PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT5863915 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | ## **CONVEYING PARTY DATA** | Name | Execution Date | | |------------|----------------|--| | VERIMATRIX | 11/13/2019 | | ## **RECEIVING PARTY DATA** | Name: | Rambus Inc. | | | |-----------------|--------------------------------|--|--| | Street Address: | 1050 Enterprise Way, Suite 700 | | | | City: | Sunnyvale | | | | State/Country: | CALIFORNIA | | | | Postal Code: | 94089 | | | ## **PROPERTY NUMBERS Total: 99** | Property Type | Number | |----------------|---------| | Patent Number: | 8457919 | | Patent Number: | 8572406 | | Patent Number: | 8301890 | | Patent Number: | 7644322 | | Patent Number: | 8997255 | | Patent Number: | 7984301 | | Patent Number: | 8028015 | | Patent Number: | 8213612 | | Patent Number: | 7774587 | | Patent Number: | 6718536 | | Patent Number: | 7392276 | | Patent Number: | 8793300 | | Patent Number: | 8959134 | | Patent Number: | 9577826 | | Patent Number: | 9977899 | | Patent Number: | 8369517 | | Patent Number: | 8549218 | | Patent Number: | 8006045 | | Patent Number: | 8233620 | | Patent Number: | 8352752 | | | | PATENT REEL: 051262 FRAME: 0413 505817085 | Property Type | Number | |---------------------|----------| | Patent Number: | 7845568 | | Patent Number: | 8559625 | | Patent Number: | 8233615 | | Patent Number: | 8619977 | | Patent Number: | 7895404 | | Patent Number: | 8327100 | | Patent Number: | 8301905 | | Patent Number: | 7809133 | | Patent Number: | 7805480 | | Patent Number: | 7791898 | | Patent Number: | 7848515 | | Patent Number: | 7672990 | | Patent Number: | 7788311 | | Patent Number: | 7822207 | | Patent Number: | 8280041 | | Patent Number: | 8024391 | | Patent Number: | 9430650 | | Patent Number: | 9621550 | | Patent Number: | 9268559 | | Patent Number: | 9596080 | | Patent Number: | 9405729 | | Patent Number: | 9772821 | | Patent Number: | 6678734 | | Patent Number: | 6807553 | | Patent Number: | 6856981 | | Patent Number: | 7054894 | | Patent Number: | 7200759 | | Patent Number: | 7240040 | | Patent Number: | 7302487 | | Patent Number: | 7305391 | | Patent Number: | 9043272 | | Patent Number: | 7461370 | | Patent Number: | 7505473 | | Patent Number: | 7548992 | | Patent Number: | 9594541 | | Patent Number: | 8566920 | | Patent Number: | 9780946 | | Application Number: | 15463364 | | Property Type | Number | |---------------------|--------------| | Application Number: | 15808362 | | Application Number: | 15784007 | | Application Number: | 15784010 | | Application Number: | 15594122 | | Patent Number: | 10303903 | | Patent Number: | 8243925 | | Patent Number: | 9014375 | | Patent Number: | 9712786 | | Patent Number: | 7970138 | | Patent Number: | 8879729 | | Patent Number: | 8761393 | | Patent Number: | 8281359 | | Patent Number: | 8151235 | | Patent Number: | 8418091 | | Patent Number: | 9355199 | | Patent Number: | 8111089 | | Patent Number: | 9355426 | | Patent Number: | 9942586 | | Patent Number: | 10277935 | | Patent Number: | 8510700 | | Patent Number: | 9542520 | | Patent Number: | 9940425 | | Patent Number: | 9800405 | | Patent Number: | 9277259 | | Patent Number: | 9735781 | | Application Number: | 15675418 | | Patent Number: | 10348501 | | Application Number: | 16505477 | | Application Number: | 16333589 | | Patent Number: | 10476883 | | Patent Number: | 10477151 | | Application Number: | 16670912 | | Application Number: | 16670957 | | PCT Number: | US2018042542 | | Application Number: | 16056268 | | Application Number: | 16552919 | | Application Number: | 16297511 | | Application Number: | 16297516 | | Property Type | Number | | | |---------------------|----------|--|--| | Application Number: | 16363958 | | | | Application Number: | 16364056 | | | | Application Number: | 16681465 | | | #### CORRESPONDENCE DATA #### Fax Number: Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. Phone: 408-462-8000 Email: annw@rambus.com Correspondent Name: ANN WILLIAMS Address Line 1: 1050 ENTERPRISE WAY #700 Address Line 4: SUNNYVALE, CALIFORNIA 94089 | ATTORNEY DOCKET NUMBER: | VERIMATRIX ACQUSITION | |-------------------------|--| | NAME OF SUBMITTER: | ANN C WILLIAMS | | SIGNATURE: | /Ann C Williams/ | | DATE SIGNED: | 12/12/2019 | | | This document serves as an Oath/Declaration (37 CFR 1.63). | ### **Total Attachments: 40** source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page1.