503160548 01/31/2015 PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT3207162

SUBMISSION TYPE:			NEW ASSIGNMENT			
NATURE OF CONVEYANCE:			MERGER			
EFFECTIVE DATE:			02/09/2014			
CONVEYING PARTY	DATA					
			Name		Execution Date	
SUPERTEX, INC.					04/01/2014	
RECEIVING PARTY D	ΑΤΑ					
Name:		CHIF	P TECHNOLOGY INC.			
Street Address:	2355 V	VEST	CHANDLER BLVD.			
City:	CHAN	DLER	{			
State/Country:	ARIZO	NA				
Postal Code:	85224					
PROPERTY NUMBER	S Total: 1					
Property Type	e		Number			
Patent Number:		8193	339			
CORRESPONDENCE	DATA					
Fax Number:		• •	833-2001 e-mail address first; if that is unsuccessful, it will be sent			
			e-mail address first; if that is un hat is unsuccessful, it will be se			
Phone:	•		33-2348			
Email:		susai	n.pingue@dlapiper.com			
Correspondent Name):	BRE	NT YAMASHITA			
Address Line 1:			PIPER LLP US			
Address Line 2:) UNIVERSITY AVENUE			
Address Line 4:		EAS	T PALO ALTO, CALIFORNIA 943	803		
ATTORNEY DOCKET	NUMBER:		365188-991070 - BKY			
NAME OF SUBMITTER:			BRENT YAMASHITA			
SIGNATURE:			/Brent Yamashita/			
DATE SIGNED:			01/31/2015	01/31/2015		
			This document serves as an Oath/Declaration (37 CFR 1.63).			
Total Attachments: 61			1			
source=SupertexAndMid	crochipMe	rgerA	greement#page1.tif			
source=SupertexAndMid	crochipMe	rgerA	greement#page2.tif			

source=SupertexAndMicrochipMergerAgreement#page2.tif

source = Supertex And Microchip Merger Agreement # page 3.tif

source=SupertexAndMicrochipMergerAgreement#page4.tif source=SupertexAndMicrochipMergerAgreement#page5.tif source=SupertexAndMicrochipMergerAgreement#page6.tif source=SupertexAndMicrochipMergerAgreement#page7.tif source=SupertexAndMicrochipMergerAgreement#page8.tif source=SupertexAndMicrochipMergerAgreement#page9.tif source=SupertexAndMicrochipMergerAgreement#page10.tif source=SupertexAndMicrochipMergerAgreement#page11.tif source=SupertexAndMicrochipMergerAgreement#page12.tif source=SupertexAndMicrochipMergerAgreement#page13.tif source=SupertexAndMicrochipMergerAgreement#page14.tif source=SupertexAndMicrochipMergerAgreement#page15.tif source=SupertexAndMicrochipMergerAgreement#page16.tif source=SupertexAndMicrochipMergerAgreement#page17.tif source=SupertexAndMicrochipMergerAgreement#page18.tif source=SupertexAndMicrochipMergerAgreement#page19.tif source=SupertexAndMicrochipMergerAgreement#page20.tif source=SupertexAndMicrochipMergerAgreement#page21.tif source=SupertexAndMicrochipMergerAgreement#page22.tif source=SupertexAndMicrochipMergerAgreement#page23.tif source=SupertexAndMicrochipMergerAgreement#page24.tif source=SupertexAndMicrochipMergerAgreement#page25.tif source=SupertexAndMicrochipMergerAgreement#page26.tif source=SupertexAndMicrochipMergerAgreement#page27.tif source=SupertexAndMicrochipMergerAgreement#page28.tif source=SupertexAndMicrochipMergerAgreement#page29.tif source=SupertexAndMicrochipMergerAgreement#page30.tif source=SupertexAndMicrochipMergerAgreement#page31.tif source=SupertexAndMicrochipMergerAgreement#page32.tif source=SupertexAndMicrochipMergerAgreement#page33.tif source=SupertexAndMicrochipMergerAgreement#page34.tif source=SupertexAndMicrochipMergerAgreement#page35.tif source=SupertexAndMicrochipMergerAgreement#page36.tif source=SupertexAndMicrochipMergerAgreement#page37.tif source=SupertexAndMicrochipMergerAgreement#page38.tif source=SupertexAndMicrochipMergerAgreement#page39.tif source=SupertexAndMicrochipMergerAgreement#page40.tif source=SupertexAndMicrochipMergerAgreement#page41.tif source=SupertexAndMicrochipMergerAgreement#page42.tif source=SupertexAndMicrochipMergerAgreement#page43.tif source=SupertexAndMicrochipMergerAgreement#page44.tif source=SupertexAndMicrochipMergerAgreement#page45.tif source=SupertexAndMicrochipMergerAgreement#page46.tif source=SupertexAndMicrochipMergerAgreement#page47.tif source=SupertexAndMicrochipMergerAgreement#page48.tif source=SupertexAndMicrochipMergerAgreement#page49.tif source=SupertexAndMicrochipMergerAgreement#page50.tif source=SupertexAndMicrochipMergerAgreement#page51.tif

A0753439

97574225URV AGREEMENT OF MERGER OF

FILED Secretary of State State of California

ORCHID ACQUISITION CORPORATION with and into SUPERTEX, INC.

APR - 1 2014

This Agreement of Merger ("Agreement") is made and entered into as of April 1, 2014 by and among Supertex, Inc., a California corporation (the "Company") and Orchid Acquisition Corporation, a California corporation ("Merger Sub") and a wholly owned subsidiary of Microchip Technology Incorporated, a Delaware corporation ("Parent").

WHEREAS, Parent, the Company and Merger Sub have entered into that certain Agreement and Plan of Merger, dated as of February 9, 2014 (the "Merger Agreement"), providing, among other things, for the execution and filing of this Agreement and the merger of Merger Sub with and into the Company (the "Merger").

