PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT5326160 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | ### **CONVEYING PARTY DATA** | Name | Execution Date | | |--------------------|----------------|--| | AERION CORPORATION | 01/15/2019 | | ### **RECEIVING PARTY DATA** | Name: | AERION INTELLECTUAL PROPERTY MANAGEMENT CORPORATION | |-----------------|---| | Street Address: | 5190 NEIL ROAD, SUITE 500 | | City: | RENO | | State/Country: | NEVADA | | Postal Code: | 89502 | #### **PROPERTY NUMBERS Total: 52** | Property Type | Number | |---------------------|--------------| | Application Number: | 15626012 | | Application Number: | 62482029 | | Application Number: | 62482023 | | Application Number: | 14545771 | | PCT Number: | US2016037027 | | Application Number: | 14121432 | | Application Number: | 13987654 | | Patent Number: | 8991768 | | Patent Number: | 9233755 | | Patent Number: | 8317128 | | PCT Number: | US2012024794 | | Patent Number: | 8448893 | | PCT Number: | US2012020588 | | Patent Number: | 8882028 | | PCT Number: | US2011046522 | | Patent Number: | 8272594 | | PCT Number: | US2010002758 | | Patent Number: | 8371124 | | PCT Number: | US2010000960 | | Patent Number: | 7837142 | | | | PATENT REEL: 048077 FRAME: 0026 505279388 | Property Type | Number | |---------------------|--------------| | PCT Number: | US2007021624 | | Application Number: | 12807154 | | Patent Number: | 7967241 | | Application Number: | 60936268 | | Application Number: | 60880054 | | Application Number: | 60851841 | | Patent Number: | 7946535 | | PCT Number: | US2007022157 | | Application Number: | 60851630 | | Application Number: | 60851403 | | Patent Number: | 6857599 | | Patent Number: | 7000870 | | PCT Number: | US2003035393 | | Patent Number: | 7004428 | | Application Number: | 60255509 | | Patent Number: | 6149101 | | PCT Number: | US2000007047 | | Patent Number: | 5897076 | | Patent Number: | 5518204 | | Patent Number: | 5322242 | | PCT Number: | US1993004970 | | Patent Number: | 8892408 | | Patent Number: | 8538738 | | PCT Number: | US2012030189 | | Patent Number: | 9418202 | | Patent Number: | 8457939 | | PCT Number: | US2011067917 | | Patent Number: | 8935140 | | Patent Number: | 9348956 | | PCT Number: | US2012028606 | | Patent Number: | 8437990 | | Patent Number: | 9494482 | ### **CORRESPONDENCE DATA** (703)770-7901 Fax Number: Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. Phone: 650.233.4500 Judy.Keeley@pillsburylaw.com Email: > **PATENT** REEL: 048077 FRAME: 0027 Correspondent Name: DAVID A. JAKOPIN/ATTN: JUDY KEELEY Address Line 1: 2550 HANOVER STREET Address Line 4: PALO ALTO, CALIFORNIA 94304-1115 ATTORNEY DOCKET NUMBER: 016596-0000003 NAME OF SUBMITTER: DAVID A. JAKOPIN/REG. NO. 32995 SIGNATURE: /David A. Jakopin/ DATE SIGNED: 01/15/2019 DATE SIGNED. 01/13/2013 **Total Attachments: 10** source=Patent Assignment#page1.tif source=Patent Assignment#page2.tif source=Patent Assignment#page3.tif source=Patent Assignment#page4.tif source=Patent Assignment#page5.tif source=Patent Assignment#page6.tif source=Patent Assignment#page7.tif source=Patent Assignment#page8.tif source=Patent Assignment#page9.tif source=Patent Assignment#page10.tif > PATENT REEL: 048077 FRAME: 0028 #### PATENT ASSIGNMENT THIS PATENT ASSIGNMENT (this "Assignment") is made and entered into by and between Aerion Corporation ("Assignor"), and Aerion Intellectual Property Management Corporation ("Assignee") as of November 17, 2017 ("Effective Date"), which is the same date as the effective date on which Assignor and Assignee entered into the Intellectual Property Contribution and License Agreement ("Contribution Agreement"). WHEREAS, Assignor is the sole and exclusive owner of the entire right, title and interest in, to and under the utility patents, all associated and related applications, all reissues, divisions, continuations, continuations-in-part, reexaminations, and extensions thereof, all international applications and/or foreign equivalents thereof, and rights in patent disclosures, and all patent rights set forth on Schedule A attached hereto, (the "Patents"); and WHEREAS, consistent with, and as provided in the Contribution Agreement, Assignor wishes to assign to Assignee, and Assignee wishes to acquire from Assignor, all right, title and interest to the Patents; and SO NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, Assignor