PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT2845946 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | #### **CONVEYING PARTY DATA** | Name | Execution Date | |--------------------------|----------------| | ANOBIT TECHNOLOGIES LTD. | 06/01/2012 | ### **RECEIVING PARTY DATA** | Name: | APPLE INC. | |-----------------|-----------------| | Street Address: | 1 INFINITE LOOP | | City: | CUPERTINO | | State/Country: | CALIFORNIA | | Postal Code: | 95014 | ### **PROPERTY NUMBERS Total: 1** | Property Type | Number | |---------------------|----------| | Application Number: | 11995801 | ### **CORRESPONDENCE DATA** Fax Number: (512)853-8801 Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent via US Mail. Phone: 512-853-8800 Email: ezeiss@intprop.com Correspondent Name: **ERIN ZEISS** Address Line 1: 1120 S. CAPITAL OF TEXAS HGWY Address Line 2: BLDG #2, SUITE 300 Address Line 4: AUSTIN, TEXAS 78746 | ATTORNEY DOCKET NUMBER: | 5888-73706 | |-------------------------|------------------| | NAME OF SUBMITTER: | B. NOEL KIVLIN | | SIGNATURE: | /B. Noel Kivlin/ | | DATE SIGNED: | 05/07/2014 | ### **Total Attachments: 42** source=P13922US1_Assignment_Anobit_to_Apple#page1.tif source=P13922US1_Assignment_Anobit_to_Apple#page2.tif source=P13922US1_Assignment_Anobit_to_Apple#page3.tif source=P13922US1 Assignment Anobit to Apple#page4.tif source=P13922US1_Assignment_Anobit_to_Apple#page5.tif source=P13922US1_Assignment_Anobit_to_Apple#page6.tif | source=P13922US1 Assignment_Anobit_to_Apple#page8.tif source=P13922US1 Assignment_Anobit_to_Apple#page8.tif source=P13922US1 Assignment_Anobit_to_Apple#page9.tif source=P13922US1 Assignment_Anobit_to_Apple#page9.tif source=P13922US1 Assignment_Anobit_to_Apple#page11.tif source=P13922US1 Assignment_Anobit_to_Apple#page12.tif source=P13922US1 Assignment_Anobit_to_Apple#page13.tif source=P13922US1 Assignment_Anobit_to_Apple#page15.tif source=P13922US1 Assignment_Anobit_to_Apple#page16.tif source=P13922US1 Assignment_Anobit_to_Apple#page16.tif source=P13922US1 Assignment_Anobit_to_Apple#page18.tif source=P13922US1 Assignment_Anobit_to_Apple#page18.tif source=P13922US1 Assignment_Anobit_to_Apple#page18.tif source=P13922US1 Assignment_Anobit_to_Apple#page19.tif source=P13922US1 Assignment_Anobit_to_Apple#page20.tif source=P13922US1 Assignment_Anobit_to_Apple#page21.tif source=P13922US1 Assignment_Anobit_to_Apple#page22.tif source=P13922US1 Assignment_Anobit_to_Apple#page22.tif source=P13922US1 Assignment_Anobit_to_Apple#page22.tif source=P13922US1 Assignment_Anobit_to_Apple#page25.tif source=P13922US1 Assignment_Anobit_to_Apple#page25.tif source=P13922US1 Assignment_Anobit_to_Apple#page25.tif source=P13922US1 Assignment_Anobit_to_Apple#page26.tif source=P13922US1 Assignment_Anobit_to_Apple#page26.tif source=P13922US1 Assignment_Anobit_to_Apple#page28.tif source=P13922US1 Assignment_Anobit_to_Apple#page30.tif source=P13922US1 Assignment_Anobit_to_Apple#page30.tif source=P13922US1 Assignment_Anobit_to_Apple#page31.tif source=P13922US1 Assignment_Anobit_to_Apple#page33.tif Assignment_Anobit_to_Apple#page34.tif source=P13922US1 Assignment_Anobit_to_Apple#page34.tif source=P13922US | | |--|--| | source=P13922US1_Assignment_Anobit_to_Apple#page9.tif source=P13922US1_Assignment_Anobit_to_Apple#page10.tif source=P13922US1_Assignment_Anobit_to_Apple#page11.tif source=P13922US1_Assignment_Anobit_to_Apple#page12.tif source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page14.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif | source=P13922US1_Assignment_Anobit_to_Apple#page7.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page10.tif source=P13922US1_Assignment_Anobit_to_Apple#page11.tif source=P13922US1_Assignment_Anobit_to_Apple#page12.tif source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif | source=P13922US1_Assignment_Anobit_to_Apple#page8.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page11.tif source=P13922US1_Assignment_Anobit_to_Apple#page12.tif source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif
source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page9.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page12.tif source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page10.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page13.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page11.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page14.tif source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page12.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page15.tif source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page13.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page16.tif source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif | source=P13922US1_Assignment_Anobit_to_Apple#page14.tif | |
source=P13922US1_Assignment_Anobit_to_Apple#page17.tif source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page15.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page18.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page16.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page19.tif source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page17.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page20.tif source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif | source=P13922US1_Assignment_Anobit_to_Apple#page18.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page21.tif source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif | source=P13922US1_Assignment_Anobit_to_Apple#page19.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page22.tif source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif | source=P13922US1_Assignment_Anobit_to_Apple#page20.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page23.tif source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif
source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page21.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page24.tif source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page22.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page25.tif source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | source=P13922US1_Assignment_Anobit_to_Apple#page23.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page26.tif source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page24.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page27.tif source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | source=P13922US1_Assignment_Anobit_to_Apple#page25.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page28.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif | source=P13922US1_Assignment_Anobit_to_Apple#page26.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page29.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | source=P13922US1_Assignment_Anobit_to_Apple#page27.tif | | source=P13922US1_Assignment_Anobit_to_Apple#page30.tif source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page31.tif source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page32.tif source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page33.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page34.tif source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page35.tif source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page36.tif source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif
