CONTENT-ADDRESSABLE MEMORY</td>
<td></td>
<td>5414704</td>
</tr>
<tr>
<td>Architecture for maintaining the sequence of packet cells transmitted over a multicast, cell-switched network</td>
<td></td>
<td>5418781</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR USE IN A NETWORK OF THE ETHERNET TYPE, TO IMPROVE FAIRNESS BY CONTROLLING THE INTERPACKET GAP</td>
<td></td>
<td>5418784</td>
</tr>
<tr>
<td>FAST ARBITER HAVING EASY SCALING FOR LARGE NUMBERS OF REQUESTERS, LARGE NUMBERS OF RESOURCE TYPES WITH MULTIPLE INSTAN</td>
<td></td>
<td>5418967</td>
</tr>
<tr>
<td>ROUTER USING REMOTE ADDRESS RESOLUTION TO ENABLE BRIDGE LIKE DATA FORWARDING</td>
<td></td>
<td>5420862</td>
</tr>
<tr>
<td>FDDI CONCENTRATOR WITH BACKPLANE PORT FOR DUAL DATAPATH SYSTEMS</td>
<td></td>
<td>5420986</td>
</tr>
<tr>
<td>STRONG FRAMING PROTOCOL FOR HDLC AND OTHER RUN-LENGTH CODES</td>
<td></td>
<td>5428611</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>94. MANY TO FEW GROUP ADDRESS TRANSLATION THROUGH A NETWORK BRIDGE</td>
<td></td>
<td>5428615</td>
</tr>
<tr>
<td>95. ERROR DETECTION SCHEME IN A MULTIPROCESSOR ENVIRONMENT</td>
<td></td>
<td>5428766</td>
</tr>
<tr>
<td>96. Multiple protocol routing</td>
<td></td>
<td>5430727</td>
</tr>
<tr>
<td>97. Flow control method and apparatus for systems with long distance links</td>
<td></td>
<td>5432784</td>
</tr>
<tr>
<td>98. SCHEDULING METHOD FOR A SLOTTED COMMUNICATION MEDIUM WITH MULTIPLE BUT LIMITED NUMBER OF CARRIERS AND INDEPENDENT RECE</td>
<td></td>
<td>5432788</td>
</tr>
<tr>
<td>99. Method and apparatus for selective interleaving in a cell-switched network</td>
<td></td>
<td>5434855</td>
</tr>
<tr>
<td>100. ENCAPSULATION OF AN ADDRESS WITHIN A FORWARDED FRAME IN A COMPUTER COMMUNICATIONS SYSTEM</td>
<td></td>
<td>5434864</td>
</tr>
<tr>
<td>101. SYSTEM FOR MINIMIZING UNDERFLOWING TRANSMIT BUFFER AND OVERFLOWING RECEIVE BUFFER BY GIVING HIGHEST PRIORITY FOR STORAGE</td>
<td></td>
<td>5440691</td>
</tr>
<tr>
<td>102. ENCAPSULATION OF AN ADDRESS WITHIN A FORWARDED FRAME IN A COMPUTER COMMUNICATIONS SYSTEM</td>
<td></td>
<td>5450407</td>
</tr>
<tr>
<td>103. Bus-oriented switching system for asynchronous transfer mode</td>
<td></td>
<td>5452330</td>
</tr>
<tr>
<td>104. PORT CONTROLLER</td>
<td></td>
<td>5453983</td>
</tr>
<tr>
<td>105. Method and apparatus for rate based flow control</td>
<td></td>
<td>5455826</td>
</tr>
<tr>
<td>106. ROBUST PACKET ROUTING OVER A DISTRIBUTED NETWORK CONTAINING MALICIOUS FAILURES</td>
<td></td>
<td>5455865</td>
</tr>
<tr>
<td>107. SELF-CONFIGURING DATA COMMUNICATION SYSTEM AND METHOD</td>
<td></td>
<td>5459713</td>
</tr>
<tr>
<td>108. SYSTEM FOR INTERNETWORKING DATA TERMINAL EQUIPMENT THROUGH A SWITCHED DIGITAL NETWORK</td>
<td></td>
<td>5459720</td>
</tr>
<tr>
<td>109. DIRECT MEMORY ACCESS CONTROLLER HANDLING EXCEPTIONS DURING TRANSFERRING MULTIPLE BYTES IN PARALLEL</td>
<td></td>
<td>5465340</td>
</tr>
<tr>
<td>110. SYSTEM FOR TRANSFERRING DATA BETWEEN A PROCESSOR AND A SYSTEM BUS INCLUDING A DEVICE WHICH PACKS, UNPACKS, OR BUFFERS</td>
<td></td>
<td>5471632</td>
</tr>
<tr>
<td>111. FRAME REMOVAL MECHANISM USING END DELIMITER FRAMES FOR TOKEN RING NETWORKS</td>
<td></td>
<td>5477540</td>
</tr>
<tr>
<td>112. FRAME REMOVAL MECHANISM FOR TOKEN RING NETWORKS USING ONE OR MORE START STRIP DELIMITER FRAMES OR CIRCULATION TIME INT</td>
<td></td>
<td>5481538</td>
</tr>
<tr>
<td>113. NETWORK HAVING SECURE FAST PACKET SWITCHING AND GUARANTEED QUALITY OF SERVICE</td>
<td></td>
<td>5485455</td>
</tr>
<tr>
<td>114. FAULT TOLERANT SYSTEM MANAGEMENT BUS ARCHITECTURE FOR A NETWORKING CHASSIS</td>
<td></td>
<td>5485576</td>
</tr>
<tr>
<td>115. QUEUE BASED ARBITRATION USING A FIFO DATA STRUCTURE</td>
<td></td>
<td>5485586</td>
</tr>
<tr>
<td>116. WALL MOUNTABLE MODULAR COMPONENT MOUNTING SYSTEM</td>
<td></td>
<td>5485932</td>
</tr>
<tr>
<td>117. FASTENING</td>
<td></td>
<td>5489162</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>HYBRID UNITS FOR A COMMUNICATION NETWORK</td>
<td></td>
<td>5491692</td>
</tr>
<tr>
