503542263 10/27/2015

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT3588890

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT

CONVEYING PARTY DATA

Name	Execution Date
BRIAN KONGSGAARD NIELSEN	08/13/2015
CARSTEN SKOVMOSE KALLESØE	08/13/2015

RECEIVING PARTY DATA

Name:	GRUNDFOS HOLDING A/S
Street Address:	POUL DUE JENSENS VEJ. 7-11
City:	BJERRINGBRO
State/Country:	DENMARK
Postal Code:	8850

PROPERTY NUMBERS Total: 1

Property Type	Number
Application Number:	14826631

CORRESPONDENCE DATA

Fax Number: (914)941-5855

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent

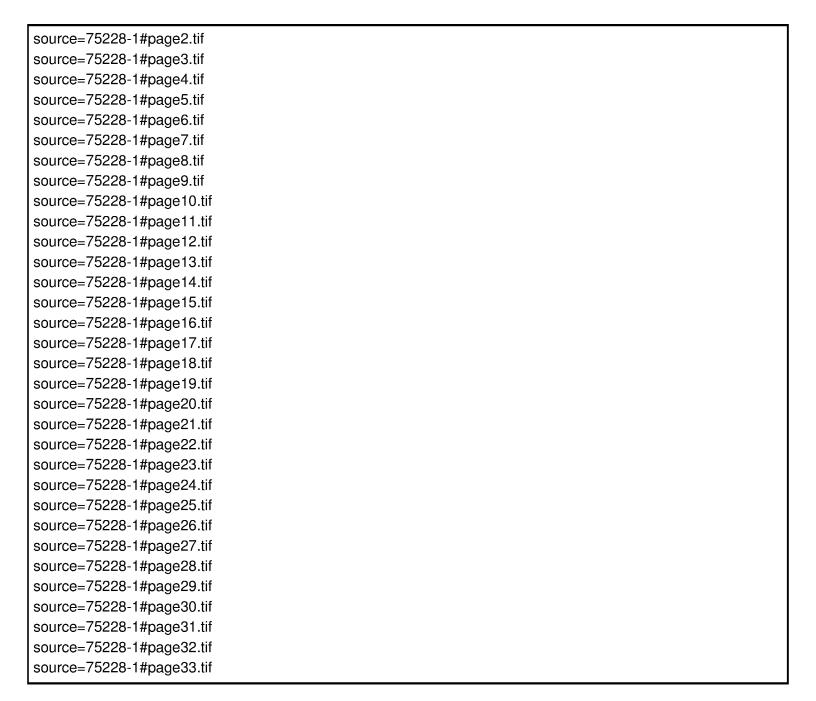
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 914-941-5600

Email: mandt@mcglewtuttle.com **Correspondent Name:** MCGLEW & TUTTLE, PC

Address Line 1: P.O. BOX 9227

Address Line 2: SCARBOROUGH STATION


Address Line 4: SCARBOROUGH, NEW YORK 10510-9227

ATTORNEY DOCKET NUMBER:	75228
NAME OF SUBMITTER:	JOHN JAMES MCGLEW
SIGNATURE:	/john james mcglew/
DATE SIGNED:	10/27/2015
	This document serves as an Oath/Declaration (37 CFR 1.63).

Total Attachments: 35

source=75228-DEC-ASS#page1.tif source=75228-DEC-ASS#page2.tif

source=75228-1#page1.tif

Docket No.: 75228

DECLARATION FOR PATENT APPLICATION AND ASSIGNMENT

As a below named inventor, I hereby declare that:	
This declaration is directed to:	

X The attached application, or
□ United States application or PCT international application number filed on

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the application.

WHEREAS, GRUNDFOS HOLDING A/S

Title of the Invention: CONTROL METHOD

(hereinafter referred to as Assignee) having a place of business at: Pout Duc Jensens Vej 7-11, 8850 Bjerringbro, DENMARK

is desirous of acquiring the entire right, title and interest to said invention and in the Letters Patent to be obtained therefor from the United States;

NOW THEREFORE, be it known by all whom it may concern, that for and in consideration of the sum of One Dollar (\$1.00) (or the equivalent thereof in foreign currency) and other valuable consideration, the receipt of which is hereby acknowledged. I have assigned, sold and set over and by these presents do assign, sell and set over unto the said Assignee for the territory of the United States of America and not elsewhere, the full and exclusive right, title and interest in and to the said invention, said invention, application and Letters Patent to be held and enjoyed by the said Assignee for its own use and behoof and for the use and behoof of its successors and assigns to the full end of the term for which said Letters Patent is granted, as fully and entirely as the same would have been held by me had this Assignment and sale not been made.

I hereby acknowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001 by fine or imprisonment of not more than (5) years, or both.

LEGAL NAME OF INVENTOR

INVENTOR: Carsten Skovmose KALLESOE

McGLEW & TUTTLE, P.C., Box 9227 Scarborough Station, Scarborough N.Y.10510-9227 U.S.A.

Docket No.: 75228

DECLARATION FOR PATENT APPLICATION AND ASSIGNMENT

Title of the Invention: CONTROL METHOD

As a below named inventor, I hereby declare that:

This declaration is directed to: X. The attached application, or

☐ United States application or PCT international application number filed on

The above-identified application was made or authorized to be made by me.

I believe that I am the original inventor or an original joint inventor of a claimed invention in the application.

WHEREAS, GRUNDFOS HOLDING A/S

(hereinafter referred to as Assignee) having a place of business at: Poul Due Jensens Vej 7-11, 8850 Bjerringbro, DENMARK

is desirous of acquiring the entire right, title and interest to said invention and in the Letters Patent to be obtained therefor from the United States:

NOW THEREFORE, be it known by all whom it may concern, that for and in consideration of the sum of One Dollar (\$1,00) (or the equivalent thereof in foreign currency) and other valuable consideration, the receipt of which is hereby acknowledged. I have assigned, sold and set over and by these presents do assign, sell and set over unto the said Assignee for the territory of the United States of America and not elsewhere, the full and exclusive right, title and interest in and to the said invention, said invention, application and Letters Patent to be held and enjoyed by the said Assignee for its own use and behoof and for the use and behoof of its successors and assigns to the full end of the term for which said Letters Patent is granted, as fully and entirely as the same would have been held by me had this Assignment and sale not been made.

I hereby acknowledge that any willful false statement made in this declaration is punishable under 18 U.S.C. 1001 by fine or imprisonment of not more than (5) years, or both.