source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page37.tif source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page38.tif source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page39.tif source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page40.tif source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | source=P13922US1_Assignment_Anobit_to_Apple#page41.tif | | | | | | source=P13922US1_Assignment_Anobit_to_Apple#page42.tif | | | | source=P13922US1_Assignment_Anobit_to_Apple#page42.tif | # EXHIBIT A –1 ASSIGNMENT OF PATENT RIGHTS This patent assignment ("Patent Assignment") is entered into as of the below-date by and between Anobit Technologies Ltd., a company duly incorporated under the law of the State of Israel under Company Number 51-384451-4, with its registered office at 8 Hasadnaot St., Herzliya, Israel ("Assignor"), and Apple Inc., a California corporation with principal place of business at 1 Infinite Loop, Cupertino, CA 95014 ("Assignee"). For good and valuable consideration, the receipt and sufficiency of which is hereby acknowledged, Assignor does hereby irrevocably sell, assign, transfer, and convey unto Assignee or its designees all of Assignor's right, title, and interest, including without limitation, the right to sue or assert causes of action for past, present and future infringement, in and to all of the following (collectively, the "Patent Rights"): - (a) the provisional patent applications, patent applications and patents listed in the attached Exhibit A-2 (the "Patents"); - (b) all provisional patent applications, patent applications, patents or other similar governmental grants or issuances (i) from which any of the Patents directly or indirectly claims priority and/or (ii) for which any of the Patents directly or indirectly forms a basis for priority; - (c) reissues, re-examinations, extensions, continuations, continuations in part, continuing prosecution applications, requests for continuing examinations, and divisions of any item in the foregoing categories (a) and (b); - (d) rights to all inventions claimed in any item in the foregoing categories (a) through (c); - (e) items in any of the foregoing in categories (a) through (d), whether or not expressly listed as Patents below and whether or not claims in any of the foregoing have been rejected, withdrawn, cancelled, or the like; - (f) rights to all inventions, invention disclosures, and discoveries described in any item in the foregoing categories (a) through (e), and all other rights arising out of such inventions, invention disclosures, and discoveries; - (g) rights to apply in any or all countries of the world for patents, certificates of invention, utility models, industrial design protections, design patent protections, or other governmental grants or issuances of any type with respect to any inventions claimed in any item in the foregoing categories (a) through (c), including, without limitation, under the Paris Convention for the Protection of Industrial Property, the International Patent Cooperation Treaty, or any other convention, treaty, agreement, or understanding; - (f) causes of action (whether currently pending, filed, or otherwise) and other enforcement rights under or on account of any of the Patents and/or any item in any of the foregoing categories (a) through (c), including, without limitation, all causes of action and other enforcement rights for (i) damages, (ii) injunctive relief, and (iii) other remedies of any kind for past, current, and future infringement; and - (i) all rights to collect royalties and other payments under or on account of any of the Patents and/or any item in the foregoing categories (b) through (h). Assignor hereby authorizes the respective patent office or governmental agency in each jurisdiction to issue any and all patents, certificates of invention, utility models or other governmental grants or issuances that may be granted upon any of the Patent Rights in the name of Assignee, as the assignee to the entire interest therein. The terms and conditions of this Assignment of Patent Rights will inure to the benefit of Assignee, its successors, assigns, and other legal representatives and will be binding upon Assignor, its successors, assigns, and other legal representatives. This Assignment of Patent Rights is being entered into in connection with that certain Intellectual Property Purchase Agreement between Assignor and Assignee. If there is any inconsistency between this Assignment of Patent Rights and such Intellectual Property Purchase Agreement, the Intellectual Property Purchase Agreement shall prevail. [Remainder of Page Intentionally Left Blank] ## Signed at Santa Clara County, California USA on L June 2012 ### **ASSIGNOR** For and on behalf of ANOBIT TECHNOLOGIES LTD. Name: Elizabeth S. Rafael Title: Director Date: ∠ June 2012 ### **ASSIGNEE** For and on behalf of: APPLE INC. Name: Gene Levoff Title: Assistant Secretary Date: __ June 2012 # EXHIBIT A –2 LIST OF PATENTS ASSIGNED UNDER ASSIGNMENT OF PATENT RIGHTS (EXHIBIT A-1) EXHIBIT A-2 LIST OF PATENTS ASSIGNED UNDER EXHIBIT A-1 ASSIGNMENT OF PATENT RIGHTS | Country | Patent
Number | Application Number | Publication Number | Title | |---------|---|--------------------|--------------------|---| | US | | 61471148 | N/A | Recovery from read failures in NAND flash by using volatile memory. | | US | *************************************** | 60747106 | N/A | DSP and coding algorithms | | US | | 60806533 | N/A | High Density Memory Systems
and Methods | | US | | 60821764 | N/A | Algorithms for programming
and reading memory devices
Additional files:
Coding and Decoding
Algorithms for Memory
Devices
Method for Feedback Coded
Programming in Memory
Devices
Non-Linear Equalization in
Flash Memories | | US | | 60822236 | N/A | Algorithms for Increasing Density and Robustness of Memory Devices Additional File: Dynamic data-rate allocation, Precoding for combating impulsive noise | | US | | 60823650 | N/A | Algorithms for Measuring and
Estimating Coupling Ratios in
Memory Devices | | US | | 60825913 | N/A | New Methods for Non-Volatile
Memory | | US | | 60825917 | N/A | Methods for Reducing
Coupling Effect in Memory
Devices | | US | 60827067 | N/A | Methods for Mitigating
Disturb Noise in Memory
Devices | |----|----------|-----|--| | US | 60862611 | N/A | A Method for High Speed
Access to Multi-Level Memory
Devices Using Variable
Accuracy Programming | | US | 60862612 | N/A | Dynamic programming rate allocation for memory devices | | US | 60863480 | N/A | A Method to Combat Aging
and Crosstalk in Flash Memory
Devices | | US | 60863491 | N/A | Improved Programming Speed & reliability, by improvement the P&V | | US | 60863506 | N/A | Reading & Programming
Methods in memory devices | | US | 60863810 | N/A | Methods for High Resolution
Sampling and Feedback Codes
in Memory Devices
Feedback Codes
(Re-submitted - 16 on