<td>System and method for allocating a shared resource among competing devices</td>
<td></td>
<td>5491694</td>
</tr>
<tr>
<td>SYSTEM FOR AVOIDING NETWORK CONGESTION BY DISTRIBUTING ROUTER RESOURCES EQUALLY AMONG USERS AND FORWARDING A FLAG TO T</td>
<td></td>
<td>5491801</td>
</tr>
<tr>
<td>WIRING CONCENTRATOR FOR DATA NETWORKS</td>
<td></td>
<td>5495232</td>
</tr>
<tr>
<td>ROUTER USING MULTIPLE HOP REDIRECT MESSAGES TO ENABLE BRIDGE LIKE DATA FORWARDING</td>
<td></td>
<td>5500860</td>
</tr>
<tr>
<td>Distributed autonomous object architectures for network layer routing</td>
<td></td>
<td>5509123</td>
</tr>
<tr>
<td>Method and apparatus to efficiently reuse virtual connections by means of chaser packets</td>
<td></td>
<td>5511076</td>
</tr>
<tr>
<td>Virtual circuit manager for multicast messaging</td>
<td></td>
<td>5511168</td>
</tr>
<tr>
<td>Traffic shaping system with transmit latency feedback for asynchronous transfer mode networks</td>
<td></td>
<td>5515363</td>
</tr>
<tr>
<td>DISPOSITION FILTERING OF MESSAGES USING A SINGLE ADDRESS AND PROTOCOL TABLE BRIDGE</td>
<td></td>
<td>5515513</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR ARBITRATING CONFLICTS BY MONITORING NUMBER OF ACCESS REQUESTS PER UNIT OF TIME IN MULTIPORT M</td>
<td></td>
<td>5515523</td>
</tr>
<tr>
<td>Parallel implementation of run length coding apparatus and method</td>
<td></td>
<td>5517533</td>
</tr>
<tr>
<td>Automatic assignment of addresses in a computer communications network</td>
<td></td>
<td>5517617</td>
</tr>
<tr>
<td>High speed transmission line interface</td>
<td></td>
<td>5519693</td>
</tr>
<tr>
<td>ADDRESS RECOGNITION ENGINE WITH LOOK-UP DATABASE FOR STORING NETWORK INFORMATION</td>
<td></td>
<td>5519858</td>
</tr>
<tr>
<td>DISTRIBUTED CHASSIS AGENT FOR NETWORK MANAGEMENT</td>
<td></td>
<td>5522042</td>
</tr>
<tr>
<td>Configuration controller for establishing timing signals of a communications network</td>
<td></td>
<td>5523998</td>
</tr>
<tr>
<td>Scheme for interlocking line card to an address recognition engine to support plurality of routing and bridging protocol</td>
<td></td>
<td>5524254</td>
</tr>
<tr>
<td>Method and apparatus for use in a network of the ethernet type, to improve performance by reducing the occurrence of c</td>
<td></td>
<td>5526355</td>
</tr>
<tr>
<td>Scheduling and admission control policy for a continuous media server</td>
<td></td>
<td>5528513</td>
</tr>
<tr>
<td>Enclosure for electronic modules</td>
<td></td>
<td>5535099</td>
</tr>
<tr>
<td>Method and apparatus for transporting timed program data using single transport schedule</td>
<td></td>
<td>5535209</td>
</tr>
<tr>
<td>Frame removal mechanism for token ring networks</td>
<td></td>
<td>5537413</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR ADAPTIVE INTERRUPT SERVICING IN DATA PROCESSING SYSTEM</td>
<td></td>
<td>5542076</td>
</tr>
<tr>
<td>Efficient distributed method for computing max-min fair rates of a limited resource in ATM networks</td>
<td></td>
<td>5546377</td>
</tr>
<tr>
<td>METHOD FOR ASSIGNING PRIORITY TO RECEIVE AND TRANSMIT</td>
<td></td>
<td>5546543</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>REQUESTS IN RESPONSE TO OCCUPANCY OF RECEIVE AND TRANSMIT BUFFER.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144. Implementation efficient interrupt select mechanism</td>
<td></td>
<td>5548762</td>
</tr>
<tr>
<td>145. Method and apparatus for generating a 48-bit frame check sequence</td>
<td></td>
<td>5553085</td>
</tr>
<tr>
<td>146. Method and apparatus for efficient cache refilling by the use of forced cache misses</td>
<td></td>
<td>5553264</td>
</tr>
<tr>
<td>147. METHOD AND APPARATUS FOR FREE SPACE MANAGEMENT IN A FORWARDING DATABASE HAVING FORWARDING ENTRY SETS AND MULTIPLE FREE</td>
<td></td>
<td>5555405</td>
</tr>
<tr>
<td>148. Method for supporting foreign protocols across backbone network by combining and transmitting list of destinations tha</td>
<td></td>
<td>5557745</td>
</tr>
<tr>
<td>149. Method for controlled-latency transfer of transmit ATM traffic and synchronous feedback over a physical interface</td>