WHEREAS, the respective Boards of Directors of each of Parent, the Company and Merger Sub deem it advisable and in the best interests of each of such corporations and their respective shareholders that Merger Sub be merged with and into the Company and have approved this Agreement, the Merger Agreement and the Merger.

WHEREAS, the Merger Agreement and the principal terms of the Merger have been approved by the shareholders of the Company and the sole shareholder of Merger Sub.

NOW, THEREFORE in consideration of the mutual agreements and covenants set forth herein, the parties hereto hereby agree as follows:

1. The Merger. At the Effective Time (as defined below), and upon the terms and subject to the conditions of this Agreement and the provisions of the California General Corporation Law (the "CGCL"), Merger Sub shall be merged with and into the Company. As a result of the Merger, the separate corporate existence of Merger Sub shall cease and the Company shall continue as the surviving corporation of the Merger (the "Surviving Corporation"). The name of the Surviving Corporation shall be "Supertex, Inc."

2. *Effective Time.* The Merger shall be effective upon the filing of this Agreement with the Secretary of State of the State of California (the "Effective Time") pursuant to Section 1103 of the CGCL.

3. Effects. The effect of the Merger shall be as provided in this Agreement and the applicable provisions of the CGCL. Without limiting the generality of the foregoing, and subject thereto, at the Effective Time all the property, rights, privileges, powers and franchises of the Company and Merger Sub shall vest in the Surviving Corporation, and all debts, liabilities and duties of the Company and Merger Sub shall become the debts, liabilities and duties of the Surviving Corporation.

1

1. 1

AGREEMENT OF MERGER

4. Articles of Incorporation. At the Effective Time, the Articles of Incorporation of the Surviving Corporation shall be amended and restated in their entirety to read as set forth in <u>Exhibit A</u> attached hereto.

5. Directors and Officers. At the Effective Time, the directors of Merger Sub shall become the directors of the Surviving Corporation and the officers of Merger Sub at the Effective Time shall become the officers of the Surviving Corporation, each to hold office in accordance with the Articles of Incorporation and Bylaws of the Surviving Corporation, and in each case until their respective successors are duly elected or appointed and qualified.

6. *Effect on Capital Stock.* Subject to the terms and conditions of this Agreement, by virtue of the Merger and without any action on the part of Parent, Merger Sub, the Company or the holders of any of the following securities, the following shall occur:

(a) <u>Company Common Stock</u>. At the Effective Time, each share of Company Common Stock issued and outstanding immediately prior to the Effective Time (excluding any Shares cancelled pursuant to <u>Section 6(b)</u> and excluding any Dissenting Shares (as defined in <u>Section 9</u>)) will automatically be cancelled and cease to exist and automatically be converted into the right to receive \$33.00 in cash (the "Merger Consideration") without interest.

(b) <u>Cancellation of Company-Owned Stock and Parent-Owned Stock</u>. At the Effective Time, all shares of Company Common Stock owned by Parent, Merger Sub or by any direct or indirect wholly owned subsidiary of Parent, Merger Sub or the Company immediately prior to the Effective Time shall be cancelled and extinguished without any conversion thereof and no consideration will be delivered in exchange therefor.

(c) <u>Merger Sub Common Stock</u>. At the Effective Time, each share of Merger Sub Common Stock issued and outstanding immediately prior to the Effective Time shall be converted into and exchanged for one validly issued, fully paid and nonassessable share of common stock, no par value per share, of the Surviving Corporation.

(d) <u>Adjustment</u>. The Merger Consideration shall be adjusted appropriately to reflect the effect of any stock split, reverse stock split, stock dividend (including any dividend or distribution of securities convertible into shares of Company Common Stock), cash dividends, reorganization, recapitalization, reclassification, combination, exchange or other like change with respect to the Company Common Stock occurring on or after the date of the Merger Agreement and prior to the Effective Time.

7. <u>Dissenting Shares</u>. Notwithstanding any provision of this Agreement to the contrary, shares of Company Common Stock that are issued and outstanding immediately prior to the Effective Time and held by a holder who has made written demand upon the Company for the purchase of such shares of Company Common Stock and payment to the holder in cash of the "fair market value" of such shares of Company Common Stock and perfected their rights for such shares of Company Common Stock in accordance with Chapter 13 of the CGCL and who, as of the Effective Time, has not effectively waived, withdrawn or lost such dissenters' rights ("Dissenting Shares") shall not be converted into the right to receive the Merger Consideration,

AGREEMENT OF MERGER

but shall instead be entitled to only such rights as are granted by Chapter 13 of the CGCL, except that all such holders that have failed to perfect or who shall have effectively waived, withdrawn or lost their rights under Chapter 13 of the CGCL shall thereupon be deemed to have been converted into, and to have become exchangeable for, as of the Effective Time, the right to receive the Merger Consideration under <u>Section 6</u>, without any interest thereon, upon surrender of the certificate or certificates that formerly evidenced such shares of Company Common Stock.

8. <u>Further Action</u>. If, at any time after the Effective Time, any further action is necessary or desirable to carry out the purposes of this Agreement or to vest the Surviving Corporation with full right, title and possession to all assets, property, rights, privileges, powers and franchises of either the Company or Merger Sub, the officers and directors of the Surviving Corporation are fully authorized to take, and will take, all such lawful and necessary action.

9. <u>Multiple Counterparts</u>. This Agreement may be executed in one or more counterparts, each of which shall be an original, but all of which when taken together shall constitute one and the same agreement. This Agreement shall become effective when one or more counterparts has been signed by each of the parties and delivered to each of the other parties.

10. <u>Choice of Law</u>. This Agreement shall be governed by and construed in accordance with the laws of the State of California, without reference to choice of law provisions.

•

IN WITNESS WHEREOF, the parties hereto have caused this Agreement to be executed by their duly authorized respective officers as of the date first written above.

SUPERTEX, INC.