1/11/2006) | | US | 60865653 | N/A | High-speed interface | | US | 60865665 | N/A | Training sequences | | US | 60866071 | N/A | Improved Programming Cycle
of Memory Devices | | US | 60866860 | N/A | Capacity Management in memory devices | | US | 60867204 | N/A | Architecture of high density,
high performance memory
devices | | US | 60867399 | N/A | Architecture of high density,
high performance memory
devices | | US | 60867401 | N/A | Efficient Methods for
Mitigating Disturb Noise in
Memory Devices | |----|----------|-----|---| | US | 60868342 | N/A | Methods to optimize memory
devices structure using a
Digital Signal Processor | | US | 60868549 | N/A | Methods to compensate on
Sense Amplifier mismatch | | US | 60868731 | N/A | Method to improve memory devices testing | | US | 60870398 | N/A | Application Dependent
Memory Device Interface | | US | 60870399 | N/A | Methods to improve memory devices latency | | US | 60871838 | N/A | Usage of Bad Blocks to
Increase Capacity | | US | 60882240 | N/A | Memory device in which the size of the input and output pages is different than the actual capacity of a page | | US | 60883061 | N/A | An Extension to Memory
Device | | US | 60883071 | N/A | Method for assessing memory capacity and optimizing memory utilization based on measuring the time periods between programming operations | | US | 60885024 | N/A | Method for Mitigating Errors in
Memory Devices that
Combines DSP and Analog
Program and Verify Algorithms | | US | 60885987 | N/A | Combined Capacity Management and Coding Schemes for memory devices | | US | 60886102 | N/A | Combined Interference Mitigation and Disturb Mitigation with Coding Schemes for Memory Devices | |----|----------|-----
---| | US | 60886429 | N/A | Methods for Error Estimations
in Memory Array | | US | 60886450 | N/A | Methods for Error Estimations
in Memory Array | | US | 60888599 | N/A | Adaptive Step Pulse
Programming Scheme for
Memory Devices | | US | 60888828 | N/A | Parameter Optimization in memory devices | | US | 60889277 | N/A | Parameter Optimization in memory devices | | US | 60889279 | N/A | A detection device with a serial output | | US | 60891568 | N/A | Back Pattern Dependency
Estimation | | US | 60891569 | N/A | Back Pattern Dependency
Estimation | | US | 60892869 | N/A | Methods to Implement a Combined Interference Mitigation and Disturb Mitigation with Coding Schemes for Memory Devices | | US | 60893142 | N/A | Multi Level Read Algorithm | | US | 60894290 | N/A | Methods to Calculate the
Optimized Thresholds for
Reading Memory Devices | | US | 60894456 | N/A | Methods to Cancel Crosstalk in
Memory Devices | | US | 60895746 | N/A | Reduce Power Peaks in
Multi-Components Systems | | US | 60895748 | N/A | Methods to Optimize ECC and EDC power and typical latency in memory | |-------|----------|-----|---| | US | 60896275 | N/A | Methods to Reduce Die Size
Area of Memory Devices | | US | 60912056 | N/A | Command Set Extension for
Memory Devices | | US | 60913281 | N/A | Command Set Extension for
Memory Devices | | US | 60915540 | N/A | Reducing margins in voltage
levels of memory devices | | US | 60915689 | N/A | Reducing margins in voltage levels of memory devices | | US | 60916877 | N/A | Bit Mappings for Multi Level
Cells Memory Devices | | US | 60916888 | N/A | Reducing margins for the erased level in MLC memory devices | | US | 60917649 | N/A | Fragment Coding for Memory devices | | US | 60917651 | N/A | Performance Optimization
method for systems accessed
as slaves | | US | 60917652 | N/A | Efficient method for
distinguishing between full
and partial programmed
memory | | US US | 60917653 | N/A | Methods to Improve Memory
Device Functionality | | US | 60938192 | N/A | Combating Back Pattern Dependency and Other Distortions in Flash Memory Devices Using Re-read with Modified Read Parameters | | US | 60939076 | N/A | Cell Group Parameters Adjustments According Noise Margin | |----|----------|-----|--| | US | 60939077 | N/A | Estimation and Calibration
Methods for Memory Devices | | US | 60940404 | N/A | Bit Mappings for Multi Level
Cells Memory Devices | | US | 60941673 | N/A | Memory Devices Using
Non-Rectangular Cell Array | | US | 60943613 | N/A | Allocating and ordering of pages in MLC memory devices | | US | 60943745 | N/A | Detecting Number of
Programmed Pages | | US | 60943843 | N/A | Power Reduction of Electronic Devices with Memory | | US | 60946218 | N/A | Protected Cells in MLC
Memory Devices | | US | 60947427 | N/A | Improving the program and verify process of memory devices | | US | 60947428 | N/A | Improving programming speed of memory devices | | US | 60947970 | N/A | Interference mitigation using individual word line erasure operations | | US | 60948783 | N/A | Improving P&V Scheme | | US | 60948844 | N/A | Methods to calculate the optimal ISPP | | US | 60948995 | N/A | Allocation of multi level translation table | | US | 60949515 | N/A | Improved coding schemes for memory devices with non-uniform error rate | | US | 60949891 | N/A | Methods to Improve DRAM performance | |----|----------|-----|--| | US | 60950884 | N/A | Methods to calculate Soft
Metrics from memory device
cells | | US | 60951215 | N/A | Methods to calculate Soft
Metrics from memory device
cells | | US | 60952276 | N/A | Method for Programming
Memory Devices that are
Robust to Programming
Disturbs | | US | 60952572 | N/A | Improved P&V Scheme to
Reduce Cross-Talk Variance | | US | 60954010 | N/A | Improve Utilization of
Redundancy & Spare Bits
within Memory Devices | | US | 60954012 | N/A | Improve Utilization of
Redundancy & Spare Bits
within Memory Devices | | US | 60954013 | N/A | Memory Controller with
Variable Redundancy
Requirements | | US | 60954163 | N/A | Improve Read Throughput of
Memory Device | | US | 60954169 | N/A | Methods for Preventing
Program Errors in Memory
Devices | | US | 60954317 | N/A | Method for Improving Programming Speed of Multi-Level Cell Memory Devices without Compromising Reliability | | US | 60956931 | N/A | Novel Algorithms for
Distortion Estimations in
Memory Devices | | US | 60968317 | N/A | Method to decrease number
of Errors in Flash memory
devices in case of Binary Bit
Mapping | |----|----------|-----|--| | US | 60968656 | N/A | Methods to Ensure Specific
Blocks in Memory Devices are
Valid | | US | 60970058 | N/A | Method for Improving Programming Speed of Multi-Level Cell Memory Devices without Compromising Reliability | | US | 60971593 | N/A | A method to improve
mitigation of failed memory
programming | | US | 60971600 | N/A | An Interface between Memory
Extension and Memory
Controller | | US | 60973452 | N/A | Method for Combating Programming and Reading Memory Devices using Measurements of the Duration of Programming and Erase Operations | | US | 60973453 | N/A | Method for Programming
Memory Devices | | US | 60976435 | N/A | Winding Geometry for
Memory Device | | US | 60976436 | N/A | Additional Methods to
Incorporate Signal Processing
Module on Memory Devices | | US | 60978146 | N/A | A Method for Reliable Programming of Flash Devices in the Presence of Temperature Variations | | US | 60978767 | N/A | A method for generating random numbers using flash memory | | US | 60978769 | N/A | A method for counting