<td></td>
<td>5568470</td>
</tr>
<tr>
<td>150. Method of neighbor discovery over a multiaccess nonbroadcast medium</td>
<td></td>
<td>5574860</td>
</tr>
<tr>
<td>151. BACKPLANE WIRING FOR HUB IN PACKET DATA COMMUNICATIONS SYSTEM</td>
<td></td>
<td>5583867</td>
</tr>
<tr>
<td>152. PACKET FORWARDING SYSTEM FOR MEASURING THE AGE OF DATA PACKETS FLOWING THROUGH A COMPUTER NETWORK</td>
<td></td>
<td>5590366</td>
</tr>
<tr>
<td>153. AUTOMATIC NETWORK SPEED ADAPTER</td>
<td></td>
<td>5596575</td>
</tr>
<tr>
<td>154. DATA PROCESSING UNIT FOR TRANSFERRING DATA BETWEEN DEVICES SUPPORTING DIFFERENT WORD LENGTH</td>
<td></td>
<td>5600814</td>
</tr>
<tr>
<td>155. Method and apparatus for segmentation and reassembly of ATM packets using only dynamic ram as local memory for the rea</td>
<td></td>
<td>5602853</td>
</tr>
<tr>
<td>156. NETWORK BRIDGE WITH MULTICAST FORWARDING TABLE</td>
<td></td>
<td>5608726</td>
</tr>
<tr>
<td>157. Efficient ATM cell synchronization</td>
<td></td>
<td>5610951</td>
</tr>
<tr>
<td>158. ADAPTIVE MECHANISM FOR EFFICIENT INTERRUPT PROCESSING</td>
<td></td>
<td>5613129</td>
</tr>
<tr>
<td>159. Flow control with smooth limit setting for multiple virtual circuits</td>
<td></td>
<td>5617409</td>
</tr>
<tr>
<td>160. LOCAL AREA NETWORK WITH SERVER AND VIRTUAL CIRCUITS</td>
<td></td>
<td>5621734</td>
</tr>
<tr>
<td>161. Method and apparatus for generating and implementing smooth schedules for forwarding data flows across cell-based swit</td>
<td></td>
<td>5631908</td>
</tr>
<tr>
<td>162. Apparatus for selectively transferring data packets between local area networks</td>
<td></td>
<td>5633865</td>
</tr>
<tr>
<td>163. Enclosure for electronic modules</td>
<td></td>
<td>5638259</td>
</tr>
<tr>
<td>164. APPARATUS FOR MESSAGE FILTERING IN A NETWORK USING DOMAIN CLASS</td>
<td></td>
<td>5644571</td>
</tr>
<tr>
<td>165. INTER-MODULE INTERCONNECT FOR SIMULTANEOUS USE WITH DISTRIBUTED LAN REPEATERS AND STATIONS</td>
<td></td>
<td>5648959</td>
</tr>
<tr>
<td>166. Apparatus and method for maintaining forwarding information in a bridge or router using multiple free queues having as</td>
<td></td>
<td>5649109</td>
</tr>
<tr>
<td>167. Traffic shaping system with virtual circuit table time stamps for asynchronous transfer mode networks</td>
<td></td>
<td>5649110</td>
</tr>
<tr>
<td>168. METHOD AND APPARATUS FOR USE IN A NETWORK OF THE ETHERNET TYPE, TO IMPROVE FAIRNESS BY CONTROLLING</td>
<td></td>
<td>5650997</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>COLLISION BACKOFF T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>169. AVOIDING CONGESTION SYSTEM FOR REDUCING TRAFFIC LOAD ON SELECTED END SYSTEMS WHICH UTILIZING ABOVE THEIR ALLOCATED FAI</td>
<td></td>
<td>5668951</td>
</tr>
<tr>
<td>170. Method and apparatus for interconnecting network devices in a networking hub</td>
<td></td>
<td>5675735</td>
</tr>
<tr>
<td>171. SYSTEM FOR SETTING CONGESTION AVOIDANCE FLAG AT INTERMEDIATE NODE TO REDUCE RATES OF TRANSMISSION ON SELECTED END SYST</td>
<td></td>
<td>5675742</td>
</tr>
<tr>
<td>172. METHOD FOR ESTABLISHING RESTRICTED BROADCAST GROUPS IN A SWITCHED NETWORK</td>
<td></td>
<td>5684800</td>
</tr>
<tr>
<td>173. Traffic shaping system for asynchronous transfer mode networks</td>
<td></td>
<td>5724513</td>
</tr>
<tr>
<td>174. COMPUTER NETWORK HAVING A VIRTUAL CIRCUIT MESSAGE CARRYING A PLURALITY OF SESSION MESSAGES</td>
<td></td>
<td>5734659</td>
</tr>
<tr>
<td>175. Traffic control system having distributed rate calculation and link by link flow control</td>
<td></td>
<td>5734825</td>
</tr>
<tr>
<td>176. APPARATUS AND METHOD FOR CONTROLLING INTERRUPTS TO A HOST DURING DATA TRANSFER BETWEEN THE HOST AND AN ADAPTER</td>
<td></td>
<td>5740467</td>
</tr>
<tr>
<td>177. Network flow control having intermediate node scalability to a large numbers of virtual circuits</td>
<td></td>
<td>5745697</td>
</tr>
<tr>
<td>178. INTERNET PROTOCOL (IP) WORK GROUP ROUTING</td>
<td></td>
<td>5751971</td>
</tr>
<tr>
<td>179. COMPRESSED PREFIX MATCHING DATABASE SEARCHING</td>
