PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT5474118

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	SECURITY INTEREST

CONVEYING PARTY DATA

Name	Execution Date
OPEL INC.	03/26/2019

RECEIVING PARTY DATA

Name:	ESPRESSO CAPITAL LTD.
Street Address:	300-8 KING STREET EAST
City:	TORONTO ONTARIO
State/Country:	CANADA
Postal Code:	M5C 1B5

PROPERTY NUMBERS Total: 71

Property Type	Number
Application Number:	10084770
Application Number:	09556285
Application Number:	09798316
Application Number:	10469649
Application Number:	10512501
Application Number:	10689019
Application Number:	11780745
Application Number:	11053350
Application Number:	10200967
Application Number:	11039559
Application Number:	10292127
Application Number:	10832223
Application Number:	10280892
Application Number:	10323390
Application Number:	10323413
Application Number:	10323389
Application Number:	12033717
Application Number:	10323388
Application Number:	10383364
Application Number:	10340942

PATENT REEL: 048886 FRAME: 0716

505427318

Property Type	Number
Application Number:	11044636
Application Number:	10340941
Application Number:	10700016
Application Number:	11360759
Application Number:	11360756
Application Number:	10627043
Application Number:	10602217
Application Number:	11424012
Application Number:	12433719
Application Number:	12050321
Application Number:	14238649
Application Number:	13951578
Application Number:	14609064
Application Number:	13921311
Application Number:	14549369
Application Number:	14551619
Application Number:	14104230
Application Number:	14023525
Application Number:	14222841
Application Number:	14698087
Application Number:	14287388
Application Number:	14736494
Application Number:	14736552
Application Number:	14736624
Application Number:	14578756
Application Number:	14578805
Application Number:	14578893
Application Number:	14578950
Application Number:	14579066
Application Number:	14579151
Application Number:	14579404
Application Number:	14943502
Application Number:	14943599
Application Number:	14444629
Application Number:	14736421
Application Number:	14736460
Application Number:	15435413
Application Number:	15450351

Property Type	Number
Application Number:	15450282
Application Number:	15450400
Application Number:	15456915
Application Number:	16206673
Application Number:	62621659
Application Number:	15802009
Application Number:	16036151
Application Number:	16036179
Application Number:	16036208
Application Number:	16036234
Application Number:	16258292
Application Number:	62727538
Application Number:	16258308

CORRESPONDENCE DATA

Fax Number: (312)207-6400

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 4156595924

Email: mbenson@reedsmith.com

Correspondent Name: JOHN KLINE

Address Line 1: REED SMITH LLP

Address Line 2: 101 SECOND STREET, SUITE 1800
Address Line 4: SAN FRANCISCO, CALIFORNIA 94105

ATTORNEY DOCKET NUMBER:	390192.20005
NAME OF SUBMITTER:	JOHN KLINE
SIGNATURE:	/John Kline/
DATE SIGNED:	04/15/2019

Total Attachments: 8

source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page1.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page2.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page3.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page4.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page5.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page6.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page7.tif source=IP Security Agreement POET TECHNOLOGIES (OPEL Inc) 2019-03-26 v2 FINAL#page8.tif

IP SECURITY AGREEMENT

THIS IP SECURITY AGREEMENT, dated as of March 26, 2019, is made by OPEL Inc. (the "Grantor"), in favor of ESPRESSO CAPITAL LTD. (the "Lender").

WITNESSETH:

WHEREAS, pursuant to the Credit Facility Agreement dated as of March 26, 2019 (as the same may be amended, modified, restated or replaced from time to time, the "Credit Agreement") by the Grantor and the Lender, the Lender has agreed to make Advances (as defined in the Credit Agreement) to the Grantor upon the terms and subject to the conditions set forth therein;

WHEREAS, the Grantor is a party to the Security Agreement (made with effect March 26, 2019, as the same may be amended, modified, restated or replaced from time to time, the "Security Agreement") by the Grantor and the Lender, pursuant to which the Grantor is required to execute and deliver this IP Security Agreement;

NOW, THEREFORE, in consideration of the premises and to induce the Lender to enter into the Credit Agreement and to induce the Lender to make Advances to the Grantor thereunder, Grantor hereby agrees with the Lender as follows:

- **Section 1. Defined Terms.** Capitalized terms used herein without definition are used as defined in the Security Agreement.
- **Section 2. Grant of Security Interest in Patent Collateral.** Grantor, as collateral security for the prompt and complete payment and performance when due (whether at stated maturity, by acceleration or otherwise) of the Obligations of such Grantor, hereby mortgages, pledges and hypothecates to the Lender, and grants to the Lender a Lien on and security interest in, all of its right, title and interest in, to and under the following Collateral of such Grantor (the "*Patent Collateral*"):
- (a) all of its patents and all intellectual property licenses providing for the grant by or to such Grantor of any right under any patent, including, without limitation, those referred to on Schedule 1 hereto:
- (b) all reissues, reexaminations, continuations, continuations-in-part, divisionals, renewals and extensions of the foregoing; and
- (c) all income, royalties, proceeds and liabilities at any time due or payable or asserted under and with respect to any of the foregoing, including, without limitation, all rights to sue and recover at law or in equity for any past, present and future infringement, misappropriation, dilution, violation or other impairment thereof.
- Section 3. Guaranty and Security Agreement. The security interest granted pursuant to this IP Security Agreement is granted in conjunction with the security interest granted to the Lender pursuant to the Security Agreement and Grantor hereby acknowledges and agrees that the rights and remedies of the Lender with respect to the security interest in the Patent Collateral made and granted hereby are more fully set forth in the Security Agreement, the terms and provisions of which are incorporated by reference herein as if fully set forth herein.
- Section 4. Grantor Remains Liable. Grantor hereby agrees that, anything herein to the contrary notwithstanding, such Grantor shall assume full and complete responsibility for the

prosecution, defense, enforcement or any other necessary or desirable actions in connection with its Patent Collateral and intellectual property licenses subject to a security interest hereunder.

Section 5. **Counterparts**. This IP Security Agreement may be executed in any number of counterparts and by different parties in separate counterparts, each of which when so executed shall be deemed to be an original and all of which taken together shall constitute one and the same agreement. Signature pages may be detached from multiple separate counterparts and attached to a single counterpart.

Section 6. Governing Law. This IP Security Agreement and the rights and obligations of the parties hereto shall be governed by, and construed and interpreted in accordance with, the law of the State of New York.

IN WITNESS WHEREOF, Grantor has caused this IP Security Agreement to be executed and delivered by its duly authorized officer as of the date first set forth above.

Very truly yours,

OPEL Inc., as Grantor

Docusigned by:

Thomas Mika

TI 508E24AEF895415...

ACCEPTED AND AGREED as of the date first above written:

ESPRESSO CAPITAL LTD., as Lender

Docusigned by:

649DBDA2A61B4AB... U U U O

Schedule I To IP Security Agreement

Copy	Active	02/03/2015	Cranted	Thuristor memory cell integrated circuit	1158947035R3	11813/951578	07/26/2013	OPF-073	3
OPEL	Active	11/17/2015	Granted	Optical closed loop microresonator and thyristor memory device	US9188798B2	US14/238649	02/12/2014	OPE-069	Ç.
OPEL	Active	12/20/2011	Granted	Thy ristor radiation detector array and applications thereof	US8080821B2	US12/050321	03/18/2008	OPE-042	30
OPEL	Active	12/21/2010	Granted	Concentrated solar photovoltaic module with protective light shielding	U\$7855336B2	US12/433719	04/30/2009	OPE-043	29
OPEL	Active	08/05/2008	Granted	Integrated circuit for programmable optical delay	US7409120 B 2	US11/424012	06/14/2006	OPE-024D1	28
OPEL	Active	06/20/2006	Granted	Photonic sigma delta analog-to-digital conversation employing dual heterojunction thyristors	US7064697B2	US10/602217	06/24/2003	OPE-024	27
OPEL	Active	12/29/2005	Granted	Semiconductor laser array device employing modulation doped quantum well structures	US6977954B2	US10/627043	07/25/2003	OPE-023	26
OPEL	Active	07/07/2009	Granted	Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation	US7556976B2	US11/360756	02/23/2006	OPE-022D2	25
OPEL	Active	08/17/2010	Granted	Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation	US7776753B2	US11/360759	02/23/2006	OPE-022D1	24
OPEL	Active	12/13/2005	Granted	P-type quantum-well-base bipolar transistor device employing interdigitated base and emitter formed with a capping layer	US6974969B2	US16/700016	11/03/2003	OPE-026	23
OPEL	Active	03/21/2006	Granted	Method of fabricating semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation	US7015120B2	US10/340941	01/13/2003	OPEL-022	22
OPEL	Active	02/06/2007	Granted	Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation	US7173293B2	US11/044636	01/10/2005	OEE-021D1	2.
OPEL	Active	07/11/2016	Granted	Semiconductor devices employing at least one modulation doped quantum well structure and one or more etch stop layers for accurate contact formation	US6841795B2	US10/340942	01/13/2003	OP8-021	20
1840	Active	02/19/2008	Granted	Optoelectronic clock generator producing high frequency optoelectronic pulse trains with variable frequency and variable duty cycle and low jutter	US7333733B2	US10/383364	03/07/2003	STO-EAO	61
OPEL	Active	03/29/2005	Granted	Photonic serial digital-to-analog converter employing a heterojunction thyristor device	US6873273B2	US10/323388	12/19/2062	OPE-020	<u>~</u>
OPEL	Active	09/29/2009	Granted	Optoelectronic circuit employing a heterojunction thy ristor device to convert a digital optical signal to a digital electrical signal	US7595516B2	US12/033717	02/19/2008	OPE-019C1	17

RECORDED: 04/15/2019

		METHOD OF FORMING AN HERMETIC SEAL ON ELECTRONIC AND OPTOELECTRONIC PACKAGES		16/258,308	01/25/19	OPE-106	7 , 6
		Hermetic Scaling Method for Capped Subassemblies		62/727,538	09/05/18	OPE-106 PRO	77
		OPTICAL DIELECTRIC PLANAR WAVEGUIDE PROCESS		16/258,292	01/25/19	OPE-105	76
		METHODS FOR OPTICAL DIELECTRIC WAVEGUIDE SUBASSEMBLY STRUCTURE		16/036,234	07/16/18	OPE-104	75
		OPTICAL DIELECTRIC WAVEGUIDE SUBASSEMBLY STRUCTURES		16/036,208	07/16/18	OPE-103	74
		METHODS FOR OPTICAL DIELECTRIC WAVEGUIDE STRUCTURES		16/036,179	07/16/18	OPE-102	73
		OPTICAL DIELECTRIC WAVEGUIDE STRUCTURES		16/036,151	07/16/18	OPE-101	72
N/A Filed but not published		Photonic integrated device with dielectric structure	N/A	201680078751	12/07/2018	OPE-082CN	72
N/A Filed but not published		Photonic integrated device with dielectric structure	N/A	16865086.9	06/08/2018	OPE-082EP	7
8/2014	Ē	Imaging array utilizing thyristor-based pixel elements	CA2542250C	CA2542250	10-20-2004	OPE-007CA	70
N/A Filed but not published		Wafer-Level optoelectronic packaging	N/A	US15/802009	11/02/2017	OPE-086	68
Non- provisionals to N/A be filed	Provisional application >	Optical Dielectric Interposer	N/A	US62/621659	01/25/2018	OPE-084P	66
N/A Filed but not published	ion	Vertical Cavity Surface Emitting Laser	N/A	US16/206673	11-30-2018	OPE-083	65
02/27/2018 Active	Granted 0	Optoelectronic integrated circuitry for transmitting and/or receiving wavelength-division multiplexed optical signals	US9904015B2	US15/456915	03/13/2017	OPE-078D1	61
07/31/2018 Active	Granted 0	Optoelectronic integrated circuit	US10038302B2	US15/450400	03/06/2017	OPE-075C3	60
N/A Published	Application	Dual wavelength hybrid device	US20170179684A1	US15/450282	03/06/2017	OPE-075C2	39
N/A Published	Application	Split-electrode vertical cavity optical device	US20170221995A1	US15/450351	03/06/2017	OPE-075C1	ଓର ଆ
N/A Published	Application	Dual wavelength imaging cell array integrated circuit	US20170301809A1	US15/435413	02/17/2017	OPE-674C	57