hereby sells, conveys, assigns, transfers and delivers to Assignee its entire right, title and interest in and to the Patents, for the United States and for all foreign countries, and the inventions such Patents claim (including subject matter capable of being reduced to a patent claim in a reissue or reexamination proceeding relating to one of the Patents and subject matter that could have been included as a claim in one of the Patents), and any and all continuations, divisionals, continuations-in-part, provisionals, reissues, reexaminations, extensions, international applications or foreign equivalents thereof which may be obtained therefrom, and the priority rights thereto, for its own use and enjoyment, and for the use and enjoyment of its successors, assigns or other legal representatives, as fully and entirely as the same would have been held and enjoyed by Assignor if this Assignment had not been made, together with all income, royalties, or payments due or payable as of the Effective Date or thereafter, including, without limitation, all claims for damages by reason of past, present or future infringement or other unauthorized use of one or more of the Patents, with the right to sue for, and collect the same for its own use and enjoyment, and for the use and enjoyment of its successors, assigns, or other legal representatives. Assignor hereby requests the United States Commissioner of Patents and Trademarks, and the corresponding entities or agencies in any applicable foreign jurisdictions, to record Assignee as the assignee and owner of the Patents. [Remainder of the page intentionally left blank] 4824-3978-0186.v1 **IN WITNESS WHEREOF,** Assignor and Assignee have caused this Assignment to be executed by their duly authorized representatives and made effective as of the Effective Date. ASSIGNOR: AERION CORPORATION Name: Richard R. Tracy Title: Senior Vice President Date: January 15, 2019 **IN WITNESS WHEREOF,** Assignor and Assignee have caused this Assignment to be executed by their duly authorized representatives and made effective as of the Effective Date. ASSIGNEE: AERION INTELLECTUAL PROPERTY MANAGEMENT CORPORATION y: <u>Villeddal</u>e Name: Richard R. Tracy Title: President Date: January 15, 2019 4824-3978-0186.v1 # **SCHEDULE A** ### **Patents** | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |--------------------|--|---------------------|-----------------|-------------|----------------|-------------|--| | 016596-
0452381 | High Flow Plug Nozzle
Apparatus and Method of
Usinq the Same | 15/626,012 | 06/17/201
7 | _ | _ | Pending | _ | | 016596-
0448919 | Solid Modeler That
Provides Spatial Gradients
of 3D CAD Models of Solid
Objects | 62/482,029 | 04/05/201
7 | _ | - | Pending | 04/05/201 | | 016596-
0448918 | Solid Modeler That
Provides Spatial Gradients
of 3D CAD Models of Solid
Objects | 62/482,023 | 04/05/201
7 | _ | _ | Pending | 04/05/201 | | 016596-
0448937 | Cockpit Seat Armrest
Avionics Cursor Control
Device | 14/545,771 | 6/18/2015 | _ | - | Pending | _ | | 016596-
0447590 | Cockpit Seat Armrest
Avionics Cursor Control
Device | PCT/US16/0370
27 | 06/18/201
6 | _ | _ | Pending | National
Phase
deadline:
12-18-
2017 (30
mos) | | 13,498 | Jet Engine and Fan
System for Boundary
Layer Ingestion | | | | | Not Filed – | _ | | 016596-
0454308 | Jet Engine and Nacelle for
Reduced Noise | 14/121,432 | 9/8/2014 | | | Pending | _ | | 016596-
0454606 | LNG-Fueled Long Range,
High Speed Aircraft | 13/987,654 | 8/19/2013 | | | Pending | _ | | 13,351 | Highly Efficient Transonic
Laminar Flow Wing (CIP of
docket 12,747, 7,946,535) | 13/068,774 | 5/18/2011 | 8,991,768 | 3/31/2015 | Issued | 5/18/2031 | | 13,347 | Highly Efficient Supersonic
Laminar Flow Wing
Structure (CIP of docket
12,747) | 13/068,773 | 5/18/2011 | 9,233,755 | 1/12/2016 | Issued | 5/18/2031 | | 13,333 | Laminar Flow Wing
Optimized for Transonic
Cruise Aircraft (CIP of
docket 13,150 –
8,272,594) | 12/932,091 | 2/16/2011 | 8,317,128 | 11/27/201
2 | Issued | 2/16/2031 | 4824-3978-0186.v1 PATENT | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |----------------|---|------------------------|-----------------|---------------------------|----------------|--|----------------| | 13,333-EP | Laminar Flow Wing
Optimized for Transonic
Cruise Aircraft | 12746945.0-
1753 | 2/13/2012 | Pub.