<td></td>
<td>5781772</td>
</tr>
<tr>
<td>180. Method of transmitting data packets in a packet switched communications network</td>
<td></td>
<td>5790546</td>
</tr>
<tr>
<td>181. ROUTER USING MULTIPLE HOP REDIRECT MESSAGES TO ENABLE BRIDGE LIKE DATA FORWARDING</td>
<td></td>
<td>5796740</td>
</tr>
<tr>
<td>182. METHOD AND APPARATUS FOR DYNAMICALLY CONTROLLING DATA ROUTES THROUGH A NETWORK</td>
<td></td>
<td>5796966</td>
</tr>
<tr>
<td>183. METHOD AND APPARATUS FOR NETWORK ACCESS CONTROL WITH IMPLICIT RANGING AND DYNAMICALLY ASSIGNED TIME SLOTS</td>
<td></td>
<td>5802061</td>
</tr>
<tr>
<td>184. REAL TIME PARSER FOR DATA PACKETS IN A COMMUNICATIONS NETWORK</td>
<td></td>
<td>5805808</td>
</tr>
<tr>
<td>185. Method and apparatus for interconnecting network devices in a networking hub</td>
<td></td>
<td>5809253</td>
</tr>
<tr>
<td>186. Distributed chassis agent for distributed network management</td>
<td></td>
<td>5812771</td>
</tr>
<tr>
<td>187. SYSTEM FOR TRANSMITTING DATA PACKET FROM BUFFER BY READING BUFFER DESCRIPTOR FROM DESCRIPTOR MEMORY OF NETWORK ADAPTER</td>
<td></td>
<td>5812774</td>
</tr>
<tr>
<td>188. Apparatus and method for managing schedule table pointers</td>
<td></td>
<td>5822612</td>
</tr>
<tr>
<td>189. DISTRIBUTED CONNECTION-ORIENTED SERVICES FOR SWITCHED COMMUNICATIONS NETWORKS</td>
<td></td>
<td>5825772</td>
</tr>
<tr>
<td>190. COMMON INTERFACE FOR A NETWORK HAVING DIFFERENT COMMUNICATION MEDIA EMPLOYING A CARRIER SENSE</td>
<td></td>
<td>5838989</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>MULTIPLE ACCESS WITH COL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>191. Assigning multiple parallel bridge numbers to bridges</td>
<td>5844902</td>
<td></td>
</tr>
<tr>
<td>192. Method and apparatus for performing raw cell status report frequency mitigation on transmit in a network node</td>
<td>5862206</td>
<td></td>
</tr>
<tr>
<td>193. Method and apparatus for controlling congestion in a network node</td>
<td>5867480</td>
<td></td>
</tr>
<tr>
<td>194. METHOD AND APPARATUS FOR TRANSPARENTLY BRIDGING TRAFFIC ACROSS WIDE AREA NETWORKS</td>
<td>5870386</td>
<td></td>
</tr>
<tr>
<td>195. HIGH-SPEED BACKPLANE BUS WITH LOW RF RADIATION</td>
<td>5894517</td>
<td></td>
</tr>
<tr>
<td>196. NETWORK BRIDGE WITH MULTICAST FORWARDING TABLE</td>
<td>5898886</td>
<td></td>
</tr>
<tr>
<td>197. METHOD OF ROUND ROBIN BUS ARBITRATION</td>
<td>5898694</td>
<td></td>
</tr>
<tr>
<td>198. METHOD AND APPARATUS FOR ISOLATING COMPONENT LEADS</td>
<td>5901045</td>
<td></td>
</tr>
<tr>
<td>199. System for achieving scalable router performance</td>
<td>5905723</td>
<td></td>
</tr>
<tr>
<td>200. HOTSWAPPABLE CHASSIS AND ELECTRONIC CIRCUIT CARDS</td>
<td>5910690</td>
<td></td>
</tr>
<tr>
<td>201. Method for maintaining time synchronization between two processors in a network interface</td>
<td>5918040</td>
<td></td>
</tr>
<tr>
<td>202. HASH-BASED TRANSLATION METHOD AND APPARATUS WITH MULTIPLE LEVEL COLLISION RESOLUTION</td>
<td>5920900</td>
<td></td>
</tr>
<tr>
<td>203. Method and apparatus for avoiding control reads in a network node</td>
<td>5922046</td>
<td></td>
</tr>
<tr>
<td>204. Method and apparatus for interconnecting network devices in a networking hub</td>
<td>5923851</td>
<td></td>
</tr>
<tr>
<td>205. METHOD AND APPARATUS TO ESTABLISH A TAP-POINT IN A SWITCHED NETWORK</td>
<td>5940376</td>
<td></td>
</tr>
<tr>
<td>206. Apparatus and method for transferring data from a transmit buffer memory at a particular rate</td>
<td>5941952</td>
<td></td>
</tr>
<tr>
<td>207. Method for establishing restricted broadcast groups in a switched network</td>
<td>5946308</td>
<td></td>
</tr>
<tr>
<td>208. Network interconnecting apparatus having a separate forwarding engine object at each interface</td>
<td>5951649</td>
<td></td>
</tr>
<tr>
<td>209. Method for dynamically providing end-to-end connections in an asynchronous transfer mode (ATM) network</td>
<td>5953342</td>
<td></td>
</tr>
<tr>
<td>210. CABLE MANAGEMENT UNIT</td>
<td>5954301</td>
<td></td>
</tr>
<tr>