number of events and
maintaining the counter in a
memory | |----|----------|-----|---| | US | 60981113 | N/A | A method for reading soft values from a memory device | | US | 60981114 | N/A | Estimate and Mitigate Disturbs
and Coupling in Erased Level
in Memory Devices | | US | 60981116 | N/A | Methods for Combating
Voltage Shift In Memory
Devices | | US | 60981117 | N/A | Methods for Combating Erase
Failure In Memory Devices | | US | 60982480 | N/A | Methods for Combating
Voltage Shift In Memory
Devices | | US | 60983270 | N/A | Securing configuration commands to memory devices | | US | 60983272 | N/A | Methods for Combating
Voltage Shift In Memory
Devices | | US | 60983604 | N/A | Reverse Programming Method
for Non-Volatile Memories | | US | 60983950 | N/A | Combined Coding and
Program and Verify method | | US | 60985236 | N/A | Programming algorithm in MLC memory devices | | US | 60987106 | N/A | Adaptive Allocation of
Reference Cells in Memory
Devices | | US | 60987417 | N/A | Optimized Packing of Variable
Capacity Memory Chips in a
multi-chip Product | | US | 60987632 | N/A | Methods to Reduce Power
Peaks of a Memory Storage
System | |----|----------|-----|---| | US | 60989129 | N/A | Optimization of sampling in flash memories | | US | 60989812 | N/A | Method and Apparatus for
Incremental Coding in
Memory Devices | | US | 60991245 | N/A | Method to reduce number of
read operations during
erroneous event in Flash
devices | | US | 60991246 | N/A | A method to adjust reading thresholds | | US | 61012424 | N/A | A Programming Scheme for
Memory Devices | | US | 61012933 | N/A | A Programming Scheme for
Memory Devices | | US | 61013027 | N/A | Method to efficiently perform random access read in Flash devices | | US | 61013032 | N/A | Method to efficiently cancel interference in Flash devices | | US | 61014048 | N/A | Programming Method for
Multi-Plane Memory Device | | US | 61016566 | N/A | Method to efficiently perform random access read in Flash devices | | US | 61016568 | N/A | Cyclic Array of Blocks for File
System Tables In Memory
Devices | | US | 61016569 | N/A | Using Mirrored Blocks in
Memory Devices | | US | 61016570 | N/A | Methods to Improve Read
Throughput in the Event of
Distortion Cancellation | | US | 61016816 | N/A | A Memory Device with
Indications to a Memory
Controller | |----|----------|-----|---| | US | 61016824 | N/A | Additional Methods to
Calculate the Optimized
Thresholds for Reading
Memory Devices | | US | 61017177 | N/A | Additional Methods to
Calculate the Optimized
Thresholds for Reading
Memory Devices | | US | 61022340 | N/A | Improving Program
Throughput of a Memory
Device | | US | 61022343 | N/A | MEMORY CELLS WITH
NON-UNIFORM
PROGRAMMING LEVELS | | US | 61022364 | N/A | Enhancement of Error
correction code using random
bit inversion | | US | 61024561 | N/A | Methods to Read Soft Values
from Memory Device with
minimal Throughput Penalty | | US | 61026150 | N/A | Using the parity check equations of an error correction code to estimate and track parameters | | US | 61026211 | N/A | Fast Cycling Level Estimation | | US | 61028226 | N/A | A Memory Device with
Integrated Memory Buffer and
Logic | | US | 61029428 | N/A | Indication of Cell Status within
a Memory Device | | US | 61030240 | N/A | Open loop NVRAM programming for
increasing write throughput | | US | 61030972 | N/A | Method to reduce variance of FLASH cells after retention | |----|----------|-----|--| | US | 61031711 | N/A | Method of Joint decoding in FLASH memories | | US | 61031712 | N/A | Open loop NVRAM programming for increasing write throughput | | US | 61034511 | N/A | Reading Combined Soft and
Hard Information from
Memory Devices | | US | 61037327 | N/A | Reduced Sense time for Flash
Devices | | US | 61037328 | N/A | Enhancement of Error
correction code using
systematic bit inversions | | US | 61038758 | N/A | Temperature and Wear Level Estimation and Calibration | | US | 61039109 | N/A | Re-using Bad Blocks in
Memory Devices | | US | 61039813 | N/A | Improving Iterative Decoding Using Added LLR Information | | US | 61040800 | N/A | Combined Replaced Cells
Information into Distortion
Estimation Procedure | | US | 61041600 | N/A | Combined Replaced Cells
Information into Distortion
Estimation Procedure | | US | 61043733 | N/A | Testing Procedure for a
Memory System with
Correction Capabilities | | US | 61043734 | N/A | Reducing the peak Power consumption of ECC decoders | | US | 61043736 | N/A | Reducing the average Power consumption of ECC decoders | | US | 61045627 | N/A | Avoiding BPD errors due to temperature shift | |----|----------|-----|---| | US | 61045628 | N/A | Methods for Combating
Voltage Shift In Memory
Devices | | US | 61046807 | N/A | A system with HDD and SSD | | US | 61046809 | N/A | A method to improve HDD
Operation | | US | 61048191 | N/A | Wear level estimation for Flash
devices | | US | 61048558 | N/A | Efficient Implementation of
Program-After-Erase in
Memory Devices | | US | 61048669 | N/A | A method for adaptively adjusting PV levels of the memory devices | | US | 61052276 | N/A | Method of Hybrid decoding in
FLASH memories | | US | 61053027 | N/A | Wear level estimation for Flash devices | | US | 61053029 | N/A | Efficient Implementation of
Program-After-Erase in
Memory Devices | | US | 61053030 | N/A | A method for adaptively
adjusting PV levels of the
memory devices | | US | 61053031 | N/A | Method of Hybrid decoding in
FLASH memories | | US | 61054493 | N/A | A New Programming Scheme
for Memory Devices | | US | 61056488 | N/A | Adaptive Program parameters
for Flash devices | | US | 61057827 | N/A | Method to calculate
interference for memory
device cells | | US | 61060486 | N/A | Synchronization among
storage devices in a RAID SSD
system | |----|----------|-----|---| | US | 61061685 | N/A | Optimized Syndrome calculation for BCH decoders | | US | 61061689 | N/A | Memory Devices Using
Non-Rectangular Cell Array | | US | 61074643 | N/A | Memory block sorting based on usage | | US | 61074644 | N/A | Battery operated flash module | | US | 61076160 | N/A | A New Programming Scheme
for Memory Devices | | US | 61076161 | N/A | Memory block sorting based on usage | | US | 61076163 | N/A | Battery operated flash module | | US | 61076192 | N/A | Programming the USB to MSB levels | | US | 61076647 | N/A | Fast Recovery from Erase
Failures | | US | 61076745 | N/A | Modified Erase Verify
Procedure | | US | 61076748 | N/A | Using Bad Blocks List to
Enlarge the Redundant Block
List | | US | 61077182 | N/A | Use of SLC area to improve read performance while performing XT cancellation | | US | 61077183 | N/A | Marking Erased Sectors in the
Binary Cache | | US | 61078405 | N/A | Improved Read Performance
of MLC Blocks using Binary
Cache Method and XTALK
Cancellation | | US | 61078777 | N/A | Multi-Plane Internal Copy Back
using Uncoupled Pages | |----|----------|-----|---| | US | 61078778 | N/A | Improved Read Performance
of MLC Blocks using Binary
Cache Method and XTALK
Cancellation | | US | 61078780 | N/A | A method for a memory
controller to read at