EP2675706 | | Pending | _ | | 13,333-
WO | Laminar Flow Wing
Optimized for Transonic
Cruise Aircraft | PCT/US12/0247
94 | 2/13/2012 | Pub.
WO2012/1124
08 | | Expired | _ | | 13,331 | Laminar Flow Wing
Optimized for Transonic
Cruise Aircraft (CIP of
docket 13,150) | 12/931,060 | 1/25/2011 | 8,448,893 | 5/28/2013 | Issued | 1/25/2031 | | 13,331-EP | Laminar Flow Wing
Optimized for Transonic
and Supersonic Cruise
Aircraft | 12771457.4 | 1/9/2012 | Pub.
EP2668094 | | Pending | _ | | 13,331-
WO | Laminar Flow Wing
Optimized for Transonic
and Supersonic Cruise
Aircraft | PCT/US12/2058
8 | 1/9/2012 | Pub.
WO2012/4177
0 | | Expired; filed in EP | _ | | 13,213 | Aircraft Emergency and
Backup Secondary Power
Apparatus | 12/806,223 | 8/9/2010 | 8,882,028 | 11/11/201
4 | Issued | 8/9/2030 | | 13,213-
WO | Aircraft Emergency and
Backup Secondary Power
Apparatus | PCT/US
2011/46522 | 8/4/2011 | Pub.
WO2012/0213
60 | | Expired – no
foreign
patents filed | _ | | 13,150 | Laminar Flow Wing
Optimized for Supersonic
Cruise Aircraft | 12/589,424 | 10/26/200
9 | 8,272,594 | 9/25/2012 | Issued | 10/26/202
9 | | 13,150-BR | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | BR 11 2012
009654.0 | 10/15/201
0 | | | Pending | 10/15/203
0 | | 13,150-CA | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | 2776951 | 10/15/201
0 | 2776951 | 4/7/2015 | Issued | 10/15/203
0 | | 13,150-CN | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | 201080048113.
9 | 10/15/201
0 | ZL
201080048113
.9 | 10/15/201
0 | Issued | 10/15/203
0 | | 13,150-EP | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | 10843355.8 | 10/15/201
0 | Pub.
EP2493758 | | Pending | _ | | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |-----------------|---|---------------------|-----------------|-------------------------------|----------------|---|----------------| | 13,150-JP | Laminar Flow Wing Optimized for Supersonic and High Subsonic Cruise Aircraft | 2012-536784 | 10/15/201
0 | 5,992,332 | 08/26/16 | Issued | _ | | 13,150-RU | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | 2012121848 | 10/15/201
0 | 2531536 | 10/15/201
0 | Issued | 10/15/203
0 | | 13,150-
WO | Laminar Flow Wing
Optimized for Supersonic
and High Subsonic Cruise
Aircraft | PCT/US10/0027
58 | 10/15/201
0 | PCI Pub.
