PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT4389571

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	ASSIGNMENT

CONVEYING PARTY DATA

Name	Execution Date
MR JOHN EUGENE STAUFFER	12/27/2016

RECEIVING PARTY DATA

Name:	JES TECHNOLOGY, LLC
Street Address:	7433 ARLINGTON ROAD
City:	BETHESDA
State/Country:	MARYLAND
Postal Code:	20814

PROPERTY NUMBERS Total: 1

Property Type	Number
Patent Number:	4744736

CORRESPONDENCE DATA

Fax Number:

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 2403055728

Email: staufferchris@hotmail.com
Correspondent Name: JES TECHNOLOGY, LLC
Address Line 1: 7433 ARLINGTON ROAD

Address Line 4: BETHESDA, MARYLAND 20814

NAME OF SUBMITTER: JOHN E STAUFFER	
SIGNATURE:	/jes/
DATE SIGNED:	04/28/2017
This document serves as an Oath/Declaration (37 CFR 1.63).	

Total Attachments: 5

source=pat63_201704281033#page1.tif source=pat63_201704281033#page2.tif source=pat63_201704281033#page3.tif source=pat63_201704281033#page4.tif source=pat63_201704281033#page5.tif

PATENT 504342883 REEL: 042174 FRAME: 0701

JOHN EUGENE STAUFFER ASSIGNMENT OF PATENTS TO JES TECHNOLOGY, LLC

I, JOHN EUGENE STAUFFER, individually, own all right, title and interest in and to each of the Patents listed in Schedule "A" attached hereto, each of which is registered with the United States Patent and Trademark Office with the identification number as shown for each Patent on Schedule "A". By this written instrument of Assignment I, JOHN EUGENE STAUFFER, individually (the "Assignor"), hereby assign all my right, title and interest in and to each Patent listed on Schedule "A" attached hereto, to JES TECHNOLOGY, LLC, a limited liability company organized under the laws of the State of Connecticut (the "Assignee") and JES TECHNOLOGY, LLC, hereby accepts such assignment.

Dated Dec 27, 2016

John Eugene Stank

JOHN EUGENE STAUFFER

Assignor

Dated Dec 27, 2016

JES TECHNOLOGY, LLC

Assignee

JOHN CHRISTIAN STAUFFER

ITS: Manager

PATENT REEL: 042174 FRAME: 0702

STATE OF CONNECTICUT)	
) ss:	Greenwich
COUNTY OF FAIRFIELD)	

On the 27 day of December, in the year 2016, before me, the undersigned, personally appeared JOHN EUGENE STAUFFER, personally known to me or proved to me on the basis of a driver's license or other satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged before me that he executed the same as his free act and deed in his capacity therein stated, that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument for the purposes therein contained, and that such individual made such appearance before the undersigned in Greenwich, Connecticut.

Votary Public

NOTARY PUBLIC

MY COMMISSION EXPIRES 8/31/2021

STATE OF CONNECTICUT)	
) ss:	Greenwich
COUNTY OF FAIRFIELD)	

On the It day of December, in the year 2016, before me, the undersigned, personally appeared JOHN CHRISTIAN STAUFFER, personally known to me or proved to me on the basis of a driver's license or other satisfactory evidence to be the individual whose name is subscribed to the within instrument and acknowledged before me that he executed the same as his free act and deed in his capacity therein stated, that by his signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument for the purposes therein contained, and that such individual made such appearance before the undersigned in Greenwich, Connecticut.