thresholds outside memory
device boundaries | | US | 61078782 | N/A | A method for a MLC memory
device controller to restore
data from mixed levels | | US | 61079140 | N/A | Insertion of Gaps in Binary
Cache for non Programmed
Pages | | US | 61079141 | N/A | Using Snapshots in the Binary
Cache for Faster Recovery
Time | | US | 61080877 | N/A | Modified Erase Verify
Procedure | | US | 61081047 | N/A | Using Snapshots in the Binary
Cache for Faster Recovery
Time | | US | 61082231 | N/A | Binary Cache Configuration for
Enhancing Programming
Performance | | US | 61082233 | N/A | Multi-Plane Internal Copy Back
using Uncoupled Pages | | US | 61086164 | N/A | A method for efficient data
recovery of multi-bit per cell
memory devices during power
failure | | US | 61086225 | N/A | Program & Read parameters
change for Memory devices | | US | 61086541 | N/A | A method for efficient data
recovery of multi-bit per cell
memory devices during power
failure | |----|----------|-----|---| | US | 61093334 | N/A | Joint Programming Schemes
for Memory Devices | | US | 61093366 | N/A | Modified Erase Verify
Procedure | | US | 61093367 | N/A | Multi-Plane Internal Copy Back
using Uncoupled Pages | | US | 61093368 | N/A | Using Bad Blocks List to
Enlarge the Redundant Block
List | | US | 61093369 | N/A | Modified Erase Verify
Procedure | | US | 61093461 | N/A | A method for efficient data
recovery of multi-bit per cell
memory devices during power
failure | | US | 61093578 | N/A | Using bad blocks in SSD | | US | 61093596 | N/A | Battery operated flash module | | US | 61093610 | N/A | SSD Curing | | US | 61093613 | N/A | ECC segmentation | | US | 61093621 | N/A | Sequential and random partition | | US | 61093632 | N/A | Local flash curing | | US | 61093722 | N/A | Method for forecasting flash condition | | US | 61093723 | N/A | Best available block metric | | US | 61093724 | N/A | SSD Flash module | | US | 61093727 | N/A | Diagnosis through Life Time
and Self Healing Memory
Device | | US | 61094066 | N/A | Chip level fail recovery on SSD | |----|----------|-----|---| | US | 61094417 | N/A | Global Wear Leveling for
Memory Devices | | US | 61096805 | N/A | Methods to calculate the optimal ISPP | | US | 61096806 | N/A | Peak Sample & Jump method | | US | 61096807 | N/A | Method for Saving SSD and
Memory Devices Power | | US | 61096808 | N/A | Power Efficient Method for
Refreshing Memory | | US | 61097224 | N/A | Faster Programming method | | US | 61098829 | N/A | Improved Copy Back
Procedure | | US | 61105454 | N/A | Chien Search Using Serial
Multipliers | | US | 61105580 | N/A | Using Low-Speed Random
Access Device To Protect Data
Stored in High-Speed Random
Access Device | | US | 61105580 | N/A | Methods for Error Correction
in Storage Systems | | US | 61105630 | N/A | Endurance improvement of
flash memories in a file system
environment | | US | 61105814 | N/A | Usage of Binary Cache in a
Multi-Die Memory System | | US | 61105816 | N/A | A Method to Handle Program
Failure Cases | | US | 61105818 | N/A | Improving Capacity,
endurance and reliability of
solid-state disks | | US | 61105819 | N/A | Method for combating
retention errors during
un-plugged storage of
memory devices | |-------|----------|-----|--| | US | 61109767 | N/A | Methods to Generate
Scrambler Seed in memory
devices | | US | 61112195 | N/A | Efficient raid implementation | | U5 | 61114473 | N/A | Optimized Encoder
supporting multiple cyclic
codes | | US | 61115085 | N/A | A method for equal-division of cells among levels for improving read performance | | US | 61115086 | N/A | Storing M bits/cell using an N
bits/cell device, where N <m< td=""></m<> | | US | 61118630 | N/A | Modified Erase Verify
Procedure | | US US | 61118632 | N/A | A Method to Handle Program
Failure Cases | | US | 61119929 | N/A | Co-existence and cooperation between on-memory and external signal processing algorithms to combat memory cell impairments | | US | 61119950 | N/A | Page Reordering method to
improve read performance
while performing XT
cancellation or acquisition | | US | 61120968 | N/A | Flash Reliable Mode | | US | 61120980 | N/A | Refresh mechanism for
non-volatile memories using
Re-programming of the same
page | | US | 61120987 | N/A | Method to reduce number of
Erasures in NAND device | | US | 61141830 | N/A | A Memory Device Interface
with Additional Commands | |----|----------|-----|--| | US | 61141842 | N/A | A method for overhauling SSD
and non-volatile memory
devices | | US | 61141855 | N/A | Wider Programming for upper
level for Flash devices | | US | 61141866 | N/A | Dynamic Over-Provisioning Algorithm that can Improve the Reliability of Memory Devices | | US | 61144629 | N/A | Methods for storing M bits/cell
using an N bits/cell device,
where N <m< td=""></m<> | | US | 61145562 | N/A | Hierarchal Storage Device
Management System | | US | 61145974 | N/A | Randomizing data in hard
drive | | US | 61151189 | N/A | Flash solid state disk dynamic
power management | | US | 61152073 | N/A | Cooperative power
management in a multiple
flash SSD device | | US | 61156520 | N/A |
Memory Device with
Adjustable & Adaptive Verify
Scheme | | US | 61157599 | N/A | Enhanced Control over Flash
Partial Blocks | | US | 61158374 | N/A | Method of Joint decoding in FLASH memories | | US | 61162310 | N/A | Method to Improve Program
Reliability for Multi Level
NAND devices | | US | 61163129 | N/A | Reduction of Program Errors
using XT Procedure | | US | 61163133 | N/A | Memory Controller with
External DRAM Capabilities | |----|----------|-----|--| | US | 61163138 | N/A | Flash Read Threshold
DataBase operation | | US | 61163146 | N/A | Bit Reversal metric for iterative decoders | | US | 61168604 | N/A | Improved re-Program operation | | US | 61168605 | N/A | Methods for Efficient Copy
from Binary Cache to MLC
Area in Memory Devices | | US | 61171089 | N/A | SSD rapid format | | US | 61171092 | N/A | Drive locking | | US | 61172833 | N/A | Improved Soft Sample
Operation in Non-Volatile
Memory | | US | 61175030 | N/A | A Method for Optimal
Thresholds Estimation | | US | 61176949 | N/A | Utilizing SLC Cache scheme in a Memory Device | | US | 61180156 | N/A | Reduce System Overhead
during Read Operation from
Memory Device | | US | 61181678 | N/A | Higher Program Voltage for
special SLC Word Lines | | US | 61182763 | N/A | Varying verify bias during PV process | | US | 61187676 | N/A | Improving Memory Device
Operation by Varying Vpass | | US | 61218080 | N/A | Improving Memory Device
Operation by Varying Vpass | | US | 61221582 | N/A | Chien Search Using Multiple
basis representation | | US | 61224897 | N/A | Dynamic allocation of SLC/MLC according to estimated heat distribution | |----|----------|-----|--| | US | 61225929 | N/A | Programming the USB to MSB
levels | | US | 61229780 | N/A | Allocating blocks for testing and monitoring | | US | 61229788 | N/A | Design of Rate Compatible codes | | US | 61229793 | N/A | Efficient Interference
coefficient measurement | | US | 61230127 | N/A | Handling Program Failure
Cases | | US | 61234688 | N/A | Systems and method for curing element in memory element array | | US | 61234695 | N/A | Using a memory device with