<td>211. CHECK SEQUENCE PRESERVATION</td>
<td>5954835</td>
<td></td>
</tr>
<tr>
<td>212. IMPROVED PHANTOM FLOW CONTROL METHOD AND APPARATUS</td>
<td>5956322</td>
<td></td>
</tr>
<tr>
<td>213. MANY TO FEW GROUP ADDRESS TRANSLATION THROUGH A NETWORK BRIDGE</td>
<td>5956335</td>
<td></td>
</tr>
<tr>
<td>214. FACEPLATE SYSTEM</td>
<td>5961345</td>
<td></td>
</tr>
<tr>
<td>215. Device for partitioning ports of a bridge into groups of different virtual local area networks</td>
<td>5963556</td>
<td></td>
</tr>
<tr>
<td>216. TWO-PIN DISTRIBUTED ETHERNET BUS ARCHITECTURE</td>
<td>5963719</td>
<td></td>
</tr>
<tr>
<td>217. Method and apparatus for performing TX raw cell status report frequency and interrupt frequency mitigation in a network</td>
<td>5966546</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Traffic control system having distributed rate calculation and link by link flow control</td>
<td></td>
<td>5968128</td>
</tr>
<tr>
<td>APPARATUS AND METHOD FOR PERFORMING LOOK-AHEAD SCHEDULING OF DMA TRANSFERS OF DATA FROM A HOST MEMORY TO A TRANSMIT BU</td>
<td></td>
<td>5970229</td>
</tr>
<tr>
<td>Phantom flow control method and apparatus with improved stability</td>
<td></td>
<td>5978357</td>
</tr>
<tr>
<td>PRIVILEGED VIRTUAL LOCAL AREA NETWORKS</td>
<td></td>
<td>5987522</td>
</tr>
<tr>
<td>Apparatus and method for scheduling virtual circuit data for DMA from a host memory to a transmit buffer memory</td>
<td></td>
<td>5995995</td>
</tr>
<tr>
<td>Apparatus and method for setting a congestion indicate bit in an backwards RM cell on an ATM network</td>
<td></td>
<td>5999980</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR MATCHING DATA ITEMS OF VARIABLE LENGTH IN A CONTENT ADDRESSABLE MEMORY</td>
<td></td>
<td>6000008</td>
</tr>
<tr>
<td>Method and apparatus for controlling transmission of data over a network</td>
<td></td>
<td>6002675</td>
</tr>
<tr>
<td>HOTSWAPPABLE CHASSIS AND ELECTRONIC CIRCUIT CARDS</td>
<td></td>
<td>6008550</td>
</tr>
<tr>
<td>PASSIVE ANALOG FILTER FOR NETWORK INTERFACE</td>
<td></td>
<td>6014409</td>
</tr>
<tr>
<td>COMPRESSED PREFIX MATCHING DATABASE SEARCHING</td>
<td></td>
<td>6014659</td>
</tr>
<tr>
<td>REMOTE PORT MIRRORING SYSTEM AND METHOD THEREOF</td>
<td></td>
<td>6041042</td>
</tr>
<tr>
<td>METHOD AND APPARATUS FOR RECOVERY OF TIME SKEWED DATA ON A PARALLEL BUS</td>
<td></td>
<td>6044121</td>
</tr>
<tr>
<td>Method and apparatus for reducing data loss in data transfer devices</td>
<td></td>
<td>6046982</td>
</tr>
<tr>
<td>Method and apparatus for allocating a transmission rate to source end nodes in a network</td>
<td></td>
<td>6047328</td>
</tr>
<tr>
<td>TWO-PIN DISTRIBUTED ETHERNET BUS ARCHITECTURE</td>
<td></td>
<td>6061737</td>
</tr>
<tr>
<td>Optimizing the transfer of data packets between LANs</td>
<td></td>
<td>6067300</td>
</tr>
<tr>
<td>METHOD AND SYSTEM FOR ALLOCATING CPU BANDWIDTH</td>
<td></td>
<td>6067557</td>
</tr>
<tr>
<td>Method and apparatus for avoiding control reads in a network node</td>
<td></td>
<td>6067563</td>
</tr>
<tr>
<td>METHOD FOR PROVIDING BANDWIDTH AND DELAY GUARANTEES IN A CROSSBAR SWITCH WITH SPEEDUP</td>
<td></td>
<td>6072772</td>
</tr>
<tr>
<td>Scheme for interlocking and transferring information between devices in a computer system</td>
<td></td>
<td>6078949</td>
</tr>
<tr>
<td>REMOTE COMPUTER COMMUNICATION</td>
<td></td>
<td>6081508</td>
</tr>
<tr>
<td>Load sharing for redundant networks</td>
<td></td>
<td>6081511</td>
</tr>
<tr>
<td>SCHEDULING MECHANISM USING PREDETERMINED LIMITED EXECUTION TIME PROCESSING THREADS IN A COMMUNICATION NETWORK</td>
<td></td>
<td>6085215</td>
</tr>
<tr>
<td>Buffered repeater with independent ethernet collision domains</td>
<td></td>
<td>6097705</td>
</tr>
<tr>
<td>Secure fast packet switch having improved memory utilization</td>
<td></td>
<td>6101170</td>
</tr>
<tr>
<td>VIRTUAL LOCAL NETWORK FOR SENDING MULTICAST TRANSMISSIONS TO TRUNK STATIONS</td>
<td></td>
<td>6112251</td>
</tr>
<tr>
<td>Method and apparatus for transmitting LAN data over a synchronous wide</td>
<td></td>