LEGAL NAME OF INVENTOR

INVENTOR: Brian Kongsgaard NIELSEN

Inventor's signature 18/10m N Cod Date 13/8-20/5

McGLEW & TUTTLE, P.C., Box 9227 Scarborough Station, Scarborough N.Y.10510-9227 U.S.A.

CONTROL METHOD

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of pr iority under 35 U.S.C. § 119 of European

Patent Application 14 181 144.8 filed August 15, 2014, the entire contents of which are

incorporated herein by reference.

FIELD OF THE INVENTION

The invention relates to a closed-loop control method for a pump assembly in a

pneumatic or hydraulic system, as well as to a pump system which is designed for carrying out

such a control method.

BACKGROUND OF THE INVENTION

In branched hydraulic systems, such as for example heating installations with several

consumers or water supply systems with various tapping locations, there exists the difficulty of

controlling pump assemblies for delivering the medium and which are present in the hydraulic

system, such that they provide an adequate pressure at all points of the hydraulic system, but that

simultaneously the pressure is not so high, in order on the one hand to avoid undesired flow

noises in the system and on the other hand to keep the energy consumption of the pum p

assembly to a minimum.

For this, systems are known from the state of the art, which at one or more locations in

the hydraulic system for example detect a supply temperature or a flow, and design the control of

the pump assembly to the region with the greatest load. Such a system is known f or example

from DE 33 15 828.

PATENT

REEL: 036980 FRAME: 0244

SUMMARY OF THE INVENTION

It is an object of the invention, to impr ove a control m ethod for a pump assembly in a

pneumatic or hydraulic system, in a manner such that with a minimal energy consumption of the

pump assembly, the hydr aulic system is supplied with pressure in a manner such that val ve

elements arranged in the hydraulic system can be arranged in an optimal control region.

According to the invention, a control method is provided for a pu mp assembly in a

pneumatic or hydraulic system. The method comprises the steps of detecting at least one system

variable in the system and clos ed loop controlling a speed of the pump assembly in dependence

on the at least one system variable which is detected in the system. An error signal is produced

from the detected variable on the basis of a sectionwise monotonic function, on the basis of

which error signal the speed of the pump assembly is controlled.

According to another aspect of the invention, a pump system is provided with at least one

sensor for detecting a variable in a hydraulic or pneumatic system and with a signal processing

device which is designed (configured) for producing at least one error signal on the basis of the

detected variable. The pump system further comprises at least one pump as sembly with a

control device which is designed (configured) for receiving the at least one error signal from the

signal processing device and for the control of the speed of the pump assembly on the basis of

the at least one error si gnal, wherein the control device and the signal processing device are

designed (configured) for carrying out a control method according to the invention.

The control method according to the invention serves for at least one pump assembly in a

pneumatic or hydr aulic system. Such a hydr aulic system can for example be a wat er supply

mains or a heating installation, in particular with a multitude of consumers. Valves for setting or

for the control of the fl ow for the respective consumer can be provided in such a hydraulic

system, on the different consumers.

The invention is hereinafter described further by way of a hydraulic system, but it is to be

understood that the invention can a coordingly be applied also in a pneumatic system, for

example in a ventilation system such as in a heating system or air-conditioning system, which

operates with temperature-controlled air. It is also to be understood that when the invention is

described hereinafter by way of example of a heating installation, the invention can be realised in

a corresponding manner also in other hydraulic systems, such as air-conditioning systems or

water mains systems.

With regard to the control method according to the invention, one envisages the speed of

the at least one pump assembly being controllable in dependence on at I east one variable which

is detected in the system. Thereby, a single pump assembly can be envisaged, but also several

pump assemblies connected in parallel and/or series can be envisaged, which can be controlled in

a corresponding manner.

According to the invention, one envisages the detected variable not directly forming the

basis of the control, but an error signal being produced from the at least one detected variable on

the basis of a piecewise or sectionwise monotonic function, on the basis of which error signal the

speed of the pump assembly is controlled. A sectionwise monotonic function hereby is to be

understood as a function which is composed of at least two functions or sections with different

function characteristics. Thereby the function is monotonic in each case in all the sections. This

sectionwise monotonic function for example means that different functions for different

magnitude regions of the detected variables form the basis for computing the error signal. The

use of the error signal has the advantage that this can be more easily incorporated into the control

of the pump assembly, since the error signal via the function can be set such that an error signal

which is independent of the precise design of the hydraulic system and its components forms the

basis of the control of the pump assembly. This permits a simple adaptation and in particular also

a simpler control of the pump assembly on the basis of sever al error signals, since these can be

linked to one another in a simple manner, for example added or selected in a suitable manner.

The variable in the system can be detect ed by way of su itable sensors or taken or

outputted directly from actuators such as valves and outputted (issued) as a variable whi ch is

characteristic of their functional condition.

Thus the at least one variable for example is a pressure value or a valve opening degree,

which is detected in the system. The valve opening degree can be taken or tapped dir ectly at the

valve or can be a control signal for the valve, which is proportional to the valve opening degree.

For example, a separate pressure sensor can be arranged in the hydraulic or pneumatic system,

for detecting the pressure value.

According to a furthe r preferred embodiment, the at leas t one vari able can be a

temperature value or a flow value which is detected in the system. Likewise, suitable sensors can

be provided in the s ystem for this. A flow value can however for example also be directly

derived from a furt her pump assembly arranged in the system, by way of it being determined

there on the basis of other variables detected in the pump assembly, for example the speed of the

pump assembly. In the case that several variables are detected in the system, this can be several

temperature values, several valve opening degrees or several flow values. Different values can

PATENT

REEL: 036980 FRAME: 0247

also be detected in combination, wherein for each variable, an error signal is outputted in each

case on the basis of t he mentioned sectionwise monotonic function. The c omputation or

outputting of the error signal ha s the adva ntage that different variables, for example valve

opening degrees and detected temperature values can thus be incorporated into the control of the

pump assembly in a simple manner.