Fast and Enhanced read
modes | | US | 61234699 | N/A | Efficient Decoding of Error
Correction Codes (ECC) | | US | 61240280 | N/A | NAND block Unified conditioning | | US | 61243726 | N/A | Memory Device Curing | | US | 61244493 | N/A | SSD Flash module | | US | 61244500 | N/A | Diagnosis through Life Time
and Self Healing Memory
Device | | US | 61244506 | N/A | Joint Programming Schemes
for Memory Devices | | US | 61246999 | N/A | Improve Program Throughput
by reordering pages | | US | 61248915 | N/A | Chien Search Latency
reduction | | US | 61251787 | N/A | Methods for estimating block's condition during operation time | |----|----------|-----|---| | US | 61251807 | N/A | Encoding the modulo 2 sum
of different pages in a flash
device in order to decrease
the probability of page failures | | US | 61251829 | N/A | Hard LDPC Bit Flipping Decoding Using 2 Bits For Every Information Node | | US | 61251836 | N/A | Efficient End To End Data
Protection Method in Flash
Storage Systems | | US | 61256200 | N/A | Reduce Read thresholds sets | | US | 61262568 | N/A | A Method for Measuring Read
Disturb | | US | 61263836 | N/A | Method of maintaining quality
of service for Random Access
Memories
Perfect Bank DRAM | | US | 61263859 | N/A | Interleaved ECC method for
Random Access Memories | | US | 61264673 | N/A | Efficient readout schemes for analog memory cell devices | | US | 61264809 | N/A | LLR Unit Architecture | | US | 61265763 | N/A | Wordline Issue | | US | 61286814 | N/A | SSD – Read and Write
performance balancing | | US | 61290547 | N/A | Method of data compression for flash based storage devices | | US | 61290552 | N/A | Offline methods of data compression for flash based storage devices | | US | 61290559 | N/A | Accelerated data programming method for flash devices | |----|----------|-----|--| | US | 61292229 | N/A | Recipe Command & Status | | US | 61293676 | N/A | Hibernation Storage Area
Usage for Over Provisioning
during Activity Time | | US | 61293808 | N/A | Recovery from memory device failure using redundancy | | US | 61293814 | N/A | Method for error correction using remote data storage | | US | 61294498 | N/A | Varying verify bias during PV process | | US | 61301302 | N/A | Termination criteria for iterative decoders | | US | 61303415 | N/A | LDPC code design for optimized performance | | US | 61324429 | N/A | Reuse of host hibernation
storage space by memory
controller | | US | 61326269 | N/A | Special read commands for
Efficient interference
cancellation and soft ECC
decoding for
memory devices | | US | 61326858 | N/A | special areas - v1 | | US | 61330961 | N/A | Improved Soft Sample
Operation in Non-Volatile
Memory | | US | 61330970 | N/A | Special read commands for
Efficient interference
cancellation and soft ECC
decoding for memory
devices | | US | 61330989 | N/A | Efficient copy and program
commands with an option to
stop/ resume or to break long
operations to short steps | |----|----------|-----|--| | US | 61334606 | N/A | Adaptive over- provisioning in memory systems | | US | 61356521 | N/A | sending address after data
while programming NAND
FLASH. | | US | 61357114 | N/A | Current Peaks Smoothing | | US | 61358970 | N/A | Constant Bit Rate Streaming
Command for Storage
Systems | | US | 61361458 | N/A | Determining read threshold
sets and optimizing their
usage | | US | 61361946 | N/A | Pipeline Management SSD | | US | 61363248 | N/A | Shaping Methods for
Combating Voltage Range
Degradation Due to Shift
Effects
In Memory Arrays | | US | 61363655 | N/A | Handling power failures and program failures in memory devices | | US | 61364198 | N/A | NAND Soft Read Cache | | US | 61364406 | N/A | Redundant data storage in multi die memory system | | US | 61367894 | N/A | Read and Write Cache in hybrid drives | | US | 61369667 | N/A | Program non integer bits per
cell across wordlines | | US | 61369719 | N/A | Avoid selecting last punched block | | US | 61369764 | N/A | Codes for multi-die | |---|----------|-----|---| | | | | redundancy | | US | 61370817 | N/A | High Endurance Cache in Flash | | | | | Memory Devices | | US | 61372913 | N/A | Combating the cell to cell | | | | | interference to erased cells | | US | 61372921 | N/A | Combating the cell to cell | | | | | interference to erased cells | | US | 61373883 | N/A | Redundant data storage in | | | | | multi die memory system | | US | 61374377 | N/A | Soft ECC Direction | | US | 61380233 | N/A | A method for fast | | | | | programming of NAND
memory devices in a manner | | | | | that reduces voltage shifts of | | | | | erased cells | | US | 61386570 | N/A | Optimization of Hybrid Disk | | | | | performance | | US | 61386633 | N/A | NAND block Unified | | | | | conditioning | | US | 61390193 | N/A | Special read commands for | | | | | Efficient interference cancellation and soft ECC | | | | | decoding for | | | | | memory devices | | US | 61406610 | N/A | NAND Soft Read Cache | | US | 61408659 | N/A | Battery-less SSD that is Robust | | | | | to Power Failures and Holds | | | | | Variables in RAM | | US | 61417218 | N/A | Differential Level | | *************************************** | | | Programming | | US | 61417315 | N/A | Shaping Methods for | | | | | Combating Voltage Range | | | | | Degradation Due to Shift
Effects | | | | | In Memory Arrays | | | | | | | US | 61417429 | N/A | NV memory system optimizations | |----|----------|-----|---| | US | 61417433 | N/A | NV memory system optimizations | | US | 61419922 | N/A | Bootable PCle-connected
memory or storage computer
device | | US | 61426542 | N/A | Combinations of NVRAM and DRAM systems | | US | 61431442 | N/A | protecting boot data against
reflow and read disturb | | US | 61431444 | N/A | Unified Flash and RAM | | US | 61432219 | N/A | Data-Out Prediction and Pre
Fetching in Bridged High Rate
Systems | | US | 61435307 | N/A | NVRAM partition | | US | 61436606 | N/A | Use of Spare blocks for SLC cache | | US | 61436619 | N/A | Verifying Program Operation | | US | 61440867 | N/A | Recovery from Bit flip in
memory system | | US | 61440868 | N/A | Structured data mapping | | US | 61442252 | N/A | Memory Protection Against
WL Failure | | US | 61447111 | N/A | Incremental redundancy codes | | US | 61447113 | N/A | Adaptive memory partition between units | | U5 | 61448201 | N/A | Storage device with sideband interface for boot | | US | 61454584 | N/A | Management Parity LBA separately partition | | US | 61454599 | N/A | A storage system that exports multiple disk interface | |----|----------|-----|--| | US | 61466941 | N/A | MCP eMMC | | US | 61469854 | N/A | Interference mitigation using individual word line erasure operations | | US | 61471257 | N/A | Serial PPN | | US | 61472203 | N/A | Memory system running scripts | | US | 61472629 | N/A | Low Power SERDES Interface | | US | 61475241 | N/A | data storage in analog
memory cells using a
non-integer number of
bits
per cell | | US | 61476287 | N/A | SAS Target Performance optimizations | | US | 61482213 | N/A | Provisional: LDPC Decoders