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page2.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page3.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page4.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page5.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page6.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page7.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page8.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page9.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page10.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page11.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page12.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page13.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page14.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page15.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page16.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page17.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page18.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page19.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page20.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page21.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page22.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page23.tif source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page24.tif | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page25.tif | |---| | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page26.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page27.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page28.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page29.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page30.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page31.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page32.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page33.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page34.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page35.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page36.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page37.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page38.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page39.tif | | source=Iridium - Patent Assignment Agreement (Executed 12.06.2019)#page40.tif | #### PATENT ASSIGNMENT THIS PATENT ASSIGNMENT (this "<u>Patent Assignment</u>") from Verimatrix, a *société anonyme* incorporated under the laws of the Republic of France ("<u>Assignor</u>") to Rambus Inc., a Delaware corporation ("<u>Assignee</u>"), is effective as of December 6, 2019. **WHEREAS**, Assignor and Assignee have entered into an Asset Purchase Agreement, dated as of September 11, 2019 (the "<u>Purchase Agreement</u>"), pursuant to which, among other things, Assignor has agreed to assign to Assignee all of Assignor's right, title and interest in and to the Assigned Patents (as defined below). - **NOW, THEREFORE**, in consideration of the premises and the mutual covenants and agreements contained in this Patent Assignment and for other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the parties hereto, intending to be legally bound, agree as follows: - 1. <u>Assigned Patents</u>. The term "<u>Assigned Patents</u>" means the issued patents, pending patent applications and certificates of invention set forth on <u>Schedule A</u>, attached hereto. - Assignee all of Assignor's right, title and interest in and to (i) the Assigned Patents and the inventions and improvements disclosed therein; (ii) all reissues, divisionals, continuations, continuations-in-part, extensions, renewals, reexaminations and foreign counterparts thereof; (iii) all patents