The control method preferably serves for the (closed-loop) control of a hydraulic variable

to a hydraulic setpoint. This for example can be the pressure, the temperature, the flow and/or for

example a valve opening degree or likewise. This hydraulic variable is controlled to the desired

setpoint by way of closed-loop control of the speed or changing the speed. Thereby, the

described error signal preferably forms a constituent of the control loop, i.e. the closed-loop

control is effected via the error signal or the error signals. The error signals, as described above,

are formed via the section-wise monotonous function in dependence on the variable detected in

the system. The variable detected in the system thereby corresponds to the hydraulic variable to

be (closed-loop) controlled or represents a value which is representative of the hydraulic variable

to be (closed-loop) controlled. The speed of the pump assembly is controlled or changed in

dependence on the err or signal or er ror signals, in order to bring the hydraulic variable to be

closed-loop controlled to a desired setpoint. As described below, it is possible via the error

signals to also simultaneously control several hydraulic variables or to op timise them in closed

control loops.

Preferably, for the computation of the error signal, the detected variable is compared to at

least one limit value, and the function of the group of functions, on whose basis the error signal is

produced, is exchanged, which is to say swapped or switched, in a pr edefined manner on

reaching the limit value. This means the limit value forms the limit between two sections or

functions of the sectionwis e monotonic function. This me ans that different functions are

envisaged for determining the error signal, for different predefined magnitude regions of the

variable. Thus for example two functions or sections of the sectionwise monotonic function and

which are linked to one another can be provided, wherein a first function is used e.g. below the

limit value and a second function e.g. on reaching and exceeding the limit value. Accordingly,

one can also use more t han two functions or sections, which are exchanged at corre sponding

limit values.

Preferably, the detected variable can be compared with an upper and with a lower limit

value, and in each case the section of the sectionwise monot onic function or the function of the

group of functions, on the basis of which the error signal is produced, can be exchanged in a

predefined manner on reaching the upper limit value as well as on reaching the lower limit value.

Thus with this embodiment for example, three different functions or sections are used, wherein a

first function is applied below the lower limit value, a second function between the lower and the

upper limit value and a third function above the upper limit value.

According to a further preferred embodiment, the functions which are applied above the

upper limit value and/or below the lower limit value output an error signal which is dependent,

and in particular linearly dependent, on the magn itude of the detect ed variables. Thereby, the

same function can be applied below the lower limit value and above the upper limit value.

According to a furt her preferred embodiment, a function which outputs an error signal

which is dependent, in particularly linearly dependent on the magnitude of the variables, can be

applied below the upper limit value and/or above the lower limit value, wherein the function

between the variable and the error signal, above and below the respective limit value can be

different, in particular have different gradients. Thus for example between the lower and the

upper limit value, a function c an be applied which has a smaller gradient than above the upper

and below the lower limit value.

According a further preferred embodiment, the function can have a zero point with a sign

change in a region above the lower limit value and below the upper limit value. The zero point

preferably lies in the middle between the upper and the lower limit value. The error signal would

thus be zero at the zero point. This permits the control of the pump assembly to be designed such

that it preferably controls the pump assembly in its speed such that the variable is controlled to

the region of the zero point, or several variables are controlled such that the error signals in the

complete system add to zero, which is to say the system parameters are set such that the sum of

the error signals preferably assumes the value zero or approaches the value zero.

According to a further possible embodiment of the invention, the error signal which is

outputted on reaching the upper limit value and above the upper limit value can have a different

sign (polarity) than the error si gnal which is outputted on reaching or below the l ower limit

value. This permits a control which contributes to keeping the variable in the region between the

upper and the lower limit value.

According to a further pos sible embodiment, a function or section of the sectionwise

monotonic function or several of the functions or sections which are applied can also be designed

such that they output a constant value, in particular the value zero for the error signal. Thus for

example the function can be selected such that it outputs such a constant value above and below

a limit value.

Further preferably, the production of the error signal can be effected in a si

processing device which is assigned to a sensor for detecting the variables, and the produced

PATENT

error signal is transferred to a control device of the pump assembly which effects a control of the

speed of the pump assembly. This design is particularly advantageous since thus the control

device of the pump as sembly can be designed completely independently of the type of applied

sensors or actuating elements, at which the variables are detected. The signal processing device

can be specially adapted to the respective sensor or the actua ting element, for example a valve,

so that it contains the matching or desired functions which take into account the characteristic

properties of the sensor or of the region of the hydraulic system, at which the variable is detected.

The error signal can be adapted to the appli ed control and regulation device of the pump

assembly such that a st andardised error signal is outputted. Preferably, the functions can be

adapted or set in the signal processing device.

Particularly preferably, the signal processing device can be integr ated directly into the

sensor or the actuating element such as a val ve. The signal processing device however can also

be designed as a separ ate component, to which the output signal of a sensor or of an a ctuating

elements such as a val ve is fed as an input variable. It is also possible to provide a signal

processing device which operates several sensors or actuating elements such as valves and

accordingly outputs several error signals for the connected sensors or actuating elements.

As has already been described above, the system can prefer ably be designed such that

several variables are detected, on the basis of whi ch an error signal is produced in each case on

the basis of a group of at least two functions which are linked to one another or of a sectionwise

monotonic function. Thereby, pr eferably an err or signal is produced in each case from a

corresponding sectionwise monotonic function, for each of the variables. Since the error signals,

as previously described, are preferably standardised and the adaptation to the respective sensors

or regions of the system, in which the sensors are arranged, is effected via the respective

functions, this permits different sensors or actuating elements such as val ves which detect or

output the variables, to be combined with one another in a system without any problem and to

permit them to flow which is to say to be incorporated into the control of the pump assembly.

In one possible embodiment of the invention, several, preferably all error signals in the

system can be added and the control of the speed of the pump assembly can be effected on the

basis of the added error signals. Preferably, the control of the speed of the pump is thereby such

that the added error signal approaches the value zero. In this manner, the various error signals are

linked to one another and the speed of the pump assembly is regulated or closed-loop controlled

such that the desired hydraulic setpoints, be it pressure, temperature, flow and/or for example a

valve opening degree etc. are achieved in all regions of t he system, in which variables are

detected and on the basis of which error signals are determined.

According to a particular embodiment of the invention, the individual error signals are

multiplied by individual weighting factors before the addition. This multiplication can likewise

be effected in the previously descri bed signal processing device or however also in a control

device of the pump assembly. The error signals of individual components in the system are

differently weighted due to the weighting factors, so that for example certain valves or sections

of the system can be given a greater weight on control of the pump assembly, in order for

example to always prioritise a desired flow in this region.

According to an alternative embodiment of the invention, it is possible to select one or

more error signals f rom a plurality of error signals, on the basis of which one or more error

signals the control of the speed of the pump assembly is effected. In this case too, a weighting or

a prioritisation of the er ror signal can be effect ed as the case m ay be. Thus a pri ority for the

selection can be assigned to individual error signals. If several error signals are selected, these in

turn, as pre viously described, can be added a nd also prior to this be multiplied by weighting

factors as the case may be.