<td>6122281</td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>area network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>246. DRAM PARITY PROTECTION SCHEME</td>
<td>6125466</td>
<td></td>
</tr>
<tr>
<td>247. PORT BASED DEFAULT VIRTUAL LOCAL AREA NETWORK</td>
<td>6128665</td>
<td></td>
</tr>
<tr>
<td>248. Fast network layer packet filter</td>
<td>6147976</td>
<td></td>
</tr>
<tr>
<td>249. Method for establishing restricted broadcast groups in a switched network</td>
<td>6147995</td>
<td></td>
</tr>
<tr>
<td>250. CONNECTION AGGREGATION IN SWITCHED COMMUNICATIONS NETWORKS</td>
<td>6151324</td>
<td></td>
</tr>
<tr>
<td>251. METHOD AND SYSTEM FOR REMOVAL OF LOW ORDER OPTICAL TRANSMISSION MODES TO IMPROVE MODAL BANDWIDTH IN A MULTIMODE OPTICA</td>
<td>6154589</td>
<td></td>
</tr>
<tr>
<td>252. NON-ZERO MINIMUM CELL RATE FOR AVAILABLE BIT RATE ATM SERVICE</td>
<td>6167049</td>
<td></td>
</tr>
<tr>
<td>253. MULTI-PROTOCOL PACKET TRANSLATOR</td>
<td>6198751</td>
<td></td>
</tr>
<tr>
<td>254. INTERNET PROTOCOL (IP) WORK GROUP ROUTING</td>
<td>6249820</td>
<td></td>
</tr>
<tr>
<td>255. HIERARCHICAL SCHEDULES FOR DIFFERENT ATM TRAFFIC</td>
<td>6272109</td>
<td></td>
</tr>
<tr>
<td>256. NETWORK SWITCH WITH PANIC MODE</td>
<td>6301224</td>
<td></td>
</tr>
<tr>
<td>257. Method and apparatus for adaptive port buffering</td>
<td>6317427</td>
<td></td>
</tr>
<tr>
<td>258. MULTICAST SWITCHING</td>
<td>6331983</td>
<td></td>
</tr>
<tr>
<td>259. METHOD AND SYSTEM FOR REMOVAL OF LOW ORDER OPTICAL TRANSMISSION MODES TO IMPROVE MODAL BANDWIDTH IN A MULTIMODE OPTICA</td>
<td>6356680</td>
<td></td>
</tr>
<tr>
<td>260. Voltage threshold circuit for power conditioner</td>
<td>6359426</td>
<td></td>
</tr>
<tr>
<td>261. HICCU-MODE CURRENT PROTECTION CIRCUIT FOR SWITCHING REGULATOR</td>
<td>6411483</td>
<td></td>
</tr>
<tr>
<td>262. Distributed chassis agent for network management</td>
<td>6415314</td>
<td></td>
</tr>
<tr>
<td>263. COMMUNICATION PACKET INCLUDING A MULTICAST ADDRESS AND A DESTINATION ADDRESS DIFFERENT THAN AN EQUIVALENT TO THE MULTI</td>
<td>6418480</td>
<td></td>
</tr>
<tr>
<td>264. EXTENDED ECC SYSTEM</td>
<td>6425106</td>
<td></td>
</tr>
<tr>
<td>265. METHOD AND APPARATUS FOR ARBITRATING BUS ACCESS AMONGST COMPETING DEVICES</td>
<td>6430194</td>
<td></td>
</tr>
<tr>
<td>266. Adaptive addressing filtering</td>
<td>6442170</td>
<td></td>
</tr>
<tr>
<td>267. Method and apparatus for transparently bridging traffic across wide area networks</td>
<td>6445710</td>
<td></td>
</tr>
<tr>
<td>268. AGGREGATION OF DATA FLOWS OVER A PRE-ESTABLISHED PATH TO REDUCE CONNECTIONS</td>
<td>6449279</td>
<td></td>
</tr>
<tr>
<td>269. NETWORK ADDRESS RESOLVE BLOCKER</td>
<td>6456624</td>
<td></td>
</tr>
<tr>
<td>270. Method and apparatus for performing TX raw cell status report frequency and interrupt frequency mitigation in a network</td>
<td>6466997</td>
<td></td>
</tr>
<tr>
<td>271. VIRTUAL LOCAL AREA NETWORKS WITH TRUNK STATIONS</td>
<td>6469987</td>
<td></td>
</tr>
<tr>
<td>272. PACKET FILTERING IN CONNECTION-BASED SWITCHING</td>
<td>6510151</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>NETWORKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>273. Circuit-board mounted clip for electromagnetic interference reduction</td>
<td>6525266</td>
<td></td>
</tr>
<tr>
<td>274. VIRTUAL LOCAL AREA NETWORKS HAVING RULES OF PRECEDENCE</td>
<td>6526052</td>
<td></td>
</tr>
<tr>
<td>275. REMOTE COMPUTER COMMUNICATION</td>
<td>6538996</td>
<td></td>
</tr>
<tr>
<td>276. NETWORK DEVICE WITH MULTICAST FORWARDING DATA</td>
<td>6539022</td>
<td></td>
</tr>
<tr>
<td>277. METHOD AND SYSTEM FOR PREVENTING LOW ORDER OPTICAL TRANSMISSION MODES IN A MULTIMODE OPTICAL FIBER COMPUTER NETWORK US</td>
<td>6556329</td>
<td></td>
</tr>
<tr>
<td>278. Virtual LANs</td>
<td>6560236</td>
<td></td>
</tr>
<tr>
<td>279. ARBITRATION METHOD AND APPARATUS FOR A NON-BLOCKING SWITCH</td>
<td>6563837</td>
<td></td>
</tr>
<tr>
<td>280. Assigning multiple parallel bridge numbers to bridges having three or more ports</td>