WO2011/0874
75 | | Expired –
national
phase filed in
CA, CN, EP,
JP & RU | _ | | 13,074 | Jet Nozzle Plug with
Varying, Non-Circular
Cross Sections | 12/384,248 | 4/3/2009 | 8,371,124 | 2/12/2013 | Issued | 4/3/2039 | | 13,074-
WO | Jet Nozzle Plug with
Varying, Non-Circular
Cross Sections | PCT/US10/0009
60 | 3/31/2010 | PCI Pub.
WO2010/1146
04 | | Abandoned | _ | | 13,022 | Supersonic Aircraft Jet
Engine | 11/973,813 | 10/9/2007 | 7,837,142 | 11/23/201
0 | Issued | 10/9/2027 | | 13,022-CA | Supersonic Aircraft Jet
Engine | 2665848 | 10/10/200
7 | 2,665,848 | 10/10/200
7 | Issued | 10/10/202
7 | | 13,022-EP | Supersonic Aircraft Jet
Engine | 07873759.0 | 10/10/200
7 | 2084061 | 10/10/200
7 | Issued | 10/10/202
7 | | 13,022-RU | Supersonic Aircraft Jet
Engine | 2009 117327 | 10/10/200
7 | 2454354 | 6/27/2012 | Abandoned | _ | | 13,022-
RU-1 | Supersonic Aircraft Jet
Engine | 2011 150806 | 12/13/201
1 | 2499739 | 10/10/200
7 | Issued | 12/13/203
1 | | 13,022-
WO | Supersonic Aircraft Jet
Engine | PCT/US07/0216
24 | 10/10/200
7 | PCI Pub.
WO200810584 | | Expired | _ | | 13,022-1 | Supersonic Aircraft Jet
Engine Installation | 12/807,154 | 8/30/2010 | , | | Abandoned | _ | | 13,022-2 | Supersonic Aircraft Jet
Engine Installation | 12/807,142 | 8/30/2010 | 7,967,241 | 6/28/2011 | Issued | 8/30/2030 | | 12,977 | Surface Expansion Nozzle
Configuration for
Supersonic Aircraft | 60/936,268 | 6/19/2007 | | | Abandoned | _ | | 13,938 | Gradient Pressure
Recovery Structure for
Supersonic Aircraft | 60/880,054 | 1/9/2007 | | | Abandoned | _ | | 12,906 | Aircraft Engine Translating Inlet Assembly | 60/851,841 | 10/12/200
6 | | | Provisional
Application
Expired | _ | | Docket | Title: | App. No.: | Filing | Patent No.: | Issue | Status: | Exp. | |---------------|--|---------------------|----------------|------------------------------|----------------|--|----------------| | No.: | | | Date: | | Date: | | Date: | | 12,747 | Highly Efficient Supersonic
Laminar Flow Wing | 11/974,802 | 10/18/200
7 | 7,946,535 | 5/24/2011 | Issued | 10/18/202
7 | | 12,747-BR | Highly Efficient Supersonic
Laminar Flow Wing | PI 0717627-9 | 10/17/200
7 | | | Pending | _ | | 12,747-CA | Highly Efficient Supersonic
Laminar Flow Wing | 2,665,852 | 10/17/200
7 | | | Abandoned | _ | | 12,747-CN | Highly Efficient Supersonic
Laminar Flow Wing | 200780044418.
0 | 10/17/200
7 | | | Abandoned | _ | | 12,747-EP | Highly Efficient Supersonic
Laminar Flow Wing | 07 874 420.8 | 10/17/200
7 | 2,091,921 | 1/27/2016 | Issued Lapsed in AT, IT, LT, PL – other designations unknown | 10/17/202
7 | | 12,747-HK | Highly Efficient Supersonic
Laminar Flow Wing | 10101309.2 | 2/5/2010 | | | Abandoned | _ | | 12,747-JP | Highly Efficient Supersonic Laminar Flow Wing | 2009-533360 | 10/17/200
7 | | | Abandoned | _ | | 12,747-RU | Highly Efficient Supersonic
Laminar Flow Wing | 2009118394 | 10/17/200
7 | 2494008 | 10/17/200
7 | Issued | 10/17/202
7 | | 12,747-
WO | Highly Efficient Supersonic
Laminar Flow Wing | PCT/US07/0221
57 | 10/17/200
7 | PCT Pub.