The speed of the pump assembly is preferably controlled in dependence on a differential

pressure or a flow, a nd the differential pressure or the flow is regulated on the basis of one or

more error signals. This means that on the basis of the error signals, firstly the desired differential

pressure or flow is selected and the regulation of the pump assembly is subsequently effected,

such that this differential pressure or flow is achieved by the pump assembly. The speed of the

pump assembly can be varied by a control device of the pump assembly for this.

The speed of the pump assembly can be changed directly or indirectly in defined steps, in

a manner depending on the error signal. If the error signal is e.g. use d for determining the

differential pressure or the flow which the pump assembly is to achieve, as previously described,

this would be an indirect setting of the speed. By way of the error signal, a continuous adaptation

of the speed can be effected in a direct or indirect manner or also an adaptation in predefined

steps, in which the speed is increased or reduced, in order to achieve a desired flow and/or

differential pressure or also the minimisation of the error signal in a direct manner.

Particularly preferably, it is possible for the speed of the at least one pump assembly

additionally to the error signal to be controlled on the basis of an algorithm for minimising the

power uptake or energy consumption. These two algorithms or controls can be linked with one

another or be superi mposed on one another, so that the pump control continuously strives to

minimise the energy consumption, so long as the error signals are kept to a minimal value or

ideally to a value zero. If error signals are led to the control, this, as the case may be, I eads to a

change in the speed of the pump assembly, which is counter to the mini misation of the energy

consumption. This is then effected until the hydraulic parameters of the system are held in the

PATENT

REEL: 036980 FRAME: 0253

desired limits by way of detection at the respective sensors. If a minimisation of the energy

consumption takes place simultaneously, then with this one succeeds in the hydraulic setpoint

being able to be achieved at minimal energy consumption.

The algorithm for mi nimising the ener gy consumption is pre ferably designed

accordingly, in a manner such that it strives to reduce the speed of the pump assembly. If then

the reduction of the speed leads to individual sensors or actuating elements outputting error

signals, then these error signals e.g. again effect an increase of the speed, so that t he hydraulic

setpoints can be achieved.

A pump system is also the subject matter of the invention, apart from the previously

described control system. The pump system according to the invention comprises at least one

sensor for detecting a variable in a hydraulic or pneu matic system. The sensor thereby can be a

sensor as has been previously described, which for example detects the temperature, the flow

and/or the pressure. Thereby, the sensor can be designed as a separate s ensor or be part of a n

actuating device, such as of a val ve or of a pu mp assembly. The sensor can detect the valve

opening degree and output this, in the case of a vallve. A sensor in this context is also to be

understood as an actuating device such as a valve which detects or outputs the opening degree in

another manner. The flow can likewise be detect ed or deter mined in a pump assembly, for

example from the electrical and/or hydraulic variables, and be out putted in the context of a

sensor.

Additionally to the se nsor, at least one signal processing device is provided, which is

designed for producing at least one error signal on the basis of the detected variables. Moreover,

the pump system comprises at least one pump assembly with a control device which is designed

for receiving the at least one error signal from the signal processing device and for the control of

the pump assembly on the basis of the at least one error signal. Thereby, the control device and

the signal processing device are designed for carrying out a control method, as has been

previously described. The signal processing device and the control device are preferably spatially

distanced to one another, but as the case may be can also be integrated into an electronic

subassembly. The signal processing device is preferably arranged in the proximity of the sensor,

in particular is integrated into this, whereas the control device is preferably arranged in the

proximity of the pump assembly, preferably in an electronics housing directly on the drive motor

of the pump assembly.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is hereinafter described by way of the attached figures. In these are shown

in:

Fig. 1 is a view showing a first example for a hydraulic system of the invention,

Fig. 2 is a vie w showing a se cond example for a hydr aulic system according to the

invention;

Fig. 3 is a view showing at hird example for a hydraulic syst em according to the

invention;

Fig. 4 is a view showing a fourth example for a hydr aulic system according to the

invention:

Fig. 5 is a vie w showing a fi fth example for a hydrauli c system according to the

invention;

PATENT

REEL: 036980 FRAME: 0255

Fig. 6 is a vie w showing a si xth example for a hydr aulic system according to the

invention;

Fig. 7 is a vie w showing a seventh example for a hydraul ic system according to the

invention;

Fig. 8A is a view showing one of three variants for a group of functions for producing an

error signal on the basis of a valve opening degree;

Fig. 8B is a view showing another of three variants for a group of functions for producing

an error signal on the basis of a valve opening degree;

Fig. 8C is a view showing another of three variants for a group of functions for producing

an error signal on the basis of a valve opening degree;

Fig. 9A is a view show ing one of three variants of a gr oup of linked functions for

producing an error signal on the basis of a differential pressure;

Fig. 9B is a view showing another of three variants of a group of linked functions for

producing an error signal on the basis of a differential pressure;

Fig. 9C is a view showing another of three variants of a group of linked functions for

producing an error signal on the basis of a differential pressure;

PATENT

Fig. 10A is a view showing one of three variants of a group of functions for producing an

error signal on the basis of a temperature value;

Fig. 10B is a view showing another of the ree variants of a group of functions for

producing an error signal on the basis of a temperature value;

Fig. 10C is a view showing another of the ree variants of a group of functions for

producing an error signal on the basis of a temperature value;

Fig. 11 is a schem atic view showing the control method according to the invention and

according to a first embodiment; and

Figure 12 is a schematic view showing the control method of the invention and according

to a second embodiment.

DETAILED DESCRIPTION

Different variants of hydr aulic systems, in which a control method according to the

invention, as is subsequently described can be applied, are described by way of Figures 1 to 7. It

is to be understood that this principle can also be transferred from hydraulic systems in the same

manner to pneumatic systems, for example ventilation systems which are likewise the subject

matter of the invention.