<td>6567410</td>
<td></td>
</tr>
<tr>
<td>281. Traffic control system having distributed rate calculation and link flow control</td>
<td>6615271</td>
<td></td>
</tr>
<tr>
<td>282. Distributed chassis agent for network management</td>
<td>6618762</td>
<td></td>
</tr>
<tr>
<td>283. SEMI-RELIABLE DATA TRANSPORT</td>
<td>6621799</td>
<td></td>
</tr>
<tr>
<td>284. Secure fast packet switch having improved memory utilization</td>
<td>6650639</td>
<td></td>
</tr>
<tr>
<td>285. Logic analyzer testing method and configuration and interface assembly for use therewith</td>
<td>6685498</td>
<td></td>
</tr>
<tr>
<td>286. Distributed connection-oriented services for switched communications networks</td>
<td>6711171</td>
<td></td>
</tr>
<tr>
<td>287. Method and system for distributed clock failure protection in a packet switched network</td>
<td>6754171</td>
<td></td>
</tr>
<tr>
<td>288. ALLOCATING BUFFERS FOR DATA TRANSMISSION IN A NETWORK COMMUNICATION DEVICE</td>
<td>6822966</td>
<td></td>
</tr>
<tr>
<td>289. HIERARCHICAL OUTPUT-QUEUED PACKET-BUFFERING SYSTEM AND METHOD</td>
<td>6850490</td>
<td></td>
</tr>
<tr>
<td>290. METHOD AND APPARATUS FOR PROVIDING BANDWIDTH AND DELAY GUARANTEES IN COMBINED INPUT-OUTPUT BUFFERED CROSSBAR</td>
<td>6865154</td>
<td></td>
</tr>
<tr>
<td>291. CONTROLLING USAGE OF NETWORK RESOURCES BY A USER AT THE USER'S ENTRY POINT TO A COMMUNICATIONS NETWORK BASED ON AN</td>
<td>6892309</td>
<td></td>
</tr>
<tr>
<td>292. CONTROLLING CONCURRENT USAGE OF NETWORK RESOURCES BY MULTIPLE USERS AT AN ENTRY POINT TO A COMMUNICATIONS NETWORK BASED ON IDENTITIES OF THE USERS</td>
<td>6990592</td>
<td></td>
</tr>
<tr>
<td>293. Methods and apparatus for broadcast domain interworking</td>
<td>7069983</td>
<td></td>
</tr>
<tr>
<td>294. LOCATION BASED DATA</td>
<td>7092943</td>
<td></td>
</tr>
<tr>
<td>295. METHODS FOR IMPROVED DATA CACHING</td>
<td>7093072</td>
<td></td>
</tr>
<tr>
<td>296. Visual Optical Indicators for Plug Assemblies, Connectors and Cables</td>
<td>7137743</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>297. Modular system for detecting, filtering and providing notice about attack events associated with network security</td>
<td></td>
<td>7152242</td>
</tr>
<tr>
<td>298. MODULAR RECEPTACLE ASSEMBLY AND INTERFACE WITH INTEGRAL OPTICAL INDICATION</td>
<td></td>
<td>7194183</td>
</tr>
<tr>
<td>299. SYSTEM RESOURCE AVAILABILITY MANAGER</td>
<td></td>
<td>7222268</td>
</tr>
<tr>
<td>300. Location discovery in a data network</td>
<td></td>
<td>7295556</td>
</tr>
<tr>
<td>301. High-speed data processing using internal processor memory space</td>
<td></td>
<td>7328277</td>
</tr>
<tr>
<td>302. Optical interface identification system</td>
<td></td>
<td>7347628</td>
</tr>
<tr>
<td>303. METHODS AND APPARATUS FOR AUTOMATED EDGE DEVICE CONFIGURATION IN A HETEROGENEOUS NETWORK</td>
<td></td>
<td>7386605</td>
</tr>
<tr>
<td>304. TRANSLATING CONFIGURATION FILES AMONG NETWORK DEVICES</td>
<td></td>
<td>7401086</td>
</tr>
<tr>
<td>305. Methods and apparatus for differentiated services over a packet-based network</td>
<td></td>
<td>7457297</td>
</tr>
<tr>
<td>306. User interface for editing objects of a network object database</td>
<td></td>
<td>7480917</td>
</tr>
<tr>
<td>308. Apparatus and Method for a Virtual Hierarchical Local Area Network</td>
<td></td>
<td>7529243</td>
</tr>
<tr>
<td>309. Status Transmission System and Method</td>
<td></td>
<td>7580403</td>
</tr>
<tr>
<td>310. Distributed Intrusion Response System</td>
<td></td>
<td>7581249</td>
</tr>
<tr>
<td>311. Verified Device Locations in a Data Network</td>
<td></td>
<td>7606938</td>
</tr>
<tr>
<td>312. Optical Interface Identification System</td>
<td></td>
<td>7611292</td>
</tr>
<tr>
<td>313. VPN Failure Recovery</td>
<td></td>
<td>7647422</td>
</tr>
<tr>
<td>314. Method for Network Traffic Mirroring with Data Privacy</td>
<td></td>
<td>7690040</td>
</tr>
<tr>
<td>315. Location Discovery in a Data Network</td>
<td></td>
<td>7706369</td>
</tr>
<tr>
<td>316. DISTRIBUTED CONNECTION-ORIENTED SERVICES FOR SWITCHED COMMUNICATIONS NETWORKS</td>