WO200811520
7 | | Expired | _ | | 12,746 | Surface Expansion Nozzle
Integration for Supersonic
Aircraft | 60/851,630 | 10/3/2006 | | | Provisional
Application
Expired | Expired | | 12,745 | Gradient Pressure
Recovery Inlet for
Supersonic Aircraft | 60/851,403 | 10/13/200
6 | | | Provisional
Application
Expired | Expired | | 12,463 | Highly Swept Canard with
Low Sweep Wing
Supersonic Aircraft
Configuration | 10/746,744 | 12/23/200
3 | 6,857,599 | 2/22/2005 | Issued | 12/23/202
3 | | 12,453 | Laminar Flow Wing for
Transonic Cruise | 10/693,411 | 11/7/2002 | 7,000,870 | 2/21/2006 | Issued | 11/7/2022 | | 12,453-AU | Laminar Flow Wing for
Transonic Cruise | 2003287542 | 11/6/2003 | 2003287542 | 10/22/200
9 | Abandoned | _ | | 12,453-BR | Laminar Flow Wing for
Transonic Cruise | PI 0316038-6 | 11/6/2003 | PI0316038-6 | 11/6/2003 | Abandoned | _ | | 12,453-CA | Laminar Flow Wing for
Transonic Cruise | 2503270 | 11/6/2003 | 2,503,270 | 5/17/2011 | Abandoned | _ | | 12,453-EP | Laminar Flow Wing for
Transonic Cruise | 03781784.8 | 11/6/2003 | Pub.
EP1583690 | 1/13/2010 | Fr – Issued
IT – Aband.
DE – Aband.
GB – Aband. | 11/6/2023 | | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |-----------------|--|--------------------|-----------------|---|----------------|--|---------------| | 12,453-JP | Laminar Flow Wing for
Transonic Cruise | 2004-551807 | 11/6/2003 | | | Abandoned | _ | | 12,453-
WO | Laminar Flow Wing for
Transonic Cruise | PCT/US03/3539
3 | 11/6/2003 | PCT Pub.
WO200404378
0 | | Expired – national applications filed in AU (abandoned) CA (Lapsed), EP (granted), and JP (Status unknown) | _ | | 12,358 | Lift and Twist Control
Using Trailing Edge
Control Surfaces on
Supersonic Laminar Flow
Wings | 10/762,083 | 1/20/2004 | 7,004,428 | 2/28/2006 | Issued | 1/20/2024 | | 12,176 | Efficient, Low Sonic Boom
Laminar Flow, Aircraft
Configurations | 60/255,509 | 12/23/200
0 | | | Abandoned | _ | | 11,922 | Aircraft Wing and Fuselage Contours | 09/270,524 | 3/17/1999 | 6,149,101 | 11/21/200
0 | Expired | _ | | PCT | Aircraft Wing and Fuselage Contours | PCT/US00/0704
7 | 03/16/200
0 | PCI Pub
WO2000/0550
35 Pub'd.
09/21/2000 | | Expired;
National
phase in CA
and EP | _ | | 11,922-CA | Aircraft Wing and Fuselage Contours | 2,273,166 | 3/16/2000 | 2,372,166 | 9/30/2008 | Issued | 3/16/2020 | | 11,922-
CA-1 | Aircraft Wing and Fuselage Contours | 2,634,307 | 3/16/2000 | 2,634,307 | 4/27/2010 | Issued | 3/16/2020 | | 11,922-EP | Aircraft Wing and Fuselage Contours | 00919440.8 | 3/16/2000 | Pub.
EP1169224 | 1/11/2006 | FR – Issued
GB – Issued
DE – Aband.