By;

Name: Henry C. Pao

Title: Chief Executive Officer

By:

Name: Stephen M. Wurzburg

Title: Secretary

ORCHID ACQUISITION CORPORATION

By: ______ Name: Ganesh Moorthy Title: President By: ______ Name: Kim van Herk Title: Secretary

PATENT **REEL: 034860 FRAME: 0448**

IN WITNESS WHEREOF, the parties hereto have caused this Agreement to be executed by their duly authorized respective officers as of the date first written above.

SUPERTEX, INC.

By: _____

Name: Henry C. Pao

Title: Chief Executive Officer

By: _____

Name: Stephen M. Wurzburg

Title: Secretary

ORCHID ACQUISITION CORPORATION

By:

Name: Ganesh Moorthy

Title: President

Kynlon By: ____

Name: Kim van Herk

Title: Secretary

EXHIBIT A

AMENDED & RESTATED ARTICLES OF INCORPORATION

OF Contract

:,

SUPERTEX, INC.

ARTICLE I

The name of this corporation is SUPERTEX, INC. (the "Corporation").

ARTICLE II

The purpose of this Corporation is to engage in any lawful act or activity for which a corporation may be organized under the California General Corporation Law other than the banking business, the trust company business or the practice of a profession permitted to be incorporated by the California General Corporation Law.

ARTICLE III

The Corporation is authorized to issue one class of stock to be designated as "Common Stock." The total number of shares of Common Stock that the Corporation is authorized to issue is one thousand (1,000) shares, and each such share shall have a par value of one-tenth of one cent (\$0.001).

ARTICLE IV

In furtherance and not in limitation of the powers conferred by statute, and subject to the limitations set forth in Section 212 of the California General Corporation Law, the board of directors of the Corporation is expressly authorized to make, repeal, alter, amend and rescind the bylaws of the Corporation.

ARTICLE V

Meetings of shareholders may be held within or without the State of California, as the bylaws of the Corporation may provide.

1.00

OFFICERS' CERTIFICATE OF APPROVAL OF MERGER SUPERTEX, INC.

The undersigned, Henry C. Pao and Stephen Wurzburg hereby certify that:

-

They are the President and Secretary, respectively, of Supertex, Inc., a California corporation (the "Company").

The Agreement of Merger to which this Certificate is attached (the "Agreement"), providing for the merger (the "Merger") of Orchid Acquisition Corporation, a California corporation, with and into the Company, was duly approved by the Board of Directors of the Company.

The total number of outstanding shares of common stock, no par value (the "Company Common Stock") entitled to vote on the Merger is 11,561,753. The principal terms of the Agreement in the form attached were approved by the shareholders of the Company by a vote of the number of shares of Common Stock which equaled or exceeded the vote required. There are no outstanding shares of preferred stock of the Company, so only Company Common Stock was entitled to vote. The percentage vote required was a majority of the shares of Company Common Stock outstanding.

[SIGNATURE PAGE TO FOLLOW]

We further declare under penalty of perjury under the laws of the State of California that the matters set forth in this certificate are true and correct of our own knowledge.

Date: April 1, 2014

10 By: Henry C. Rao

President

By:

ţ.

Stephen Wurzburg Secretary

OFFICERS' CERTIFICATE OF APPROVAL OF MERGER OF ORCHID ACQUISITION CORPORATION

The undersigned, Ganesh Moorthy and Kim van Herk, do hereby certify that:

- 1. They are the Chief Executive Officer and Secretary, respectively, of Orchid Acquisition Corporation, a California corporation ("Merger Sub").
- 2. The principal terms of the Agreement of Merger to which this Certificate is attached (the "Agreement"), providing for the merger (the "Merger") of Merger Sub with and into Supertex, Inc., a California corporation, were duly approved by the Board of Directors and by the sole shareholder of Merger Sub.
- 3. The authorized capital stock of Merger Sub consists of 1,000 shares of Common Stock, no par value ("Merger Sub Common Stock"). The total number of shares of Merger Sub Common Stock entitled to vote on the Merger was 1,000 shares of Merger Sub Common Stock. The votes of holders of a majority of the shares of Merger Sub Common Stock, voting together as a single class, were required to approve the Merger and the principal terms of the Agreement.
- 4. The Merger and the principal terms of the Agreement were approved by the sole shareholder of Merger Sub by votes of the number of shares of each class or series and of all classes voting together as a single class which equaled or exceeded the vote required by each class and series and all classes voting together as a single class to approve the principal terms of the Agreement.
- 5. No vote of the stockholders of Microchip Technology Incorporated, as the sole shareholder of Merger Sub, was required to approve the Agreement, the Merger Agreement or the Merger.

[SIGNATURES PAGE TO FOLLOW]

1.11

I further declare under penalty of perjury under the laws of the State of California that the matters set forth in this certificate are true and correct of my own knowledge.

.

Date: April 1, 2014

•

By: Ganesh Modrthy

Chief Executive Officer

myon the By: _____t Kim van Herk

Kim van He Secretary

Character M, The Back (California)
Constantial M
Constantial M<

图16 小台站

• 1 545

attends - be a water som for som go begrafte

٠.

I hereby certify that the foregoing transcript of _____ paye(s) is a full, true and correct copy of the original record in the custody of the California Secretary of State's office.

APR 01 2014

Date: the Bowen DEBRA BOWEN, Sacrutary of State

COMPANY DISCLOSURE LETTER

February 9, 2014

This disclosure letter ("<u>Company Disclosure Letter</u>") and any schedules hereto are being delivered pursuant to the Agreement and Plan of Merger (the "<u>Agreement</u>") by and among **MICROCHIP TECHNOLOGY INCORPORATED**, a Delaware corporation ("<u>Parent</u>"), **ORCHID ACQUISITION CORPORATION**, a California corporation and a wholly-owned subsidiary of Parent ("<u>Merger Sub</u>") and **SUPERTEX, INC.**, a California corporation (the "<u>Company</u>"), dated as of February 9, 2014, and should be considered an integral part of the Agreement. The numbers set forth below correspond to the enumerated sections and subsections of the Agreement; provided, however, that any exception to or disclosure in respect of any representation, warranty or covenant, and any other information, which is disclosed in one section of the Company Disclosure Letter shall be deemed to have been disclosed in any other section of the Company Disclosure that such disclosure is applicable to such other subsection or section. Any terms defined in the Agreement shall have the same meaning when used in this Company Disclosure Letter.