and applications which claim priority to or are linked by terminal disclaimer to any such patents or patent applications; and (iv) all rights corresponding to any of the foregoing throughout the world, including the right to claim priority from any of the Assigned Patents, the right to prosecute and maintain any of the Assigned Patents, and the right to sue, claim remedies and recover damages for past, present and future infringement or other violation or impairment of any of the Assigned Patents, the same to be held and enjoyed by Assignee for its own use and enjoyment, and for the use and enjoyment of its successors, assigns and other legal
representatives, as fully and entirely as the same would have been held and enjoyed by Assignor, if this assignment and sale had not been made. - 3. <u>No Warranties.</u> EXCEPT AS EXPRESSLY SET FORTH IN THE PURCHASE AGREEMENT, NO EXPRESS OR IMPLIED WARRANTIES ARE GIVEN BY ASSIGNOR OR ITS WITH RESPECT TO ANY ASSIGNED PATENTS OR ANY OTHER MATTER OR SUBJECT ARISING OUT OF THIS PATENT ASSIGNMENT, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ANY IMPLIED WARRANTY ARISING OUT OF COURSE OF DEALING OR USAGE OF TRADE, OR REGARDING THE VALIDITY, REGISTRABILITY, TITLE SCOPE, ENFORCEABILITY OR NON-INFRINGEMENT OF ANY PATENTS SUBJECT TO THIS PATENT ASSIGNMENT. - 4. <u>Further Assurances</u>. Assignor agrees that Assignee shall have the right to file or record this Patent Assignment with the United States Patent and Trademark Office or other such entities throughout the world, and Assignor authorizes and requests the relevant authorities to record Assignee as the assignee and owner of the Assigned Patents. Assignor shall execute and deliver to Assignee such documents and take such actions as reasonably requested by Assignee and at Assignee's sole expense, to register, evidence or perfect Assignee's rights under this Patent Assignment. 5. <u>Governing Law.</u> This Patent Assignment shall be governed by, and construed in accordance with, the laws of the State of Delaware, regardless of the laws that might otherwise govern under applicable principles of choice or conflicts of law thereof. [The remainder of this page is intentionally left blank; signature page follows.] IN WITNESS WHEREOF, Assignor has caused this Patent Assignment to be executed as of the date first written above by its duly authorized officer. ASSIGNOR: Verimatrix Name: <u>AMEAZO BAGECA</u> Title: C.E.O. ## <u>ACKNOWLEDGMENT</u> | State of New York) | |---| | County of New 1st 2019 On this 13th day of New 1st before me, the undersigned, personally appeared providence to be the person who executed this instrument on behalf of the corporation named herein, and acknowledged that s/he executed it in such representative capacity. | | IN WITNESS WHEREOF, I have hereunto set my hand and official seal. Notary Public | | My Commission Expires on 12.04.21 | SHARALYNN D. MILLER Notary Public, State of New York No. 01MI6034018 Qualified in Bronx County Commission Expires Dec. 6, 2021 # SCHEDULE A ASSIGNED PATENTS | FR | FR | GB | FR | DE | FR | Country | |---|---|--|--|--|--|---| | Countermeasure Method and Devices for Asymmetric Encryption With Signature Scheme | Countermeasure Method and Devices for Asymmetric Encryption | Method and Devices for
Protecting a Microcircuit
From Attacks for Obtaining
Secret Data | Method and Devices for
Protecting a Microcircuit
From Attacks for Obtaining
Secret Data | Method and Devices for
Protecting a Microcircuit
From Attacks for Obtaining
Secret Data | Method and Devices for
Protecting a Microcircuit
From Attacks for Obtaining
Secret Data | Tide | | 2,926,652 | 2,926,651 | 2,215,768 | 2,215,768 | 2,215,768 | 2,923,305 | Application
Number/
Patent Number | | 23-Jan-
08 | 23-Jan-
08 | 3-Nov-08 | 3-Nov-08 | 3-Nov-08 | 2-Nov-07 | Filing
Date | | 0800345 | 0800344 | 08871332.6 | 08871332.6 | 08871332.6 | 0707695 | File Number | | 18-Jun-10 | 21-May-10 | 21-Aug-19 | 21-Aug-19 | 21-Aug-19 | 29-Apr-11 | Issue Date | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Owner/