IT – Aband. | 3/16/2020 | | 11,922-HK | Aircraft Wing and Fuselage Contours | 02105113.9 | 7/8/2002 | HK1045288 | 9/22/2006 | Abandoned | _ | | 11,513 | High-Efficiency, Supersonic Aircraft | 08/650,686 | 5/20/1996 | 5,897,076 | 4/27/1999 | Issued | 5/20/2016 | | 11,183 | High-Efficiency,
Supersonic Aircraft | 08/258,781 | 6/13/1994 | 5,518,204 | 5/21/1996 | Expired | _ | | 10,648 | High-Efficiency,
Supersonic Aircraft | 08/013,065 | 2/3/1993 | 5,322,242 | 6/21/1994 | Expired | _ | | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |----------------|---|---------------------|-----------------|------------------------------|----------------|--|---------------| | 10,648-EP | High-Efficiency,
Supersonic Aircraft | 93918117.8 | 5/23/1993 | EP0681544 | 1/9/1999 | Lapsed
(granted and
validated in
GB, FR, and
DE – all
lapsed) | _ | | PCT | High-Efficiency,
Supersonic Aircraft | PCT/US93/0049
70 | 05/25/199
3 | Pub No.
W01994/18069 | | Expired; Filed
in CA
(expired): EP
(granted and
lapsed in GB,
FR, and DE) | - | | CA | High-Efficiency,
Supersonic Aircraft | 2,155,316 | 08/02/199
5 | 2,155,316 | | Expired | _ | | US | Generating Inviscid and
Viscous Fluid Flow
Simulations Over a
Surface Using a quasi-
Simultaneous Technique | 13/070,384 | 03/23/201 | 8,892,408 | 11/18/201
4 | Issued | | | US | Predicting Transition from
Laminar to Turbulent Flow
Over a Surface | 13/069,374 | 03/22/201
1 | 8,538,738 | 09/17/201
3 | Issued | | | PCT | Predicting Transition from
Laminar to Turbulent Flow
Over a Surface | PCT/US12/3018
9 | 03/22/201
2 | Pub No.
WO2012-
129440 | _ | Expired – no
national
applications
filed | _ | | US | Predicting Transition from
Laminar to Turbulent Flow
Over a Surface | 14/019,448 | 09/05/201
3 | 9,418,202 | 08/16/201
6 | Issued | | | US | Generating Inviscid and
Viscous Fluid-Flow
Simulations Over an
Aircraft Surface Using a
Fluid-Flow Mesh | 12/982,744 | 12/30/201
0 | 8,457,939 | 06/04/201
3 | Issued | | | PCT | Generating Inviscid and
Viscous Fluid-Flow
Simulations Over an
Aircraft Surface Using a
Fluid-Flow Mesh | PCT/US11/6791
7 | 12/29/201
1 | Pub No.
WO2012/0925
02 | | Expired – no
national
applications
filed | | | US | Generating Inviscid and
Viscous Fluid-Flow
Simulations Over a
Surface using a Fluid-Flow
Mesh | 13/887,189 | 05/03/201
3 | 8,935,140 | 01/13/201
5 | Issued | | | US | Generating Simulated
Fluid Flow Over a Surface
Using Anisotropic Diffusion | 13/887,199 | 05/03/201
3 | 9,348,956 | 05/24/201
6 | Issued | | 4824-3978-0186.v1 | Docket
No.: | Title: | App. No.: | Filing
Date: | Patent No.: | Issue
Date: | Status: | Exp.
Date: | |----------------|--|--------------------|-----------------|-------------------------------|----------------|---|---------------| | US | Generating a Simulated
Fluid Flow Over an Aircraft
Surface Using Anisotropic
Diffusion | 13/046,469 | 03/11/201
1 | 8,437,990 | 05/07/201
3 | Issued | | | PCT | Generating a Simulated
Flow Over an Aircraft
Surface Using Anisotropic
Diffusion | PCT/US12/2860
6 | 03/09/201
2 | Pub. No.
WO2012/1254
97 | _ | Expired – no
national
applications
filed | | | US | Predicting Transition from
Laminar to Turbulent Flow
Over a Surface Using
Mode-Shape Parameters | 13/850,628 | 03/26/201
3 | 9,494,482 | 10/26/201
6 | Issued | | 4824-3978-0186.v1 PATENT