interaction | | US | 61482216 | N/A | Provisional: LDPC Double rate soft decoder | | US | 61486284 | N/A | NAND LSB pages utilization | | US | 61486330 | N/A | Sparse Programming Method | | US | 61486341 | N/A | Advanced Programming
Methods | | US | 61494916 | N/A | Dual FTL | | US | 61497074 | N/A | Cache block garbage collection | | US | 61528771 | N/A | SAS Target Performance optimizations | | US | 61529267 | N/A | Codes for multi-die
redundancy | | US | 61529938 | N/A | Provisional-Page mode FTL
tables in SLC | | US | 61534389 | N/A | IPR Proposals | |----|------------|-----------------|---| | US | 61536597 | N/A | Using dynamic mapping for
die balancing in solid state
drives | | US | 61536598 | N/A | Selective secure erase in solid state drives | | US | 61537144 | N/A | Optimized decoding of linear codes | | US | 61543813 | N/A | Single Event Upset Protection in Cache Memories | | US | 61557428 | N/A | Efficient Programming
schemes to protect data from
power failure during
programming | | US | 12/880,101 | Non-Publication | REUSE OF HOST HIBERNATION
STORAGE SPACE BY MEMORY
CONTROLLER | | US | 12/963,649 | Non-Publication | Memory Management
Schemes for Non-Volatile
Memory Devices | | US | 12/987,174 | Non-Publication | Redundant data storage in
multi-die memory
systems | | US | 12/987,175 | Non-Publication | Redundant data storage in
multi-die memory
systems | | US | 13/021,754 | Non-Publication | Reducing Peak Current in
Memory Systems | | US | 13/047,822 | Non-Publication | Data Storage Commands with
Data Preceding Address | | US | 13/170,202 | Non-Publication | ESTIMATION OF MEMORY CELL READ THRESHOLDS BY SAMPLING INSIDE PROGRAMMING LEVEL DISTRIBUTION INTERVALS | | US | | 13/171,467 | Non-Publication | Efficient Selection of Memory
Blocks for Compaction | |----|-----------|------------|-----------------|--| | US | | 13/192,495 | Non-Publication | Data storage at a non-integer
number of bits per cell | | US | | 13/192,504 | Non-Publication | Interference mitigation in
analog memory cells using
individualword line erasure
operations | | US | | 13/284,913 | 20120044762 | REJUVENATION OF ANALOG
MEMORY CELLS | | US | 7,924,648 | 11/945,575 | 20080126686 | MEMORY POWER AND PERFORMANCE MANAGEMENT | | US | 7,706,182 | 11/949,135 | 20080130341 | ADAPTIVE PROGRAMMING OF
ANALOG MEMORY CELLS | | US | 7,900,102 | 11/957,970 | 20080148115 | HIGH-SPEED PROGRAMMING
OF MEMORY DEVICES | | US | 7,593,263 | 11/958,011 | 20080158958 | MEMORY DEVICE WITH
REDUCED READING LATENCY | | US | 8,005,086 | 11/995,801 | 20080198650 | Distortion estimation and cancellation in memory devices | | US | 7,821,826 | 11/995,805 | 20100110787 | MEMORY CELL READOUT USING SUCCESSIVE APPROXIMATION | | US | 7,697,326 | 11/995,806 | 20090103358 | REDUCING PROGRAMMING
ERROR IN MEMORY DEVICES | | US | 7,466,575 | 11/995,811 | 20080198652 | MEMORY DEVICE PROGRAMMING USING COMBINED SHAPING AND LINEAR SPREADING | | US | 8,151,163 | 11/995,812 | 20100115376 | AUTOMATIC DEFECT
MANAGEMENT IN MEMORY
DEVICES | | US | 8,060,806 | 11/995,813 | US20100131826 | ESTIMATION OF NON-LINEAR DISTORTION IN MEMORY DEVICES | |----|-----------|------------|-----------------|--| | US | 7,975,192 | 11/995,814 | US20100165730 | READING MEMORY CELLS USING MULTIPLE THRESHOLDS | | US | 8,156,403 | 11/996,054 | 20090024905 | COMBINED DISTORTION ESTIMATION AND ERROR CORRECTION CODING FOR MEMORY DEVICES | | US | 7,751,240 | 12/019,011 | 20080181001 | MEMORY DEVICE WITH NEGATIVE READ THRESHOLDS | | US | 8,151,166 | 12/037,487 | 20080219050 | REDUCTION OF BACK PATTERN DEPENDENCY EFFECTS IN MEMORY DEVICES | | US | 8,001,320 | 12/045,520 | 20080263262 | COMMAND INTERFACE FOR MEMORY DEVICES | | US | | 12/063,544 | 20100157641 | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | US | | 12/119,069 | 20080282106 | DATA STORAGE WITH INCREMENTAL REDUNDANCY | | US | 7,925,936 | 12/171,797 | Non-Publication | MEMORY DEVICE WITH
NON-UNIFORM
PROGRAMMING LEVELS | | US | 8,068,360 | 12/178,318 | 20090106485 | READING ANALOG MEMORY CELLS USING BUILT-IN MULTI-THRESHOLD COMMANDS | | US | | 12/186,867 | 20090043951 | PROGRAMMING SCHEMES
FOR MULTI-LEVEL ANALOG
MEMORY CELLS | | US | 7,773,413 | 12/245,749 | 20090091979 | RELIABLE DATA STORAGE IN
ANALOG MEMORY CELLS IN
THE PRESENCE OF
TEMPERATURE VARIAIONS | | US | 8,000,141 | 12/251,471 | Non-Publication | COMPENSATION FOR
VOLTAGE DRIFTS IN ANALOG
MEMORY CELLS | |----|-----------|------------|-----------------|---| | US | | 12/323,544 | 20090144600 | EFFICIENT RE-READ OPERATIONS IN ANALOG MEMORY CELL ARRAYS | | US | | 12/332,368 | 20090158126 | EFFICIENT INTERFERENCE CANCELLATION IN ANALOG MEMORY CELL ARRAYS | | US | | 12/332,370 | 20090157964 | EFFICIENT DATA STORAGE IN
MULTI-PLANE MEMORY
DEVICES | | US | 8,085,586 | 12/344,233 | 20090168524 | WEAR LEVEL ESTIMATION IN ANALOG MEMORY CELLS | | US | | 12/355,817 | 20090187803 | DECODING OF ERROR
CORRECTION CODE USING
PARTIAL BIT INVERSION | | US | 8,156,398 | 12/364,531 | 20090199074 | PARAMETER ESTIMATION BASED ON ERROR CORRECTION CODE PARITY CHECK EQUATIONS | | US | 7,924,587 | 12/388,528 | 20090213653 | programming of analog
memory cells using a single
programming pulse per state
transition | | US | 7,864,573 | 12/390,522 | 20090213654 | Programming analog memory cells for reduced variance after retention | | US | | 12/397,368 | 20090228761 | EFFICIENT READOUT FROM ANALOG MEMORY CELLS USING DATA COMPRESSION | | US | 8,059,457 | 12/405,275 | 20090240872 | MEMORY DEVICE WITH MULTIPLE-ACCURACY READ COMMANDS | | US | | 12/419,304 | Non-Publication | HIGH-PERFORMANCE ECC
DECODER | | US | 7,924,613 | 12/497,707 | Non-Publication | DATA STORAGE IN ANALOG MEMORY CELLS WITH PROTECTION AGAINST PROGRAMMING INTERRUPTION | |----|-----------|------------|-----------------|---| | US | | 12/522,175 | 20100091535 | ADAPTIVE ESTIMATION OF
MEMORY CELL READ
THRESHOLDS | | US | | 12/534,893 | Non-Publication | IMPROVED DATA STORAGE IN
ANALOG MEMORY CELLS
USING MODIFIED PASS
VOLTAGES | | US | 7,995,388 | 12/534,898 | Non-Publication | DATA STORAGEUSING
MODIFIED VOLTAGES | | US | 8,169,825 | 12/551,567 | Non-Publication | RELIABLE DATA STORAGE IN ANALOG MEMORY CELLS SUBJECTED TO LONG RETENTION PERIODS | | US | | 12/551,583 | Non-Publication | SEGMENTED DATA STORAGE | | US | 8,000,135 | 12/558,528 | Non-Publication | ESTIMATION OF MEMORY CELL READ THRESHOLDS BY SAMPLING INSIDE PROGRAMMING LEVEL DISTRIBUTION INTERVALS | | US | | 12/579,430 | Non-Publication | EFFICIENT PROGRAMMING OF
ANALOG MEMORY CELL
DEVICES | | US | | 12/579,432 | Non-Publication | EFFICIENT DATA STORAGE IN
STORAGE DEVICE ARRAYS | | US | | 12/597,494 | 20100131827A1 | MEMORY DEVICE WITH INTERNAL SIGNAL PROCESSING UNIT | | US | | 12/607,078 | Non-Publication | DATA SCRAMBLING IN
MEMORY DEVICES | | US | | 12/607,085 | Non-Publication | DATA SCRAMBLING SCHEMES
FOR MEMORY DEVICES | | US | | 12/616,151 | Non-Publication | CONFIGURABLE ENCODER FOR
CYCLIC ERROR CORRECTION
CODES | |----|-----------|------------|-----------------|--| | US | | 12/618,732 | 20100124088-A1 | STORAGE AT M BITS/CELL DENSITY IN N BITS/CELL ANALOG MEMORY CELL DEVICES, M>N | | US | | 12/649,358 | Non-Publication | EFFICIENT READOUT SCHEMES
FOR ANALOG MEMORY CELL
