504342564 04/28/2017

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT4389252

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT

CONVEYING PARTY DATA

Name	Execution Date
MR JOHN EUGENE STAUFFER	12/27/2016

RECEIVING PARTY DATA

Name:	JES TECHNOLOGY, LLC
Street Address:	7433 ARLINGTON ROAD
City:	BETHESDA
State/Country:	MARYLAND
Postal Code:	20814

PROPERTY NUMBERS Total: 1

Property Type	Number
Patent Number:	7696390

CORRESPONDENCE DATA

Fax Number:

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 2403055728

Email: staufferchris@hotmail.com
Correspondent Name: JES TECHNOLOGY, LLC
Address Line 1: 7433 ARLINGTON ROAD

Address Line 4: BETHESDA, MARYLAND 20814

NAME OF SUBMITTER:	JOHN E STAUFFER
SIGNATURE:	/jes/
DATE SIGNED:	04/28/2017
	This document serves as an Oath/Declaration (37 CFR 1.63).

Total Attachments: 5

source=pat 20_201704280814#page1.tif source=pat 20_201704280814#page2.tif source=pat 20_201704280814#page3.tif source=pat 20_201704280814#page4.tif

source=pat 20 201704280814#page5.tif

PATENT 504342564 REEL: 042171 FRAME: 0786

JOHN EUGENE STAUFFER ASSIGNMENT OF PATENTS TO JES TECHNOLOGY, LLC

I, JOHN EUGENE STAUFFER, individually, own all right, title and interest in and to each of the Patents listed in Schedule "A" attached hereto, each of which is registered with the United States Patent and Trademark Office with the identification number as shown for each Patent on Schedule "A". By this written instrument of Assignment I, JOHN EUGENE STAUFFER, individually (the "Assignor"), hereby assign all my right, title and interest in and to each Patent listed on Schedule "A" attached hereto, to JES TECHNOLOGY, LLC, a limited liability company organized under the laws of the State of Connecticut (the "Assignee") and JES TECHNOLOGY, LLC, hereby accepts such assignment.

Dated

Dec 27, 2016

John Eugen Stands

JOHN EUGENE STAUFFER

Assignor

Dated

Dec 27, 2016

JES TECHNOLOGY, LLC

Assignee

JOHN CHRISTIAN STAUFFER

ITS: Manager

PATENT REEL: 042171 FRAME: 0787

STATE OF CONNECTICUT)	
) ss:	Greenwich
COUNTY OF FAIRFIELD)	

On the 27 day of December, in the year 2016, before me, the undersigned, personally appeared JOHN EUGENE STAUFFER, personally known to me or proved to me on the basis of a driver's license or other satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged before me that he executed the same as his free act and deed in his capacity therein stated, that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument for the purposes therein contained, and that such individual made such appearance before the undersigned in Greenwich, Connecticut.

Notary Public

JANET E. MERCADO

MY COMMISSION EXPIRES 8/31/2021

STATE OF CONNECTICUT)
) ss: Greenwich
COUNTY OF FAIRFIELD)

On the Jaw day of December, in the year 2016, before me, the undersigned, personally appeared JOHN CHRISTIAN STAUFFER, personally known to me or proved to me on the basis of a driver's license or other satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged before me that he executed the same as his free act and deed in his capacity therein stated, that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument for the purposes therein contained, and that such individual made such appearance before the undersigned in Greenwich, Connecticut.