All disclosures in the Annual Report on Form 10-K of the Company for the fiscal year ended March 30, 2013 (the "<u>Company Form 10-K</u>") and the SEC Reports filed after the Company Form 10-K and prior to February 1, 2014 (other than disclosures in the "Risk Factors" or "Forward-Looking Statements" sections of such reports, other disclosures that are similarly non-specific or are predictive or forward-looking in nature and excluding any exhibits incorporated by reference in such reports), to the extent a particular disclosure in a SEC Report is disclosed in such a way that it is readily apparent based on the substance of such disclosure that such disclosure is applicable to any representation and warranty contained in the Agreement, shall be deemed to be set forth in the Company Disclosure Letter.

No disclosure in this Company Disclosure Letter relating to any possible breach or violation of any agreement, law or regulation shall be construed as an admission or indication to any third party that any such breach or violation exists or has actually occurred.

This Company Disclosure Letter and the information and disclosures contained in this Company Disclosure Letter are intended only to qualify the representations and warranties of the Company contained in the Agreement and shall not be deemed to expand in any way the scope or effect of any of such representations or warranties, except and only to the extent that the underlying representation or warranty in regard to which the information on this Company Disclosure Letter is being provided requires a list or schedule of information.

705062085v1

Company Disclosure Letter 2-9-2014

(b)

2 ..., k :

Company Disclosure Letter 2-9-2014

3.4		
(a)		
)	
(b)(i)		
(b)(ii)		
)	

a de la

(c)

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0458

3

i saiste s

3.5		
(a)(ii)		
		,
)	
	1 - 1947 1 9	

Company Disclosure Letter 2-9-2014

3.11(a)(i)

3.11(a)(ii)

3.11(a)(iii)

3.11(a)(iv)

ANNO. ANNO 2000		
00000007 000000000000000000000000000000		

Company Disclosure Letter 2-9-2014

)				
)			
)			
)				
)			
)				
)				
)		
		7	Com	pany Disclosure Letter 2-9-201

)	
3.11(a)(v)				
)			
)			
)			
)			
)			
)			
		an Maray		

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0463

8

4 40 - 4

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0464

9

Company Disclosure Letter 2-9-2014

3.11(a)(vi)

			1	
	11:2			
	· .			
	n pr			
3.11(a)(vii)				
		a second a		

Company Disclosure Letter 2-9-2014

3.11(a)(viii)		द ¹
			:
			(
	20000000000000000000000000000000000000		
•			
•			
•			
•			
•			
		 :	

C.

Company Disclosure Letter 2-9-2014

12

•		

D.

13

Company Disclosure Letter 2-9-2014

14

PATENT REEL: 034860 FRAME: 0468

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0469

14

a)(xii)

3.11(a)(xii)

 $\left(-\frac{2}{\pi} \frac{\partial f}{\partial t} \right)$

3.11(a)(xiii)(B)

3.11(a)(xiii)(A)

Company Disclosure Letter 2-9-2014

Ŷ.

Company Disclosure Letter 2-9-2014

18

Company Disclosure Letter 2-9-2014

3.11(a)(xviii)

19
19 Company Disclosure Letter 2-9-2014 PATENT REEL: 034860 FRAME: 0474
REEL: 034860 FRAME: 0474

3.11(c)

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0475

20

¥2 - 9

PATENT REEL: 034860 FRAME: 0476

÷

22

¢

Company Disclosure Letter 2-9-2014
3.14

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0478

3.16	

PATENT REEL: 034860 FRAME: 0479

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0480

25

26

Company Disclosure Letter 2-9-2014

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0483

28

3.18	

	í	
<u>, 19</u>		
·		

3.18(a)(ii)

3.18(j)

Company Disclosure Letter 2-9-2014

3.20		

3.20(b)(i)

31

Company Disclosure Letter 2-9-2014

	8		
		<u> </u>	

3.20(b)(ii)

32

团团

Company Disclosure Letter 2-9-2014

3.22 Intellectual Property.

3.22(b)

Patents:

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
High power MOS device and fabrication method therefor	USA	Richard A. Blanchard/ Benedict C. K. Choy	4,145,703	3-20-1979	08/787,788	4-15- 1997
Detection circuit and structure therefor	USA	Robert L. Chao	4,215,281	7-29-1980	05/880,035	2-22- 1978
Detection circuit and structure therefor	USA	Robert L. Chao	4,277,782	7-7-1981	06/093,517	11-13- 1979
Detection circuit and structure thereof	USA	Robert L. Chao	4,344,002	8-10-1982	06/093516	11-13- 1979
Combined DMOS and vertical bipolar transistor device and fabrication method thereof	USA	Henry C. Pao/ Richard A. Blanchard/ Benedict C. K. Choy	4,344,081	8-10-1982	06/139,793	4-14- 1980
MOS Power transistor with improved high- voltage capability	USA	Richard A. Blanchard	4,345,265	8-17-1982	06/139,654	4-14- 1980