Votary Public

JANET E. MERCADO NOTARY PUBLIC MY COMMISSION EXPIRES 8/31/2021

3311375_1.docx 12/20/2016

$\underline{Schedule\ A}$

	PAT. NO.	Title
1	9,509,017	Lithium storage battery
2	<u>9,169,441</u>	Extraction of bitumen from oil sands
3.	9,169,168	Process for producing ethylene by chlorination of ethane and
		dehydrochlorination of ethyl chloride
4	9,147,912	Method of producing an electrical potential
5	9,079,849	Synthesis of metal alkoxides
6	<u>8,940,445</u>	Vanadium-zinc battery
7	<u>8,932,753</u>	<u>Lead alkaline battery</u>
8	<u>8,927,143</u>	Aluminum storage battery
9	<u>8,581,010</u>	Formation of ethanol from methanol
10	<u>8,507,735</u>	Alcohol synthesis
11	<u>8,440,868</u>	Manufacture of methanol
12	<u>8,273,927</u>	Alcohol fractionation
13	<u>8,232,003</u>	<u>Lead-palladium battery</u>
14	<u>8,114,917</u>	Ethanol synthesis
15	<u>8,030,530</u>	Swing reactor and process for oxychlorination
16	<u>7,999,138</u>	Methyl amines to olefins
17	<u>7,977,515</u>	Formaldehyde synthesis
18	<u>7,947,391</u>	Lead-alkaline battery
19	<u>7,790,933</u>	Formaldehyde synthesis
20	<u>7,696,390</u>	Methanol synthesis
21	<u>7,683,230</u>	Methyl bromide to olefins
22	<u>7,682,737</u>	Lead-zinc storage battery
23	<u>7,649,116</u>	Formation of olefins from methyl mercaptan
24	<u>7,608,361</u>	Alkali metal battery
25	7,577,710	System and method for prioritizing electronic mail and controlling spam
26	<u>7,550,231</u>	<u>Tin-zinc secondary battery</u>
27	<u>7,381,847</u>	Methyl mercaptan to olefins
28	7,365,233	Methyl mercaptan process
29	<u>7,285,689</u>	Phenol process
30	7,276,635	Methyl halide process
31	<u>7,091,391</u>	Methane to olefins
32	7,090,818	Carbon disulfide process
33	<u>7,084,308</u>	Manufacture of formaldehyde from methyl bromide
34	<u>6,933,414</u>	Acetone process
35	<u>6,906,909</u>	A C capacitor
36	<u>6,852,896</u>	Concerted process for the production of an alkenyl substituted aromatic
	< 000 do 5	compound
37	6,822,123	Formaldehyde process

PATENT REEL: 042174 FRAME: 0704

	PAT. NO.	Title
38	6,767,528	Manufacture of hydrogen chloride from salt and sulfuric acid
39	6,689,263	Dimensionally stable electrodes
40	6,545,191	Process for preparing ethanol
41	6,507,477	Electrical capacitor
42	6,418,177	Fuel pellets for thermonuclear reactions
43	6,391,186	Electrochemical process for removing ions from solution
44	6,235,167	Electrolyzer for the production of sodium chlorate
45	6,204,418	Process for the chlornation of hydrocarbons
46	6,137,017	Methanol process for natural gas conversion
47	6,010,604	Neural network packing
48	5,854,168	Catalyst composition for methanol synthesis
49	5,672,747	Phosgene process
50	5,557,001	Silicone monomer process
51	5,512,144	Pulse method for sulfur dioxide electrolysis
52	5,430,776	Fuel pellets for thermonuclear reactions
53	<u>5,429,085</u>	Timing mechanism for rotary engines
54	<u>5,344,529</u>	Bipolar process for removal of sulfur dioxide from waste gases
54	<u>5,344,529</u>	Bipolar process for removal of sulfur dioxide from waste gases
55	<u>5,266,343</u>	Pasteurization process for dairy products
56	5,185,479	Process for methyl alcohol
57	<u>5,099,084</u>	Process for the chlorination of methane
58	<u>5,097,083</u>	Process for the chlorination of ethane
59	4,990,696	Methyl alcohol process
60	4,925,639	Removal of nitric oxide from waste gases and recovery as nitric acid
61	4,899,000	Production of allyl chloride
62	4,890,591	Rotary internal combustion engine and method of starting the engine
63	4,744,736	Compound rotary internal combustion engine
64	4,605,540	Low volatile fluorine process for making elemental phosphorus

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

Home Quick Advanced Pat Num Help

Prev. List Hit List Previous Next Bottom

View Cart Add to Cart

Images

(63 of 64)

United States Patent

4,744,736

Stauffer

May 17, 1988

Compound rotary internal combustion engine

Abstract

An internal combustion engine of the rotary type in which a pair of axially spaced combustion chambers are provided and a common ratchet or control mechanism is positioned between the spaced combustion chambers, A pair of vanes are mounted in each combustion chamber with the vanes mounted on concentric shafts and free to rotate relative to each other. The ratchet mechanism positioned between the combustion chambers functions to resist counterclockwise movement of the vanes in one combustion chamber while allowing free clockwise movement thereof and to resist clockwise movement of the vanes in the other combustion chamber while allowing free counterclockwise movement thereof. The reaction forces generated in the ratchet mechanism from the two combustion chambers thus tend to cancel each other out. The central ratchet mechanism includes a housing which absorbs the reaction forces from both combustion chambers and which is free to rotate in the event that the reaction forces generated in the two combustion chambers become unbalanced.

Inventors: Stauffer; John E. (Greenwich, CT)

Family ID: 27426535 Appl. No.: 06/943,634

Filed:

December 19, 1986

Related U.S. Patent Documents

Application NumberFiling DatePatent NumberIssue Date773636Sep 9, 1985

Current U.S. Class:

418/35

Current CPC Class:

F01B 9/08 (20130101); F01C 11/002 (20130101); F01C 1/073 (20130101); F02B 53/00 (20130101)

http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=2&u=2TENT 12/20/2016
RECORDED: 04/28/2017 REEL: 04/2174 FRAME: 0706