Assignee | | Granted | Granted | Granted | Granted | Granted | Granted | Status | | | 1 | 1 | T | T | | | |---|---|---|---|---|---|---| | FR | DE | US | KR | CN | CA | CN | | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | Countermeasure Method and Devices for Asymmetric Encryption With Signature Scheme | | 2,365,659p | 2,365,659 | 8,457,919 | 10-1792650 | ZL2011100493
99.9 | 2,732,651 | 101911009 | | 21-Feb-
11 | 21-Feb-
11 | 31-Mar-
10 | 2-Mar-11 | 1-Mar-11 | 24-Feb-
11 | 23-Jan-
09 | | 11001428.9 | 11001428.9 | 12/750 846 | 10-2011-
0018644 | 201110049399.9 | 2732651 | 200980102305.0 | | 12-Apr-17 | 12-Apr-17 | 4-Jun-13 | 26-Oct-17 | 6-May-15 | 30-May-17 | 10-Oct-12 | | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Inside
Secure | Verimatrix | Inside
Secure | | Granted | Granted | Verimatrix | 30-Oct-12 | 11501968 | 10-Aug-
06 | 8,301,890 | SOFTWARE EXECUTION RANDOMIZATION | US | |---------------|------------------|-----------|------------|---------------|-----------|---|----| | Granted | Inside
Secure | 4-Sep-13 | 12154466.2 | 8-Feb-12 | 2,492,804 | Encryption Method Comprising an Exponentiation Operation | GB | | Granted | Verimatrix | 4-Sep-13 | 12154466.2 | 8-Feb-12 | 2,492,804 | Encryption Method Comprising an Exponentiation Operation | FR | | Granted | Verimatrix | 4-Sep-13 | 12154466.2 | 8-Feb-12 | 2,492,804 | Encryption Method Comprising an Exponentiation Operation | DE | | Granted | Verimatrix | 29-Oct-13 | 12/750 953 | 31-Mar-
10 | 8,572,406 | Integrated Circuit Protected
Against Horizontal Side
Channel Analysis | US | | Allowanc
e | Verimatrix | | 11001491.7 | 23-Feb-
11 | | Integrated Circuit Protected
Against Horizontal Side
Channel Analysis | ΕP | | Allowanc
e | Verimatrix | | 2732444 | 24-Feb-
11 | | Integrated Circuit Protected
Against Horizontal Side
Channel Analysis | CA | | Published | Verimatrix | | 1000834 | 1-Mar-10 | | Integrated Circuit Protected
Against Horizontal Side
Channel Analysis | FR | | Granted | Inside
Secure | 12-Apr-17 | 11001428.9 | 21-Feb-
11 | 2,365,659 | Process for Testing the
Resistance of an Integrated
Circuit to a Side Channel
Analysis | GB | **PATENT** **REEL: 051262 FRAME: 0423** | | | | | | | 1 | | | | |--|--|--|--|--|--|---|----------------------------------|----------------------------------|----------------------------------| | GB | FR | DE | TW | US | KR | US | TW | US | TW | | BI-PROCESSOR
ARCHITECTURE FOR
SECURE SYSTEMS | Verifying Data Integrity in a
Data Storage Device | Verifying Data Integrity in a Data Storage Device | HARDWARE FLOW
CONTROL MONITOR | HARDWARE FLOW
CONTROL MONITOR | SOFTWARE EXECUTION RANDOMIZATION | | 2,052,344 | 2,052,344 | 2,052,344 | 1431502 | 7,984,301 | 10-1484331 | 8,997,255 | 1431526 | 7,644,322 | 1449392 | | 14-Aug-
07 | 14-Aug-
07 | 14-Aug-
07 | 16-Aug-
07 | 9-Nov-06 | 17-Jan-
07 | 7-Sep-06 | 20-Nov-
07 | 21-Nov-
06 | 8-Aug-07 | | 07868330.7 | 07868330.7 | 07868330.7 | 96130344 | 11558367 | 10-2009-
7004354 | 11/516 846 | 96143994 | 11/562 280 | 96129254 | | 27-Sep-17 | 27-Sep-17 | 27-Sep-17 | 21-Mar-14 | 19-Jul-11 | 13-Jan-15 | 31-Mar-15 | 21-Mar-14 | 5-Jan-10 | 11-Aug-14 | | Inside
Secure | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | | Granted | Granted | Verimatrix | 6-Apr-04 | 10176497 | 21-Jun-
02 | 6,718,536 | Computer-Implemented
Method for Fast Generation | US | |-----------|------------------|-----------|-------------------------|---------------|--------------------------|--|----| | Granted | Inside
Secure | 11-Jul-12 | 96125462 | 12-Jul-07 | 1368152 | Dynamic Redundancy
Checker Against Fault
Injection | TW | | Granted | Verimatrix | 10-Aug-10 | 11486232 | 12-Jul-06 | 7,774,587 | Dynamic Redundancy
Checker Against
Fault
Injection | US | | Granted | Inside
Secure | 11-Jan-15 | 97147538 | 5-Dec-08 | 1468971 | Secure Software Download | TW | | Granted | Verimatrix | 3-Jul-12 | 11/952 880 | 7-Dec-07 | 8,213,612 | Secure Software Download | US | | Published | Verimatrix | | 11 2008 002
158.9 | 8-Aug-08 | | Method and System for
Large Number Multiplication | DE | | Granted | Inside
Secure | 6-Nov-13 | 8-Aug-08 200880102372.8 | 8-Aug-08 | ZL
200880102372.