Company Disclosure Letter 2-9-2014

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
Power MOS transistor with a plurality of longitudinal grooves to increase channel	USA	Richard A. Blanchard	4,393,391	7-12-1983	06/159,778	6-16- 1980
conducting area Fabrication method for high power MOS device	USA	Richard A. Blanchard	4,398,339	8-16-1983	06/300,474	9-9-1981
Composite MOS/bipolar power device	USA	Richard A. Blanchard	4,402,003	8-30-1983	06/224,078	1-12- 1981
Detection circuit and structure therefor	USA	Robert L. Chao	4,404,477	9-13-1983	06/093,157	11-13- 1979
Integrated memory circuits	USA	Robert L. Chao	4,453,235	6-5-1984	06/429,995	9-30- 1982
CMOS Device with ion-implanted channel-stop region and fabrication method therefor	USA	Robert L. Chao	4,458,262	7-3-1984	06/153,577	5-27- 1980
Integrated mos high- voltage level- translation circuit, structure and method	USA	Hak-Yam Tsoi/ Benedict C. K. Choy	4,937,477	6-26-1990	07/149,853	1-19- 1988
Self-aligned structure and process for DMOS transistor	USA	Benedict C. K. Choy	5,171,705	12-15-1992	07/795,994	11-22- 1991
High Voltage Start-Up Circuit and Method Therefor	USA	Jimes Lei	5,640,317	6-17-1997	08/490,593	6-15- 1995
High voltage current limiting protection circuit and method therefor	USA	Jimes Lei	5,729,418	3-17-1998	08/705,139	8-29- 1996
High voltage output circuit for driving gray scale flat panel displays and method therefor	USA	Benedict C. K. Choy	5,812,103	9-22-1998	08/570,424	12-11- 1995
High voltage start-up circuit and method therefor	USA	Jimes Lei	5,815,383	9-29-1998	08/774,958	12-27- 1996
Method for improving the efficiency of discharging capacitive loads in H-bridge switching networks	USA	Roshanak Aflatouni	6,087,863	7-11-2000	09/039,429	3-16- 1998
Device for converting high voltage alternating current to low voltage direct current	USA	Jimes Lei	6,169,391	1-2-2001	09/351,724	7-12- 1999
DC power converter having bipolar output and bi-directional reactive current transfer	USA	James T. Walker	6,304,461	10-16-2001	09/593,934	6-15- 2000

transfer

Company Disclosure Letter 2-9-2014

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
Feedback apparatus and method for adaptively controlling power supplied to a hot-pluggable subsystem	USA	Sang Ton Ngo/ James Hung Nguyen/ David Chalmera Schie/ Ladislas G. Kerenyi/ Khai Minh Le	6,525,515	2-25-2003	09/960,832	9-24- 2001
Low noise method and apparatus for driving electroluminescent panels	USA	Scott Lynch/ Jimes Lei/ Roshanak Aflatouni	6,555,967	4-29-2003	09/955,255	9-19- 2001
Method and apparatus for efficiently driving a low-voltage device from a wide-range input supply	USA	Ladislas G. Kerenyi	6,667,583	12-23-2003	10/141,051	5-7-2002
Inductorless method and apparatus for driving electroluminescent panels	USA	James Michael Oliver Jenkins, Jimes Lei	6,710,773	3-23-2004	09/943,435	8-2-2001
Apparatus & Method for Programming Control or Laser Diode Modulation and Operating Point	USA	David Schie	6,771,679	8-3-2004	09/859,570	5-16- 2001
AC/DC cascaded power converters having high DC conversion ratio and improved AC line harmonics	USA	Alexander Mednik/ David Chalmers Schie/ Wei Gu	6,781,351	8-24-2004	10/283,395	10-28- 2002
Dimmable electroluminescent lamp drivers and method therfor	USA	James T. Walker	6,841,950	1-11-2005	10/677,452	10-2- 2003
Apparatus and method for adaptively controlling power supplied to a hot- pluggable subsystem	USA	James Hung Nguyen/ Sang Ton Ngo/ David Chalmers Schia/ Ladislas G. Kerenyi/ Khai Minh	6,917,504	7-12-2005	09/846,478	5-2-2001
Optimal control of wide conversion ratio switching converters	USA	Le David Chalmers Schie/ Alexander Mednik/ James Hung Nguyen/ Sang Ton Ngo/ Khai Minh Le/ Wei Gu/ Larry Kerenyi	6,940,733	9-6-2005	10/646,450	8-22- 2003

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux	USA	Alexander Mednik/ David Chalmers Schie/ James Hung Nguyen/ Wei Gu	6,958,920	10-25-2005	10/838,820	5-4-2004
Switch-capacitor sample/hold having reduced amplifier slew-rate and settling time requirements	USA	Terasuth Ko/ Chi Chun Wong	6,992,509	1-31-2006	10/677,449	10-2- 2003
high voltage alternating current (AC) to low voltage direct current (DC) and method therefor	USA	Scott Lynch	7,330,364	2-12-2008	10/969,665	10-20- 2004
Low power high side current monitor which operates at high voltages and method therefor	USA	Isaac Terasuth Ko/ Iris Ho	7,336,122	2-26-2008	11/295,100	12-6- 2005
Introduction to R2RC D/A Converter	USA	Terasuth Ko	7,362,253	4-22-2008	11/530,702	9-11- 2006
Wide-band wide- swing CMOS gain enhancement technique and method	USA	Chi Chun Wong; Terasuth Ko	7,417,483	8-26-2008	11/423,764	6-13- 2006
therefor Process independent voltage controlled logarithmic attenuator having a low distortion and method therefor	USA	Wilson Wai-Sum Chan/ Hau- Yiu Tsu/ Ka-Wai Ho/ Isaac Terasuth Ko	7,453,307	11-18-2008	11/064,154	2-23- 2005
High speed logic level shifter	USA	James T. Walker/ Jimes Lei	7,480,191	1-20-2009	11/530,743	9-11- 2006
Architecture for driving multiple loads at constant current	USA	Ahmed Masood	7,498,754	3-3-2009	11/695,408	4-2-2007
Low-noise ultrasound method and beamformer system for Doppler processing	USA	Lazar A. Shifrin	7,513,873	4-7-2009	11/243,775	10-4- 2005
Method and Apparatus for Controlling Output Current of a Cascaded DC/DC	USA	Mednik Et Al.	7,538,534	5-26-2009	11/187,780	7-20- 2005
Fast AC coupled level translator	USA	James T. Walker	7,538,581	5-26-2009	11/831,011	7-31- 2007
Low noise electroluminescent lamp (EL) driver and method therefor	USA	Jimes Lei	7,554,272	6-30-2009	11/676,865	2-20- 2007

.