Fig. 1 shows a heating and/or cooling system with a heat source or a cold source 2 which

in the case of a heat sour ce can be designed for example as a heating boiler. The shown system

comprise several, in this example four load circuits 4 which as mixing circuits are provided in

each case with a mixing pump 6 and a control valve 8. The feed of heat transfer medium from

the heat or cold source 2 into the respective load circuit 4 is controlled via the opening degree of

the control valve 8. This ca n be effected for example in a manner dependent on room

temperature, in order for example to achieve a predefined room temperature. Here, two pump

assemblies 10, 12 in the form of circulation pump assemblies are a rranged in the fe ed conduit,

and these assemblies deliver heat transfer medium, for example water, from the heat source or

cold source 2 to the load circuits 4. Thereby, the pump assembly 10 lies upstream of all four load

circuits, whereas the second pump assembly 12 is situ ated downstream of the first two load

circuits and upstream of the subsequent two load circuits 4. The control valves 8 are designed

such that they dete ct the valve ope ning degree, and in a si gnal processing device which is

explained further below, produce an error signal which is transferred to the pump assemblies 10

and 12 for their speed control. This is shown in Figure 1 by the da shed lines, wherein one can

recognise that the error signals of all four control valves 8 ar e transferred to the fir st pump

assembly 10, whereas the error signals of the two downstream load circuits 4 are only transferred

to the second pump assembly 12 which is only envisaged for the supply of these two load

circuits 4.

The hydraulic system shown in Fig. 2 re presents a water supply mains with a pump

assembly 10 and three control valves 8. In this case, the control valves 8 can operate as pressure

controllers, in order to (closed-loop) control the pressure in the connec ting branches of the

hydraulic system. The pump as sembly 10 delivers into a central supply conduit 14 from which

branches with the control valves 8 branch, for example in each case for the supply of several

buildings, e.g. in a town district. The pressure in these parts or branches is controlled via the

control valves 8. These control valves 8 also output their valve opening degree, on the basis of

which an error signal is produced in a signal processing device, said error signal being

transferred to the pump assembly 10 in order to control this in its speed on the basis of these

error signals, as is described hereinafter.

PATENT

REEL: 036980 FRAME: 0258

A pump assembly 10 in the context of this description can also be underst ood as an

arrangement of several pumps. The pump assembly for example can be a booster pump or a

booster pump arrangement as can be applied in particular in a water supply mains.

Fig. 3 shows a variant of the design in Fig. 2, with which the supply conduit 14 is

designed as a ring conduit. Fig. 4 shows a variant of the hydraulic system in Fig. 1, in which it is

not the valve opening degree of the control valve 8 which is detected in the load circuits 4, but

the differential pressure Dp between the entry of the load circuit 4 and its exit, via a differential

pressure sensor 16. An error si gnal is produced on the basis of this differential pressure, in a

connected signal processing device which is preferably integrated in the differential pressure

sensor 16, and this error signal is then outputted to the pump assemblie s 10, 12 for t heir speed

control. Here too, the error signals of the differential pressure sensors 16 of all four load circuits

form the basis for the regulation of the speed of the first upstream pump assembly 10, whereas

only the err or signals of those differential pressure sensors 16 which are arranged in the load

circuits situated downstream of the second pump assembly 12 form the basis of the speed control

of the second downstream pump assembly 12.

Fig. 5 shows a hydraulic system with which several consumers 18, for exa mple

radiators, are in each case arranged parallel to one another in two branches arranged parallel to

one another. The two branches connected in parallel are supplied with fl uid, for example a

heating medium in the form of water, by a comm on pump as sembly 10 in the form of a

circulation pump a ssembly. A di fferential pressure sensor 16 which detects the differential

pressure Dp between the run-in and run-out of the respective branch at the end of the branch is

arranged at the end of each of the branches. The differential pressure sensors 16, via signal

processing devices, as described below, in turn output error signals which are led to t he pump

assembly 10 for its speed control.

Fig. 6 shows a water supply mains as is shown in Fig. 2, only that here it is not the valve

opening degree of the valves 8 whi ch is detected, but pressure sensors 20 are arranged in the

branches, in which the control valves 8 are sit uated, and these sensors detect the pressure p in

these branches. An error signal is produced in a suitable signal processing device, in each case on

the basis of the detected pressure p, as described hereinafter, and this signal is led further to the

pump assembly 10 for its speed control.

Figure 7 shows a hydr aulic system similar to the hydraulic system in Fig. 1, wherein

instead of the load circuits 4, several consumers 22 are present, for example as heat exchangers

in a room or buil ding. The system for example can be a he ating system or a cooling sys tem,

wherein here the heat source or cold source 2 is shown as a heat exchanger. In each case a

temperature sensor 24 which detects a temperature T, which is to say the return temperature T_r of

the respective consumer 22, is arranged in the returns of the consumers 22. An error signal is

produced in each case on the basi s of the temperature signals of the temperature sensors 24, as

described hereinafter, in a signal pr ocessing device, and this error signal is led f urther to the

pump assemblies 10 and 12 for their speed control. Here too, the speed control of the first

upstream pump assembly 10 is effected on the basis of the error r signals of all temperature

sensors 24 situated downstream, whereas the speed control of the pump assembly 12 is effected

only on the basis of the error signals of those temperature sensors 24 which are situated

downstream of the second pump assembly 12.

The pump assemblies 10 and 12 in each case comprise their own control device which is

particularly preferably is a rranged in a terminal box or to say regulation device, which

PATENT

electronics housing directly in the pump ass embly or on its electrical dr ive motor. The signal

processing devices for producing the error signals are preferably integrated into the sensors,

which is to say the control valves 8, inasmuch as these detect the valve opening degree, into the

pressure sensors 16, 22 or into the temperature sensors 24. Alternatively, the signal processing

devices can be designed as separate subassemblies which are preferably separated from the pump

assemblies 10, 12. Howe ver, it is also possible to integrate the signal processing devices into a

pump assembly, in particular into the control device of a pump assembly. The signal processing

devices permit almost any sensors and valves or actuating elements which detect their degree of

actuation, for example a valve opening degree, to be linked to the pump assembly 10, 12.

The production of the error signals is described hereinafter in more detail by way of the

examples in the Figs. 8 and 10.