DEVICES | | US | 8,174,857 | 12/649,360 | Non-Publication | EFFICIENT READOUT SCHEMES FOR ANALOG MEMORY CELL DEVICES USING MULTIPLE READ THRESHOLD SETS | | US | | 12/649,382 | 20100165689 | REJUVENATION OF ANALOG
MEMORY CELLS | | US | | 12/677,114 | 20100199150 | DATA STORAGE IN ANALOG
MEMORY CELL ARRAYS
HAVING ERASE FAILURES | | US | ÷ | 12/680,901 | 20100220510 | OPTIMIZED SELECTION OF MEMORY UNITS IN MULTI-UNIT MEMORY DEVICES | | US | | 12/688,883 | Non-Publication | HIERARCHICAL DATA
STORAGE SYSTEM | | US | | 12/714,501 | 20100220509 | SELECTIVE ACTIVATION OF
PROGRAMMING SCHEMES IN
ANALOG MEMORY CELL
ARRAYS | | US | 8,174,905 | 12/721,585 | 20100157675 | PROGRAMMING ORDERS FOR
REDUCING DISTORTION IN
ARRAYS OF MULTI-LEVEL
ANALOG MEMORY CELLS | | US | | 12/728,287 | 20100250836 | USE OF HOST SYSTEM RESOURCES BY MEMORY CONTROLLER | | US | | 12/728,289 | Non-Publication | Dual ECC decoder | | ÜS | | 12/728,296 | Non-Publication | DATABASE OF MEMORY READ
THRESHOLDS | |----|-----------|------------|-----------------|--| | US | | 12/758,003 | Non-Publication | Selective re-programming of
analog memory cells | | US | 7,881,107 | 12/758,044 | 20100195390 | MEMORY DEVICE WITH
NEGATIVE READ THRESHOLDS | | US | | 12/797,615 | 20100332955A1 | Chien search using multiple
basis representation | | US | | 12/822,207 | Non-Publication | ADAPTIVE
OVER-PROVISIONING IN
MEMORY SYSTEMS | | US | | 12/843,029 | Non-Publication | Efficient LDPC codes | | US | | 12/876,170 | Non-Publication | EFFICIENT STORAGE OF ERROR
CORRECTION INFORMATION
IN DRAM | | US | | 12/890,724 | Non-Publication | ERROR CORRECTION CODING OVER MULTIPLE MEMORY PAGES | | US | | 12/913,815 | Non-Publication | Termination Criteria for
Iterative Decoders | | US |
 13/069,406 | Non-Publication | Cache memory for hybrid disk
drives | | US | | 13/088,361 | Non-Publication | Read commands for reading interfering memory cells | | US | 8,145,984 | 13/114,049 | US20110225472A1 | READING MEMORY CELLS
USING MULTIPLE
THRESHOLDS | | US | | 13/171,761 | Non-Publication | Interference-aware
assignment of programming
levels in analog memory cells | | US | | 13/192,501 | Non-Publication | Data storage at a non-integer
number of bits per cell | | US | | 13/195,852 | Non-Publication | Read threshold setting based on soft readout statistics | | US | 13/214,257 | Non-Publication | MEMORY DEVICE WITH MULTIPLE-ACCURACY READ COMMANDS | |----|------------|-----------------|---| | US | 13/231,963 | Non-Publication | Memory Management For
Unifying Memory Cell
Conditions | | US | 13/239,408 | 20120026788 | Distortion estimation and cancellation in memory devices | | US | 13/239,411 | 20120026789 | Distortion estimation and cancellation in memory devices | | US | 13/284,909 | Non-Publication | MEMORY DEVICE WITH
MULTIPLE-ACCURACY READ
COMMANDS | | US | 13/338,335 | Non-Publication | Sparse programming of
Analog Memory Celles | | US | 13/355,536 | Non-Publication | Block Management Schemes
in Hybrid SLC/MLC Memory | | US | 13/356,694 | Non-Publication | Advanced Programming
Verification Schemes for
Analog Memory Cells | | US | 13/371,443 | Non-Publication | Protection Against Word Line
Failure in Memory Devices | | US | 13/405,308 | N/A | Error Correction Codes for
Incremental Redundancy | | US | 13/405,309 | N/A | AUTOMATIC DEFECT
MANAGEMENT IN MEMORY
DEVICES | | US | 13/412,731 | N/A | Programming orders for reducing distortion based on neighboring rows | | US | 13/412,780 | N/A | Reducing distortion using joint storage | | US | 13/419,452 | N/A | Independent Management of
Data and Parity Logical Block
Addresses | |-----|-------------------|----------------|--| | US | 13/419,453 | N/A | Storage System Exporting
Internal Storage Rules | | US | 13/426,799 | N/A | Selective Date Storage in LSB
and MSB Pages | | US | 13/429,385 | N/A | Redundant Storage in
Non-Volatile Memory by
Storing Redundacy
Information in Volatile
Memory | | US | 13/439,860 | N/A | Efficient connection
management in a SAS target | | US | 13/439,863 | N/A | High-performance SAS target | | US | 13/471,483 | N/A | ENHANCED PROGRAMMING
AND ERASURE SCHEMES FOR
ANALOG MEMORY CELLS | | US | 13/471,484 | N/A | PROGRAMMING AND ERASURE
SCHEMES FOR ANALOG
MEMORY CELLS | | PCT | PCT/IB2012/052375 | N/A | Sparse programming of
Analog Memory Cells | | PCT | PCT/IB2012/052376 | N/A | Selective Date Storage in LSB
and MSB Pages | | PCT | PCT/IL2007/000575 | WO 2007/132452 | REDUCING PROGRAMMING
ERROR IN MEMORY DEVICES | | PCT | PCT/IL2007/000576 | WO 2007/132453 | Distortion estimation and cancellation in memory devices | | PCT | PCT/IL2007/000579 | WO 2007/132456 | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | PCT | PCT/IL2007/000580 | WO 2007/132457 | COMBINED DISTORTION ESTIMATION AND ERROR CORRECTION CODING FOR MEMORY DEVICES | | PCT | PCT/IL2007/000581 | WO 2007/132458 | MEMORY DEVICE PROGRAMMING USING COMBINED SHAPING AND LINEAR SPREADING | |-----|----------------------------------|----------------|--| | PCT | PCT/IL2007/001059 | WO 2008/026203 | ESTIMATION OF NON-LINEAR DISTORTION IN MEMORY DEVICES | | PCT | PCT/IL2007/001315 | WO 2008/053472 | READING MEMORY CELLS
USING MULTIPLE
THRESHOLDS | | PCT | PCT/IL2007/001316 | WO 2008/053473 | MEMORY CELL READOUT USING SUCCESSIVE APPROXIMATION | | PCT | PCT/IL2007/001488 | WO 2008/068747 | AUTOMATIC DEFECT
MANAGEMENT IN MEMORY
DEVICES | | PCT | PCT/IL2008/000176
(Cancelled) | N/A | MEMORY DEVICE WITH
NON-UNIFORM
PROGRAMMING LEVELS | | PCT | PCT/IL2008/000329 | WO 2008/111058 | ADAPTIVE ESTIMATION OF
MEMORY CELL READ
THRESHOLDS | | PCT | PCT/IL2008/000519 | WO 2008/139441 | MEMORY DEVICE WITH INTERNAL SIGNAL PROCESSING UNIT | | PCT | PCT/IL2008/001188 | WO/2009/037691 | PROGRAMMING ORDERS FOR
REDUCING DISTORTION IN
ARRAYS OF MULTI-LEVEL
ANALOG MEMORY CELLS | | PCT | PCT/IL2008/001356 | WO/2009/050703 | DATA STORAGE IN ANALOG
MEMORY CELL ARRAYS
HAVING ERASE FAILURES | | PCT | PCT/IL2008/001446 | WO/2009/063450 | OPTIMIZED SELECTION OF MEMORY UNITS IN MULTI-UNIT MEMORY DEVICES | | KR | 10-2008-7028793 | N/A | COMBINED DISTORTION ESTIMATION AND ERROR CORRECTION CODING FOR MEMORY DEVICES | |----|-------------------|--------------|---| | KR | 10-2008-7028919 | N/A | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | KR | 10-2008-7029297 | N/A | Distortion estimation and cancellation in memory devices | | KR | 10-2010-7006449 | N/A | OPTIMIZED SELECTION OF MEMORY UNITS IN MULTI-UNIT MEMORY DEVICES | | JP | 2009-508668 | N/A | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | JP | 20090318085550-m1 | N/A | COMBINED DISTORTION ESTIMATION AND ERROR CORRECTION CODING FOR MEMORY DEVICES | | CN | 200780026181.3 | CN101512661A | COMBINED DISTORTION ESTIMATION AND ERROR CORRECTION CODING FOR MEMORY DEVICES | | CN | 200880005741.1 | CN101715595A | ADAPTIVE ESTIMATION OF
MEMORY CELL READ
THRESHOLDS | | CN | 2011102948683 | CN102394101A | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | CN | 200780026094.8 . | CN101501779A | MEMORY DEVICE WITH ADAPTIVE CAPACITY | | CN | 200780026121.1. | CN101496110A | Distortion estimation and cancellation in memory devices | | CN | 200780040493X | CN101601094A | READING MEMORY CELLS
USING MULTIPLE
THRESHOLDS | RECORDED: 05/07/2014