.

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
Fast DC coupled level translator	USA	James T. Walker	7,554,378	6-30-2009	11/766,701	6-21- 2007
Transformer-isolated flyback converters and methods for regulating output current thereof	USA	Alexander Mednik/ Rohit Tirumala/ Zhibo Tao	7,561,452	7-14-2009	11/557,258	11-7- 2006
High-speed logic signal level shifter	USA	James T. Walker/ Jimes Lei	7,564,263	7-21-2009	11/379,509	4-20- 2006
MOSFET transistor amplifier with controlled output current	USA	James T. Walker	7,659,756	2-9-2010	11/535,152	9-26- 2006
Shunting type PWM dimming circuit for individually controlling brightness of series connected LEDs operated at constant current and	USA	Alexander Mednik	7,723,926	5-25-2010	11/748,035	5-14- 2007
method therefor Inductorless electroactive lens driver and system	USA	Scott Lynch	7,813,048	10-12-2010	12/260,026	10-28- 2008
Control Circuit & Method for Regulating Average Inductor Current in a Switching Converter	USA	Mednik Et Al.	7,863,836	1-4-2011	12/135,302	6-9-2008
Ultrasound Transmit Beamformer Integrated Circuit & Method	USA	Lazar Shifrin	7,889,787	2-15-2011	10/886,438	7-6-2004
High Voltage Analog Multiplex Switch Integrated Circuit Architecture	USA	Ching Chu	7,893,714	2-22-2011	12/367,310	2-6-2009
Low Noise Binary- Coded Gain Amplifier & Method for Time- Gain Compensation in Medical Ultrasound Imaging	USA	Shifrin Lazar	7,948,315	5-24-2011	12/618,450	11-13- 2009
Complementary High Voltage Switched Current Source Integrated Circuit	USA	Ching Chu / Ben Choy	7,956,653	6-7-2011	12/434,862	5-4-2009
Pulse Width Modulation Driver for Electroactive Lens	USA	Scott Lynch	7,986,178	7-26-2011	12/331,353	12-9- 2008
Ultrasound Transmit Pulse Generator	USA	Chu, Et Al.	7,977,820	7-12-2011	12/354,137	1-15- 2009
Programmable Ultrasound Transmit Beamformer Integrated Circuit and Method	USA	Ching Chu	8,013,640	9-6-2011	12/484,107	6-12- 2009
High Efficiency Boost LED Driver With Output	USA	Mednik Et Al,	8,106,597	1-31-2012	12/357,822	1-22- 2009

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
LED Driver With Low Harmonic Distortion of Input AC Current & Methods of	USA	Mednik Et Al.	8,130,519	3-6-2012	12/269,512	11-12- 2008
Controlling the Same Complementary High Voltage Switched Current Source	USA	Ben Choy	8,138,805	3-20-2012	13/188,324	7-21- 2011
Integrated Circuit Method & Apparatus for Transducer Excitation in Medical	USA	Shifrin Lazar	8,147,409	4-3-2012	12/053,235	3-21- 2008
Ultrasound Imaging Current Driven Bipolar High Voltage Driver for Capacitive	USA	James Walker	8,154,898	4-10-2012	11/762,901	6-14- 2007
Loads Multi-Level Transmitter Circuit Having Sunstantially Constant Impedence	USA	Ko, Et Al.	8,193,839	6-5-2012	12/786,331	5-24- 2010
Output Programmable Ultrasound Transmit Beamformer	USA	Ching Chu	8,198,922	6-12-2012	12/775,242	5-6-2010
Integrated Circuit & Method High Voltage Transmit/Receive	USA	Jimes Lei / Ben Choy	8,254,073	8-28-2012	12/643,143	12-21- 2009
Switch & Method Therefor Impedance Matched Transmission Circuit with Analog-To-	USA	Isaac Terasuth / Ka Wai	8,269,656	9-18-2012	12/786,345	5-24- 2010
Digital Converter Dimmer Circuit for Transformer - Isolated LED Driver and	USA	Mednik Et Al.	8,358,090	<u>1</u> -22-2013	12/724,339	3-15- 2010
Method Therefor Programmable Echo Signal Switch with T/R Switch for Ultrasound Beamforming Integrated Circuit &	USA	Ching Chu	8,400,741	3-19-2013	12/793,355	6-3-2010
Method LED Driver with Extended Dimming Range & Method for	USA	Mednik Et Al.	8,456,106	6-4-2013	12/564,176	9-22- 2009
Achieving the Same Protection from Short Cathode Condition in LED Driver &	USA	Alex Mednik	8,461,777	6-11-2013	12/818,859	6-18- 2010
Method Transfer Adjustable Shunt Regulator Circuit Without Error	USA	Tony Yuan Ko / Yen Mai / Isaac	8,536,855	9-17-2013	12/786,322	5-24- 2010
Amplifier Multi-Level High Voltage Pulser Integrated Circuit Using Low Voltage	USA	Terasuth Ching Chu / Ben Choy	8,542,037	9-24-2013	13/355,749	1-23- 2012
Mosfets Phase Shift Generating Circuit	USA	James Walker/ Andrew Read	8,558,598	10-15-2013	12/722,320	3-11- 2010

Title 5 Ringer Equivalent Number (REN) Ringer Circuit Using a High Voltage Level Translator and a Source Follower Buffer and Method Therefor	Country USA	Inventor Jimes Lei	Patent Number 8,577,021	Patent Dated 11-5-2013	Serial Number 12/724,298	Filed On 3-15- 2010
LED Driver W/ Low Harmonic Distortion of Input AC Current & Methods of Controlling The Same Method and Apparatus for	USA Chinese	Alex Mednik Shifrin Lazar	8,587,278 ZL200880017739.6	11-19-2013 10-24-2013	13/290,260	11-7- 2011
Transducer Excitation in Medical Ultrasound Imaging Ultrasound Transmit Beamformer Integrated Circuit & Method	USA	Lazar Shifrin	7,889,787 B2	2-15-2011	10/886,438	7-6-2004