8 | Method and System for
Large Number Multiplication | CN | | Granted | Inside
Secure | 21-May-14 | 97130432 | 8-Aug-08 | 1438678 | Method and System for
Large Number Multiplication | TW | | Granted | Verimatrix | 27-Sep-11 | 11837387 | 10-Aug-
07 | 8,028,015 | Method and System for
Large Number Multiplication | US | | Granted | Inside
Secure | 5-Nov-14 | 10-2009-
7005441 | 14-Aug-
07 | 10-1460811 | BI-PROCESSOR
ARCHITECTURE FOR
SECURE SYSTEMS | KR | | Granted | Inside
Secure | 9-May-12 | 200780030561.4 | 14-Aug-
07 | ZL2007800305
61.4 | BI-PROCESSOR
ARCHITECTURE FOR
SECURE SYSTEMS | CN | | | | | | | | | | | CN | GB | FR | DE | TW | | |--|--|--|--|--|--| | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | and Testing of Probable Prime Numbers for Cryptographic Applications | | ZL03818316.1 | 1,518,172 | 1,518,172 | 1,518,172 | 1282512 | | | 25-Apr-
03 | 25-Apr-
03 | 25-Apr-
03 | 25-Apr-
03 | 21-May-
03 | | | 03818316.1 | 03721875.7 | 03721875.7 | 03721875.7 | 92113699 | | | 30-Dec-09 | 18-Apr-12 | 18-Apr-12 | 18-Apr-12 | 11-Jun-07 | | | Inside
Secure | Inside
Secure | Verimatrix | Verimatrix | Inside
Secure | | | Granted | Granted | Granted | Granted | Granted | | | DE | US | TW | FR | KR | JP | |--|--|--|--|--|--| | Séquence de multiplication efficace pour opérandes à grands nombres entiers plus | Séquence de multiplication efficace pour opérandes à grands nombres entiers plus larges que le matériel multiplicateur | Séquence de multiplication efficace pour opérandes à grands nombres entiers plus larges que le matériel multiplicateur | Séquence de multiplication efficace pour opérandes à grands nombres entiers plus larges que le matériel multiplicateur | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | Computer-Implemented Method for Fast Generation and Testing of Probable Prime Numbers for Cryptographic Applications | | 1,614,027 | 7,392,276 | 1338858 | 2,853,425 | 10-938030 | 4756117 | | 22-Mar-
04 | 7-Jul-03 | 6-Apr-04 | 7-Apr-03 | 25-Apr-
03 | 25-Apr-
03 | | 04759716.6 | 10615475 | 93109455 | 0304299 | 10-2004-
7020867 | 2004-515648 | | 9-Sep-09 | 24-Jun-08 | 11-Mar-11 | 13-Jan-06 | 13-Jan-10 | 10-Jun-11 | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Inside
Secure | | Granted | Granted | Granted | Granted | Granted | Granted | | CN | FR | GB | FR | DE | US | EP | FR | CN | | |---|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--| | Encryption Process Protected
Against Side Channel
Attacks | Encryption Process Protected Against Side Channel Attacks | Montgomery Multiplication
Circuit | Montgomery Multiplication
Circuit | Montgomery Multiplication
Circuit | Montgomery Multiplication
Circuit | Microprocessor Protected Against Memory Dump | Microprocessor Protected Against Memory Dump | Séquence de multiplication efficace pour opérandes à grands nombres entiers plus larges que le matériel multiplicateur | larges que le matériel
multiplicateur | | ZL2012800667
83.2 | 2,985,624 | 2,515,227 | 2,515,227 | 2,515,227 | 8,793,300 | | 2,979,442 | ZL2004800091
60.7 | | | 21-Dec-
12 | 11-Jan-
12 | 29-Mar-
12 | 29-Mar-
12 | 29-Mar-
12 | 11-Apr-
12 | 14-Aug-
12 | 29-Aug-
11 | 22-Mar-