Notary Public

JANET E. MERCADO NOTARY PUBLIC

MY COMMISSION EXPIRES 8/31/2021

3311375 1.docx 12/20/2016

Schedule A

	PAT. NO.	Title
1	9,509,017	Lithium storage battery
2	9,169,441	Extraction of bitumen from oil sands
3.	<u>9,169,168</u>	Process for producing ethylene by chlorination of ethane and
		dehydrochlorination of ethyl chloride
4	9,147,912	Method of producing an electrical potential
5	<u>9,079,849</u>	Synthesis of metal alkoxides
6	<u>8,940,445</u>	Vanadium-zinc battery
7	<u>8,932,753</u>	Lead alkaline battery
8	<u>8,927,143</u>	Aluminum storage battery
9	<u>8,581,010</u>	Formation of ethanol from methanol
10	<u>8,507,735</u>	Alcohol synthesis
11	<u>8,440,868</u>	Manufacture of methanol
12	<u>8,273,927</u>	Alcohol fractionation
13	8,232,003	Lead-palladium battery
14	<u>8,114,917</u>	Ethanol synthesis
15	8,030,530	Swing reactor and process for oxychlorination
16	<u>7,999,138</u>	Methyl amines to olefins
17	<u>7,977,515</u>	Formaldehyde synthesis
18	<u>7,947,391</u>	<u>Lead-alkaline battery</u>
19	<u>7,790,933</u>	Formaldehyde synthesis
20	<u>7,696,390</u>	Methanol synthesis
21	7,683,230	Methyl bromide to olefins
22	<u>7,682,737</u>	Lead-zinc storage battery
23	<u>7,649,116</u>	Formation of olefins from methyl mercaptan
24	<u>7,608,361</u>	Alkali metal battery
25	<u>7,577,710</u>	System and method for prioritizing electronic mail and controlling spam
26	<u>7,550,231</u>	<u>Tin-zinc secondary battery</u>
27	<u>7,381,847</u>	Methyl mercaptan to olefins
28	<u>7,365,233</u>	Methyl mercaptan process
29	<u>7,285,689</u>	Phenol process
30	<u>7,276,635</u>	Methyl halide process
31	<u>7,091,391</u>	Methane to olefins
32	<u>7,090,818</u>	Carbon disulfide process
33	<u>7,084,308</u>	Manufacture of formaldehyde from methyl bromide
34	<u>6,933,414</u>	Acetone process
35	<u>6,906,909</u>	A C capacitor
36	<u>6,852,896</u>	Concerted process for the production of an alkenyl substituted aromatic
		compound
37	6,822,123	Formaldehyde process

PATENT REEL: 042171 FRAME: 0789

	PAT. NO.	Title
38	6,767,528	Manufacture of hydrogen chloride from salt and sulfuric acid
39	6,689,263	Dimensionally stable electrodes
40	6,545,191	Process for preparing ethanol
41	6,507,477	Electrical capacitor
42	6,418,177	Fuel pellets for thermonuclear reactions
43	6,391,186	Electrochemical process for removing ions from solution
44	6,235,167	Electrolyzer for the production of sodium chlorate
45	6,204,418	Process for the chlornation of hydrocarbons
46	6,137,017	Methanol process for natural gas conversion
47	6,010,604	Neural network packing
48	5,854,168	Catalyst composition for methanol synthesis
49	5,672,747	Phosgene process
50	5,557,001	Silicone monomer process
51	5,512,144	Pulse method for sulfur dioxide electrolysis
52	5,430,776	Fuel pellets for thermonuclear reactions
53	5,429,085	Timing mechanism for rotary engines
54	5,344,529	Bipolar process for removal of sulfur dioxide from waste gases
54	5,344,529	Bipolar process for removal of sulfur dioxide from waste gases
55	5,266,343	Pasteurization process for dairy products
56	<u>5,185,479</u>	Process for methyl alcohol
57	5,099,084	Process for the chlorination of methane
58	5,097,083	Process for the chlorination of ethane
59	4,990,696	Methyl alcohol process
60	4,925,639	Removal of nitric oxide from waste gases and recovery as nitric acid
61	4,899,000	Production of allyl chloride
62	4,890,591	Rotary internal combustion engine and method of starting the engine
63	4,744,736	Compound rotary internal combustion engine
64	<u>4,605,540</u>	Low volatile fluorine process for making elemental phosphorus

United States Patent: 7696390

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

<u>Home</u> Quick <u>Advanced</u> Pat Num <u>Help</u> <u>Hit List</u> **Next List Previous** <u>Bottom</u> <u>Next</u> View Cart Add to Cart <u>Images</u>

(20 of 64)

United States Patent

Stauffer

7,696,390

April 13, 2010

Methanol synthesis

Abstract

A process is disclosed for the synthesis of methanol from methane comprising three reaction steps operated in tandem. In the first step methylene chloride is produced by the reaction of methane with oxygen and hydrogen chloride. In the second step, methylene chloride is hydrolyzed to formaldehyde, which is hydrogenated in the third step to provide the product methanol.

Inventors: Stauffer; John E. (Greenwich, CT)

Family ID: 40996761 Appl. No.: 12/136,142

Filed:

June 10, 2008

Prior Publication Data

Document Identifier

Publication Date

US 20090306437 A1

Dec 10, 2009

Current U.S. Class:

568/893

Current CPC Class:

C07C 17/154 (20130101); C07C 17/23 (20130101); C07C 29/141 (20130101); C07C 45/43 (20130101); C07C 17/154 (20130101); C07C 19/03 (20130101); C07C

17/23 (20130101); C07C 19/03 (20130101); C07C 45/43 (20130101);

C07C 47/04 (20130101); C07C 29/141 (20130101); C07C

31/04 (20130101)

Current International

C07C 29/14 (20060101)

Class:

Field of Search:

;568/893

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=12/20/2016 **REEL: 042171 FRAME: 0791**

RECORDED: 04/28/2017