Patents Pending

Title	Country	Inventor	Attorney Docket Number	Filed On	Serial Number	Prosecution Status
Capacitor- Coupled Switched-Shunt Voltage Regulator	USA	Scott Lynch & James Walker	023P3375	11-18- 2009	12/620,820	Application Dispatched from Preexam, Not Yet Docketed 12- 22-2009 (Noted by Weiss & Moy) Mailed out the payment for Invoice # 18641 to Weiss & Moy office (check #302109 check date:06/13/12) on 06/18/2012. Mailed out the payment for Invoice # 19749 to Weiss & Moy office (check #302708 check date:08/15/12) on 08/16/12.
LED Driver with Extended Dimming Range & Method for Achieving the	USA	Mednik Et Al.	023P3417cont	1-31- 2013	13/756,060	
Same High Voltage Transmit / Receive Switch	USA	Jimes Lei	023P3475	1-7-2011	12/986,968	Mailed check payment for invoice # 33175 on 05/18/11. check # 129518 dated 05/13/11.
Power Control Circuit for Triac Dimmable LED Luminaries	USA	Marc Tan	023P3528PRO	9-7-2010	61/380,653	Mailed check payment for Document Preparation, Filing Fee, Assignment Fee on 05/18/11. Check # 129518 dated 05/13/11. Mailed check (# 300362) payment for invoice #12828 on

payment for invoice #12828 on 11/10/11.

.

Company Disclosure Letter 2-9-2014

Title	Country	Inventor	Attorney Docket Number	Filed On	Serial Number	Prosecution Status
High Voltage Switching Linear Amplifier & Method Therefor	USA	Jimes Lei	023P3624	10-23- 2012	13/658,640	Mailed the check # 300867 check date: 01/19/12 for Invoice # 13252. Provisional filed & advanced cost USPTO filing fee(Mailed on 01/25/12). Mailed the check #303709 check date: 11/29/2012 for Invoice # 20872. Prepared patent application & Filed Assignment application. (Mailed on 12/03/2012)
Circuit & Method for Flicker Suppression in LEDs	USA	Alex Mednik	023P3640PRO	2-2-2012	61/594,020	Mailed to Weiss & Moy on 07/24/12, the check payment for Invoice #15796 dated: 03/07/12, payment for Legal Service: Prepared patent application, Additional Attorney Fee, and \$40.00 Assignment Filing fee.
Circuit and Method For Flicker Suppression in Light Emitting Diodes (LEDs)	USA	Alex Mednik	023P3640	2-2-2013	13/757,780	
Biodes (LEDS) Boost Converter Assisted Valley- Fill Power Factor Correction Circuit	USA	Alex Mednik	023P3642	5-18- 2012	13/475,019	Mailed to Weiss & Moy on 07/24/12, the check payment for Invoice #17171 dated: 04/04/12, payment for Legal Service: Prepared and patent application and Attorney Assignment fee.
Low Dropout LED Ballast	USA	Alex Mednik	023P3668PRO	5-21- 2012	13/871,360	Mailed to Weiss & Moy on 07/24/12, the check payment for Invoice #18644 dated: 06/01/12, payment for Legal Service: Prepared and Filed Provisional patent application and Advance cost USPTO application fee
Low Dropout Light Emitted Diode (LED) Ballast Circuit and Method Therefor	USA	Alex Mednik	023P3668	4-26- 2012	13/871,360	
Programmable Ultrasound Beamformer Integrated Circuit & Method	USA	Ching Chu	023P3686	8-16- 2012	13/587,551	Mailed check # 303281 check date: 10/11/12 for Invoice # 19814 on October 17, 2012. Mailed the check #303709 check date: 11/29/12 for Invoice # 20869. Payment for Drawings-Nine (9) sheets (Mailed on 12/03/2012)
Dimming Circuit and Method	USA	Alex Mednik	023P3713	10-3- 2013	14/049,984	Mailed check #303709 check date:11/29/12 for Invoice # 20870. Payment for Legal Services Filed Provisional Patent application (Mailed on 12/03/2012). OLD Serial #61/713,312 Filed: 10/12/2012
Current Control in Boundary- Conduction- Mode Buck Converter	USA	Alex Mednik	023P3714PRO	10-16- 2012	61/714,474	Mailed check #303709 check date:11/29/12 for Invoice # 20871. Payment for Legal Services Filed Provisional Patent application (Mailed on 12/03/2012).

Title	Country	Inventor	Attorney Docket Number	Filed On	Serial Number	Prosecution Status
Output Current Control in Boundary- Conduction- Mode Buck Converter	USA	Alex Mednik	023P3714	7-22- 2013	13/947,894	Mailed on 09/27/13 the check payment for invoice # 23362 check#306339 dated 09/25/13.
Pulse Amplitude Controlled Current Source For Ultrasound Transmit Beamformer and	USA	Ching Chu / Jimes Lei	023P3726pro	11-29- 2012	61/731,390	Mailed on January 4, 2013; check #303941 check date 12/21/12 for Invoice #21240 - Payment for Filed Provisional Patent Application & Advance Cost-USPTO provisional patent application.
Method Sampling Negative Coil Curtrent in Boundary- Conduction- Mode Power Converter	USA	Mednik Et Al.	,023P3753pro	5-22- 2013	61/826,398	Mailed the check: 306006 check date: 08/22/13 for invoice #22929 on Aug 26, 2013.
Ultrasound Capacitive T/R Switch Device,	USA	B. Choy / C. Chu	023P3793	8-13- 2013	13/965,490	
Circuit Capacitive Parametric Zero Crossing Detector Device, Circuit &	USA	B. Choy / C. Chu / A. Tu	023P3794	9-9-2013	14/021,910	
Method Cascode-Type Dimming Switch Using BJT	USA	Alex Mednik	023p3807pro	11-22- 2013	61/907,819	
Method & Apparatus for Transducer Excitation in Medical Ultrasound	USA	Shifrin Lazar	365188-991030 PCT version	3-25- 2008	PCT/US2008/038	
Imaging Method & Apparatus for Transducer Excitation in Medical Ultrasound	Taiwan	Shifrin Lazar	365188-991031	3-28- 2008	97/111,351	
Imaging Low Noise Binary-Coded Gain Amplified Time-Gain Compensation in Medical Ultrasound Imaging			365188-991061		13/016,733	
An Adjustable Shunt Regulator Circuit	USA	Mai, Et Al.	365188-991070	5-18- 2010		
Trench Isolation Process	USA		365188-991090			
An Impedence Matched Transmission Circuit with Analog-To- Digital Converter	USA	Ko, Et Al.	365188-991080	5-18- 2010		