Fig. 8A - 8C show three examples for the production of an error signal e on the basis of a

valve opening degree x_p, which is detected and outputted for example from the control valves 8

described above. In the example according to Fig. 8A, a sectionwise monotonic function is used,

in which three functions or sections with different functions are linked to one another:

$$e = \begin{cases} a(x_p - x_{p,\min}) &, & x_p < x_{p,\min} \\ 0 &, & x_{p,\min} \le x_p \le x_{p,\max} \\ a(x_p - x_{p,\max}) &, & x_{p,\max} < x_p \end{cases}$$

Here there are three functions. An error signal e is outputted according to the function e =

 $a(x_p-x_{p,max})$ above a li mit value for the valve opening degree $x_{p,max}$ which represents an upper

limit value, wherein the factor a is a preset constant. The function corresponds to a constant, here

the value zero, between the limit values $x_{p,max}$ and $x_{p,min}$, wherein $x_{p,min}$ represents a lower limit

value for the valve opening degree. This means that here the error signal e = 0. An error signal e = 0.

according to the function $e = a(x_p-x_{p,min})$ is outputted below the lower limit value $x_{p,min}$, which

means the valve opening degree x_p is a li nearly dependent error signal. Thus in this exa mple

three functions are linked to on e another, wherein in each case the function is exchanged on

reaching the limit values $x_{p,min}$ and $x_{p,max}$. The desired operating point for the respective control

valve 8, for whi ch the valve opening degrees are outputted, in this example lies between the

limits $x_{p,min}$ and $x_{p,max}$, so that the error signal e is formed such that the control strives to control

the pump as sembly 10 or t he pump assembly 12 in its sp eed such that the control valve 8

assumes the desired operating point, i.e. a valve opening degree x_p, which is situated between the

limit values $x_{p,min}$ and $x_{p,max}$. Above the upper limit value $x_{p,max}$ and below the lower limit value

x_{p, min}, an error signal e is outputted in each case, which is taken into account in the speed control

of the pump assembly such that the speed changes, so that the valve opening degree x_p can again

move into the region between the limits $x_{p,min}$ and $x_{p,max}$. The valve opening degree x_p is

preferably controlled via an independent control, for example in a heating system via a room

thermostat.

Fig. 8B shows one variant to the group of functions according to Fig. 8A, with which one

makes do without the lower limit value $x_{p,min}$ and thus the third function which is applied below

the limit value x p,min. This means that here a constant value of zero is always outputted for the

error signal on falling short of the upper limit value $x_{p,max}$.

Fig. 8C shows a further variant, with which the functions for the region below the lower

limit $x_{p,min}$ and above the upper limit $x_{p,max}$ correspond to those which were described by way of

Fig. 8A. A function here is only used between the two limits $x_{p, min}$ and $x_{p, max}$, and this function

does not output a constant value zero for the error signal e, but likewise an error signal e which is

linearly dependent on the valve opening degree x_p and is with a sign change at the valve opening

degree $x_{p,M}$ which in this region is situated in the middle between the lower and the upper limit

value. The gradient of the curve for the error signal e between the lower limit $x_{p,min}$ and the upper

limit $x_{p,max}$ is thereby lower than the gradient above and be low these limit values. With such a

control, an error si gnal e is out putted such that one succeeds in the val ve opening degree x_p

preferably being held in the region of the middle value $x_{p,M}$, via the speed control of the pump

assemblies 10 and 12.

Figures 9A - 9C now show three similar examples for the output of an error signal e on

the basis of a di fferential pressure Dp, as is detected for example according to the embodiment

examples in Fig. 4 and 5. According to Fig. 9A, a group of three functions which are linked to

one another is provided:

$$e = \begin{cases} -a(Dp - Dp_{min}) & Dp < Dp_{min} \\ 0 & Dp_{min} \leq Dp \leq Dp_{max} \\ -a(Dp - Dp_{max}) & Dp_{max} < Dp \end{cases}$$

Here, an error signal e according to the function $e = -a(Dp - Dp_{min})$ is outputted below a

minimal differential pressure value, which means below a lower limit value Dp_{min}, wherein a is a

constant factor. Here too, a c onstant error signal e with the value zero is outputted between the

limit values Dp_{min} and Dp_{max} (upper limit value). An error signal e according to the function e = -

a(Dp - Dp_{max}) is outputted above the upper limit value Dp_{max}. This means that in each case an

error signal e which is linearly dependent on the differential pressure Dp is outputted below the

lower limit value Dp min and a bove the upper l imit value Dp max. The e mbodiment example

according to Fig. 9B corresponds to the embodiment example according to Fig. 9A, wherein the

third function for the region above Dp_{max} is done away with, which is to say that here there is no

upper limit Dp_{max}. Instead, a constant error signal e with the value zero is outputted above the

lower limit value Dp_{min}.

With the embodiment example according to F ig. 9C, in a manner similar to the

embodiment example according to Fig 8C, an err or signal e whi ch is linearly dependent on the

detected differential pressure Dp is likewise outputted between the limit values Dp_{min} and Dp_{max},

wherein the error signal e has a zero point at the value Dp,M. The middle value Dp,M lies in the

middle between the limit values Dp_{min} and Dp_{max}. This control is suitable in order to control the

differential pressure essentially to the middle value Dp,M, by way of a corresponding err or

signal e being outputted if the differential pressure differs from this value. This error signal e

then in turn has an influence on the speed of the pump assembly.

An example is now described by way of Fig. 10A - 10C, in whi ch the error signal e is

outputted on the basi s of a det ected temperature value. The temperature value is det ected for

example in the previously explained example according to Fig. 7, in which the hydraulic system

is a cooling system. The detected temperature value T is a return temperature value T_r. The error

signal in the embodiment example according to Fig. 10A is for med according to the following

group of functions:

$$e = \begin{cases} a(T_r - T_{r,min}) & , & T_r < T_{r,min} \\ 0 & , & T_{r,min} \le T_r \le T_{r,max} \\ o(T_r - T_{r,max}) & , & T_{r,max} < T_r \end{cases}$$

This means that below a lower limit value $T_{r,min}$, an error signal e according to the function e =

a(T_r - T_{r,min}) is outputted, which means an error signal e which is linearly dependent on the return

temperature T_r and drops more greatly with a falling return temperature, wherein the error signal

is negative. A constant error signal e with the value zero is outputted between the lower limit

 $T_{r,min}$ and the upper limit value $T_{r,max}$. Above the upper limit value $T_{r,max}$, an error signal e which

is linearly dependent on the temperature T $_{r}$ and according to the equation $e = a(T_{r} - T_{r,max})$ is

outputted. The value a is a constant factor in the previously mentioned equations. Thus an error

signal e which increases linearly with the temperature T_r is outputted above the value $T_{r,max}$.

The embodiment example according to Fig. 10B differs from the embodiment example

according to Fig. 10A in that the first equation for the region below the lower limit value T_{r,min}

falls away or drops out, which means to say there are only two functions. The linearly dependent

function for the error signal e is used above t he limit value $T_{r,max}$, as has been described

previously. A constant error signal e with the value zero is outputted below the value $T_{r,max}$.