<td></td>
<td>7720076</td>
</tr>
<tr>
<td>317. System and Method for Dynamic Network Policy Management</td>
<td></td>
<td>7739372</td>
</tr>
<tr>
<td>318. Locating Devices in a Data Network</td>
<td></td>
<td>7739402</td>
</tr>
<tr>
<td>319. Power controlled network devices for security and power conservation</td>
<td></td>
<td>7756544</td>
</tr>
<tr>
<td>320. Methods and apparatus for improved failure recovery of intermediate systems</td>
<td></td>
<td>7760652</td>
</tr>
<tr>
<td>321. Editing a Portable Dynamic and Abstract View Definition of a Network object database</td>
<td>10/627,328</td>
<td></td>
</tr>
<tr>
<td>322. Method and apparatus for navigating through a task on a computer</td>
<td>10/717,838</td>
<td></td>
</tr>
<tr>
<td>323. System and method for dynamic distribution of intrusion signatures</td>
<td>10/956,304</td>
<td></td>
</tr>
<tr>
<td>324. Using flow metric events to control network operation</td>
<td>10/958,761</td>
<td></td>
</tr>
<tr>
<td>325. System Method and Apparatus for Traffic Mirror Setup, Service and Security in Communications Network</td>
<td>11/208,372</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Application No.</td>
<td>Patent No.</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>326. Methods and apparatus for automated edge device configuration in a heterogeneous network</td>
<td>12/126,249</td>
<td></td>
</tr>
<tr>
<td>327. Methods and apparatus for differentiated services over a packet-based network</td>
<td>12/276,698</td>
<td></td>
</tr>
<tr>
<td>328. Apparatus and method for a virtual hierarchial local area network</td>
<td>12/412,677</td>
<td></td>
</tr>
<tr>
<td>329. Distributed connection-oriented services for switched communication networks</td>
<td>12/729,740</td>
<td></td>
</tr>
<tr>
<td>330. Distributed connection-oriented services for switched communication networks</td>
<td>12/729,986</td>
<td></td>
</tr>
<tr>
<td>332. Method and Apparatus of Virtual Class of Service and Logical Queue Representation Through Network Traffic Distribution Over Multiple Port Interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>334. Lost Contact Local Dynamic Policy Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>335. Dynamic Network Detection System and Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>337. Time Synchronized Wireless Method and Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>338. Status Transmission System and Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>339. Federated Network Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340. Location Based Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>341. Location Discovery in a Data Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>342. Methods and Apparatus for Flexible Provision of Differentiated Services in a Packet-Based Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>343. Method for providing bandwidth and delay guarantees in combined input/output buffered crossbar switches that implement work-conserving arbitration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>344. Creating, Modifying and Storing Service Abstractions and Role Abstractions Representing One or More Packet Rules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>345. System & Method for Dynamic Distribution of Intrusion Detection Signatures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>346. Locating Devices in a Data Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>347. Using Signal Characteristics to Locate Devices in a Data Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>348. Location Based Access Control in a Data Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>349. Methods and Apparatus for Improved Failure Recovery of Intermediate Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350. Apparatus and Method for Virtual Hierarchical Local Area Network</td>
<td></td>
<td></td>
</tr>
<tr>
<td>351. Method and Apparatus for Determining a Spanning Tree</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>