04 | | | 201280066783.2 | 1250272 | 12162000.9 | 12162000.9 | 12162000.9 | 13/444 109 | 12180413.2 | 1157603 | 200480009160.7 | | | 31-Aug-18 | 21-Nov-14 | 21-Aug-13 | 21-Aug-13 | 21-Aug-13 | 29-Jul-14 | | 16-Aug-13 | 20-May-09 | | | Inside
Secure | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | | | Granted | Granted | Granted | Granted | Granted | Granted | Published | Granted | Granted | | | FR | DE | FR | FR | FR | GB | FR | DE | us | |--|---|---|---|---|----------------------------------|-------------------------------------|----------------------------------|----------------------------------| | Method of Generating
Provable Prime Numbers | Method of Generating Provable Prime Numbers Suitable to Be Implemented Into a Smartcard | Method of Generating Provable Prime Numbers Suitable to Be Implemented Into a Smartcard | Method of Generating Provable Prime Numbers Suitable to Be Implemented Into a Smartcard | Method of Generating Provable Prime Numbers Suitable to Be Implemented Into a Smartcard | Montgomery Multiplication Method | Montgomery Multiplication
Method | Montgomery Multiplication Method | Montgomery Multiplication Method | | 2,791,783 | 2,791,783 | 2,984,550 | 2,984,548 | 2,984,547 | 2,515,228 | 2,515,228 | 2,515,228 | 8,959,134 | | 12-Dec-
12 | 12-Dec-
12 | 15-Dec-
11 | 15-Dec-
11 | 15-Dec-
11 | 29-Mar-
12 | 29-Mar-
12 | 29-Mar-
12 | 11-Apr-
12 | | 12815733.6 | 12815733.6 | 1161742 | 1161740 | 1161739 | 12162002.5 | 12162002.5 | 12162002.5 | 13/444 125 | | 17-Apr-19 | 17-Apr-19 | 2-Oct-15 | 2-Oct-15 | 6-Apr-18 | 13-Nov-13 | 13-Nov-13 | 13-Nov-13 | 17-Feb-15 | | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | | Granted | Z | CN | GB | FR | DE | US | GB | | |--|--|--|--|--|--|--|--| | Cyclic Redundancy Check
Method With Protection
From Side-Channel Attacks | Method of Generating
Provable Prime Numbers
Suitable to Be Implemented
Into a Smartcard | Method of Generating
Provable Prime Numbers
Suitable to Be Implemented
Into a Smartcard | Suitable to Be Implemented
Into a Smartcard | | | ZL2013800221
94.9 | 2,842,232 | 2,842,232 | 2,842,232 | 9,577,826 | 2,791,783 | | | 26-Mar-
13 | 26-Mar-
13 | 26-Mar-
13 | 26-Mar-
13 | 26-Mar-
13 | 12-Dec-
12 | 12-Dec-
12 | | | 2283/KOLNP/2
014 | 201380022194.9 | 13719930.3 | 13719930.3 | 13719930.3 | 14/365 671 | 12815733.6 | | | | 22-Sep-17 | 21-Sep-16 | 21-Sep-16 | 21-Sep-16 | 21-Feb-17 | 17-Apr-19 | | | Inside
Secure | Inside
Secure | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | | | Filed | Granted | Granted | Granted | Granted |
Granted | Granted | | | TW | US | CN | TW | US | US | FR | US | US | US | |--------------------------------------|--------------------------------------|---|---|---|------------------------|--|--|---|--| | Detecting Radiation-Based
Attacks | Detecting Radiation-Based
Attacks | Mécanisme de récupération de clé pour systèmes cryptographiques | Mécanisme de récupération de clé pour systèmes cryptographiques | Mécanisme de récupération de clé pour systèmes cryptographiques | Dummy Write Operations | Portable Device Protected
Against an Attack | Low Cost Implementation for Small Content-Addressable Memories | Fast Scalar Multiplication for Elliptic Curve Cryptosystems over Prime Fields | Cyclic Redundancy Check
Method With Protection
From Side-Channel Attacks | | I420397 | 8,352,752 | 201080009480.