The embodiment example according to Fig. 10C is identical to the embodiment example

according to Fig. 10A with regard to the two functions for regions below the lower limit T_{r.min}

and above the upper limit $T_{r,max}$. A function a ccording to which the error signal e is likewise

linearly dependent on the detected temperature value T_r is used in the region between the lower

limit $T_{r, min}$ and the upper limit $T_{r, max}$, wherein the gradient of this function is less than that below

and above the mentioned limit values. Moreover, the function between the limits has a zero point

at the middle value $T_{r,M}$ which is situated in the middle between the lower limit $T_{r,min}$ and the

upper limit $T_{r,max}$. This means that this me thod is suitable for controlling the return temperature

 T_r to the value $T_{r,M}$, by way of an error signal e being outputted in each case given a deviation

from this value, said er ror signal becoming larger or smaller with an increasing distance to the

setpoint. A more accurate control to the middle value T_{rM} is made possible due to the shallower

course of the curve between the values $T_{r,min}$ and $T_{r,max}$, than would be possible with the steeper

curve course, which means with the curve course with a greater gradient above the upper limit

 $T_{r,max}$ and below the lower limit $T_{r,min}$.

Now two variants are described by way of Fi g. 11 and 12, with regard to how the error

signal e can have a n influence on the spee d of the pump assembly 10, 12. These e xamples

according to Fig. 11 and 12 are based on a hydraulic system as is shown in Fig. 5. However, it is

to be understood that the processing of the produced error signals e can also be applied in a

corresponding manner with different systems, in particular the previously described hydraulic

systems. In both embodiment examples according to Fig. 11 and 12, in each case the output

signal of a differential pressure sensor 16 is firstly processed in a signal processing device 26 in

each case, in order to produce the error signal e in the previously described manner. Thereby, an

individual signal processing device 26 is preferably assigned to each sensor 16, wherein further

preferably the signal processing device 26 also wit h the respective sensor form an integrated

construction unit. The signal processing device 26 is preferably a rranged in the proximity of the

sensor, which is to say in a manner distanced to the pump assembly 10, so that only the error

signal e is transferred to the pump assembly. The functions as have been hitherto described and

are deposited in the signal process ing device 26 for producing the error signal e are preferably

adapted to the characteristics of the sensor or of the hydra ulic region, in which the sensor is

arranged, so that the err or signal er epresents the requirements in the hydraulic region, and the

hydraulic region can be controlled to a setpoint, for example with regard to the diff erential

pressure Dp. With the use of other suitable sensors, as have been described previously, the error

signal e can also be out putted such that a de sired valve opening degree, a desired temperature,

etc. is kept to.

In the example according to Fig. 11, the error signals e from the individual differential

pressure sensors 16 are added. In the shown example, two differential pressure sensors 16 are

shown, but it is to be under stood that accordingly more pressure sensors 16 with associ ated

signal processing devices 26 can be used, wherein an individual error signal e is out putted for

each differential pressure sensor 16. Apart fr om the differential pressure sensors 16, further

sensors such as temperature sensors or sensors for detecting a valve opening degree or flow

sensors can accordingly also be co-linked, wherein these then also each comprise a signal

processing device 26 which outputs an associated error signal e. In this example, the error signals

e are additionally differently weighted via weighting factors weight to wn, before they are added in an

adder 28. Subsequently, a signal DP which is negative, is added in a further adder 30, which

means to say the signal DP is subtracted. The signal DP corresponds to the change of the power

uptake or energy consumption in dependence on a control signal u for the pump assembly 10. In

the subsequent step, this sum is multiplied by an am plification factor G and thereafter is

integrated in an integrator 32, so that the independent control signal u is outputted for the control

of the pump assembly 10. The control signal u can correspond directly to the speed n of the

pump assembly, but also the delivery head h, which is to say the differential pressure across the

pump assembly 10, 12 or the output or exit pressure p out or the exit f low qout of the pump

assembly 10, 12. If the control signal u does not correspond directly to the speed n, thus the

speed is then influenced indirectly, since the control of the pressure is effected for example vi a

the speed of the pump assembly 10, 12.

The change of the cont rol signal u according to the preceding example is computed

according to the following formula:

$$\frac{du}{dt} = -G\left(DP_{\text{pump}} - \sum_{i=1}^{N} w_i e_i\right)$$

With this equation, an optimisation with regard to the energy consumption is

simultaneously achieved via the signal DP which can be approximated by a constant value.

Instead of this signal, an optimisation could also be effected via a constant in the following manner:

$$\frac{du}{dt} = \begin{cases} s & 0 > \sum_{i=1}^{N} e_i \\ -s & otherwise \end{cases}$$

Thereby, the value s is a constant factor which is positive in the case, in which the sum of the error signals e over the complete number N of sens ors and/or of signal-issuing units such as valves is smaller than zero. A constant value -s is outputted in all other cases.

Differential expressions were applied according to the previously described embodiment. However, it is to be understood the at instead of this, one could also apply discrete versions, for example in the form of the following equations:

$$u_{k+1} = u_k - G\left(DP_{\text{pump}} - \sum_{i=1}^N e_i\right) \qquad \qquad u_{k+1} = u_k + \left\{s \quad , \quad 0 > \sum_{i=1}^N e_i\right\}$$

k is a temporal step in these equations. The factors G and s in turn are constants.

Instead of weighting the error signals e with weighting f actors w, the error signals e, as the case may be, c an also be directly added also without any weighting in a corr esponding manner.

A selection as is described by way of Fig. 12, can also take place instead of the addition of the error signals e. In the example according to Fig. 12, in contrast to the example according to

Fig. 11, the adder 26 is replaced by a selection device 34. This means that an error signal e which

is then led to the adder 30 is always selected via the selection device 34. The further signal

processing as described above by way of Fig. 11 is then e ffected subsequently to the adder 30.

The selection device 34 for example can be designed such that the error signal e of one of the

sensors is selected in each case according to a predefined condition such as a prioritisation. This

means that firstly the err or signal e of a sensor with the highest priority is selected and then, as

the case may be, the error signal of one or more sensors with a subsequent priority is selected,

inasmuch as the signals of the previously prioritised sensors are zero. Here, differently suitable

selection methods can be applied. Other prioritisations are also possible. Thus individual sensors

can be pri oritized with regard to their upper limit or their lower limit. If for example t he

maximum is prioritized, the error signal e of t hese sensors would be positive, as shown in the

previously described examples. Thus for example only the sum of these sensors whose err or

signal e is positive could be taken into account. In the case that the upper limit is exceeded for

none of these prioritised sensor s, which means no positive er ror signal is outputted, then the

control can also be carried out on the basis of all other, as the case may be, also negative error

signals, in the manner mentioned previously.