Title	Country	Inventor	Attorney Docket Number	Filed On	Serial Number	Prosecution Status
Impedence Matched Transmission Circuit with Analog-To-	USA	Ko, Et Al.	365188-991081	8-2-2012	13/591,781	
Digital Method & System for Driving LEDs From A Source	USA	B. Choy / M. Tan	365188-991131	7-23- 2012	13/555,993	
of Rectified AC An RMS Responding Voltage Converter for	USA	James T. Walker	365188-991140	5-16- 2012	61/647,599	
LED Lights OP-Amp Sharing Technique to Remover Memory Effect in Pipeline	USA	Louis Tsui / Isaac Ko	365188-991150		61/711,425	
Multiple Stage Sequential Current	USA	B. Choy /S. Lynch	365188-995100	8-15- 2011	13/210,155	
Regulator Circuit For Detection and Control of LED	USA	James T. Walker	365188-995110		12/034,549	
String Operation An Improved Power Converter	USA	James T. Walker	365188-991190	7-19- 2013	13/946,952	
Method & Apparatus for Extending the Power Output Range of a Power Converter Used For a	USA	James T. Walker	365188-991180	7-19- 2013	13/946,933	
Lighting System Auxiliary POWR Supplies	USA	M. Tan / A. Mednik / S. Krugly / Wai- Sum Chan	365188-991160	6-21- 2013	13/924,302	
Line Current Reference Generator	USA	M. Tan	365188-991170	7-10- 2013	13/938,229	
Adjustable Shunt Regulator Circuit	USA	Tony Yuan Yen Mai, Isaac Terasuth Ko		9-4-2013	14/018,281	

.

Company Disclosure Letter 2-9-2014

Title	Country	Inventor	Attorney Docket Number	Filed On	Serial Number	Prosecution Status
Multi-Chip Package Module And A Doped Polysilicon Trench For Isolation And Connection	USA	Benedict C. K. Choy, Chu, Ming- Yuan Yeh, Haibing (Robin) Liu		7-12-2010	12/834,853	
CIRCUIT FOR DETECTION AND CONTROL OF LED STRING OPERATION	USA	James T. Walker		4-19- 2012	13/451,457	
Bootstrapped Switch with a Highly Linearized Resistance	USA	Benedict C.K. Choy, James T. Walker, Ming- Yuan Yeh		6-18- 2012	13/526,092	
MS RESPONDING VOLTAGE CONVERTER FOR LED LIGHTS	USA	James T. Walker		5-16- 2013	13/896,240	
PHASE SHIFT GENERATING CIRCUIT	USA	James T. Walker	365188-991052	10-8- 2013	14/049,095	

3.22(d)(iii) The following patents require maintenance fees to be paid within ninety days of Termination Date.

Title	Country	Inventor	Patent Number	Patent Dated	Serial Number	Filed On
Low noise method and apparatus for driving electroluminescent panels	USA	Scott Lynch/ Jimes Lei/ Roshanak Aflatouni	6,555,967	4-29-2003	09/955,255	9-19- 2001
Control Circuit & Method for Regulating Average Inductor Current in a Switching Converter	USA	Mednik Et Al.	7,863,836	1-4-2011	12/135,302	6-9-2008
Ultrasound Transmit Beamformer Integrated Circuit & Method	USA	Lazar Shifrin	7,889,787	2-15-2011	_10/886,438	7-6-2004
High Voltage Analog Multiplex Switch Integrated Circuit Architecture	USA	Ching Chu	7,893,714	2-22-2011	12/367,310	2-6-2009

Company Disclosure Letter 2-9-2014

Low Noise Binary- Coded Gain Amplifier & Method for Time- Gain Compensation in Medical Ultrasound Imaging	USA	Shifrin Lazar	7,948,315	5-24-2011	12/618,450	11-13- 2009
Complementary High Voltage Switched Current Source Integrated Circuit	USA	Ching Chu / Ben Choy	7,956,653	6-7-2011	,12/434,862	5-4-2009
Pulse Width Modulation Driver for Electroactive Lens	USA	Scott Lynch	7,986,178	7-26-2011	12/331,353	12-9- 2008
Ultrasound Transmit Pulse Generator	USA	Chu, Et Al.	7,977,820	7-12-2011	12/354,137	1-15- 2009
Method and Apparatus for Transducer Excitation in Medical Ultrasound Imaging	Chinese	Shifrin Lazar	ZL200880017739.6	10-24-2013		
Programmable Ultrasound Transmit Beamformer Integrated Circuit and Method	USA	Ching Chu	8,013,640	9-6-2011	12/484,107	6-12- 2009

3.22(f)

3.22(t)

44

Company Disclosure Letter 2-9-2014

3.23	

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0500

1. . . . **.** .

ų

PATENT REEL: 034860 FRAME: 0501

46

PATENT REEL: 034860 FRAME: 0502

c

PATENT REEL: 034860 FRAME: 0503

48

111

Company Disclosure Letter 2-9-2014

PATENT REEL: 034860 FRAME: 0505

RECORDED: 01/31/2015

50