The part of the c ontrol device which is characterised with the ref erence numeral 36 in

Fig. 11 and 12 is pref erably integrated into the control device of the pump as sembly 10, 12,

whereas the signal processing devices 26 are preferably assigned to the sensors or are integrated

into these.

What is claimed is:

1. A c ontrol method for a pu mp assembly in a pneumatic or hydra ulic system, the

method comprising the steps of:

detecting at least one system variable in the system;

closed loop controlling a speed of the pump assembly in dependence on the at least one

system variable which is detected in the system;

producing an error signal from t he detected variable on the ba sis of a secti onwise

monotonic function; and

using the error signal as a basis for the step of controlling the speed of t he pump

assembly.

2. A control method according to claim 1, wherein the at least one variable is a pressure

value or a valve opening degree, which is detected in the system.

3. A c ontrol method a ccording to claim 1, wherein the at least one variable is a

temperature value or flow value, which is detected in the system.

4. A contr ol method according to claim 1, wherein the detected variable is compared

with at least one limit value and on reaching the limit value, the function of the sectionwise

monotonic function, on the basis of which the error signal is produced, is exchanged.

5. A control method according to claim 1, wherein the detected variable is compared

with an upper and a lower li mit value and on reaching the upper limit value as well as on

reaching the lower limit value, the function of the sectionwise monotonic function, on the basis

of which the error signal is produced, is exchanged.

6. A control method according to claim 5, wherein the functions which are applied above

the upper limit value and/or below the lower limit value output an error signal which is linearly

dependent on a magnitude of the detected variables.

7. A contr ol method according to claim 6, wherein a function which outputs an error

signal which is linearly dependen t on the magnitude of the variables is applied at least one of

below the upper limit value and above the lower limit value, wherein the functions between the

variable and the error signal have different gradients, above and below the respective limit value.

8. A control method according to claim 7, wherein the function has a zero point with a

sign change in a region above the lower limit value and below the upper limit value.

9. A control method according to claim 5, wherein the error signal which is outputted on

reaching the upper limit value and above the upper limit value has a different sign than the error

signal which is outputted on reaching or below the lower limit value.

10. A control method according to claim 1, wherein the production of the error signal is

effected in a signal processing device assigned to a sens or for detecting the variables, and the

produced error signal is transferred to a control device of the pump assembly which effects the

control of the speed of the pump assembly.

11. A control method according to claim 1, further comprising

detecting at least another system variable in the system such that several system variables

are detected in the system, wher ein the step of producing an e rror signal comprises producing

error signals in each case on the basis of a sectionwise monotonic function.

12. A control method according to claim 11, wherein all of the error signals are added,

and the control of the speed of the pump assembly is effect ed on the basis of the a dded error

signals.

13. A contr of method a coording to claim 12, wherein the individual error signals are

multiplied by individual weighting factors before the addition.

14. A cont rol method according to claim 11, wherein one or more error signals are

selected from the plurality of error signals and the control of the speed of the pump assembly is

effected on the basis of these one or more selected error signals.

15. A control method according to claim 1, wherein the speed of the pump assembly is

controlled in dependence on a differential pressure or a flow, and the differential pressure or flow

is controlled on the basis of one or more error signals.

16. A control method according to claim 1, wherein the speed of the pump assembly is

changed directly or indirectly in defined steps, in dependence on the error signal.

17. A control method according to claim 1, characterised in the speed of the at least one

pump assembly additionally to the error signal is cont rolled on the basis of an algorithm for

minimizing power uptake.

18. A cont rol method according to claim 17, wherein the algorithm for mini mising

minimizing power uptake minimizes energy consumption acts in a manner so as to reduce the

speed of the pump assembly.

19. A pump system comprising:

at least one sensor for detecting a variable in a hydraulic or pneumatic system;

a signal processing device designed for producing at least one error signal on the basis of

the detected variable:

at least one pump as sembly with a control device f or receiving the at least one error

signal from the signal processing device and for the control of the speed of the pump assembly

on the basis of the at least one error signal, wherein the control device and the signal processing

device are configured for carrying out a control method comprising the steps of:

detecting at least one system variable in the system;

controlling a speed of the pump assembly in dependence on the at least one system

variable which is detected in the system;

producing an error signal from t he detected variable on the ba sis of a sectionwise

monotonic function; and

using the error signal as a basis for the step of controlling the espeed of the pump

assembly.

20. A c ontrol method for a pump assembly in a pneumatic or hydraulic system, the

method comprising the steps of:

providing at least one s ensor for detecting a variable in the hydraulic or pne umatic

system;

providing a signal processing device designed for producing at least one error signal on

the basis of the detected variable;

providing at least one pump as sembly with a control device for receiving the at least one

error signal from the signal pr ocessing device and for the c ontrol of the speed of the pump

assembly on the basis of the at least one error signal;

detecting at least one system variable in the system with the at least one sensor;

controlling, with the control device, a speed of the pump assembly in dependence on the

at least one system variable which is detected in the system;

producing an error signal, with the signal processing device, from the detected variable

on the basis of a sectionwise monotonic function; and

using the error signal as a basis for the step of controlling the speed of t he pump

assembly.

Abstract

A control method for a pump assembly (10, 12) in a pneumatic or hydraulic system

controls a speed (n) of the pump assembly (10, 12) in dependence on at least one variable (Dp, p,

T, x_p) which is detected in the system. An error signal (e) is produced from the detected variable

(Dp, p, T, x_p) on the basis of a sectionwise monotonic function. On the basis of the error signal,

the speed (n) of the pump assembly (10, 12) is controlled.

List of reference numerals

2 - heat source or cold source

4 - load circuits

6 - mixing pump

8 - control valve

10, 12 - pump assembly

- supply conduit

- differential pressure sensor

- consumer

20 - pressure sensor

- consumer

- temperature sensor

- signal processing device

28, 30 - adder

32 - integrator

34 - selection device

- part of the control device

e - error signal

 x_p - valve opening degree

Dp - differential pressure

T - temperature

DP - change of power uptake

G - amplification factor

u - control signal

RECORDED: 10/27/2015