8 | I469609 | 8,233,620 | 8,006,045 | 2,996,028 | 8,549,218 | 8,369,517 | 9,977,899 | | 29-Aug-
07 | 1-Sep-06 | 25-Feb-
10 | 25-Feb-
10 | 27-Feb-
09 | 27-Feb-
09 | 21-Sep-
12 | 10-Nov-
08 | 12-Aug-
08 | 26-Mar-
13 | | 96132124 | 11/515 103 | 201080009480.8 | 99105492 | 12/395 504 | 12/395 572 | 1258862 | 12/268 367 | 12/190 539 | 14/397 330 | | 21-Dec-13 | 8-Jan-13 | 1-Apr-15 | 11-Jan-15 | 31-Jul-12 | 23-Aug-11 | 7-Aug-15 | 1-0ct-13 | 5-Feb-13 | 22-May-18 | | Inside
Secure | Verimatrix | Inside
Secure | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | | Granted | US | DE | TW | US | US | DE | CN | TW | US | DE | (| |---|---|---|---|--|--|--|--|--|--------------------------------------|----------| | | | | | | | | | | | | | REPRESENTATION
CHANGE OF A POINT ON
AN ELLIPTIC CURVE | Modular Reduction With Modulus of Special Form of the Modulus | Modular Reduction With Modulus of Special Form of the Modulus | Modular Reduction With
Modulus of Special Form of
the Modulus | Elliptic Curves Point
Transformations | Managing Power and Timing in a Smart Card Device | Managing Power and Timing in a Smart Card Device | Managing Power and Timing in a Smart Card Device | Managing Power and Timing in a Smart Card Device | Detecting Radiation-Based
Attacks | Attacks | | 8,619,977 | | I512610 | 8,233,615 | 8,559,625 | | | 1444896 | 7,845,568 | | X | | 8-Feb-08 | 13-Jan-
09 | 14-Jan-
09 | 19-Feb-
08 | 7-Aug-07 | 9-May-
08 | 9-May-
08 | 9-May-
08 | 9-May-
07 | 29-Aug-
07 | 07 | | 12/028 427 | 112009000152.1 | 98101307 | 12/033 512 | 11/835 292 | 11 2008 001
187.7 | 201510855231.5 | 97117313 | 11/746 311 | 11 2007 002
037.7 | X | | 31-Dec-13 | | 11-Dec-15 | 31-Jul-12 | 15-Oct-13 | | | 11-Jul-14 | 7-Dec-10 | | 0.000.12 | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Inside
Secure | Verimatrix | Verimatrix | Secure | | Granted | Published | Granted | Granted | Granted | Published | Published | Granted | Granted | Published | Oranica | | | | | | | , | | | |-----------|--|-----------|----------------------|---------------|-----------|---|----| | Granted | Inside
Secure | 21-Jul-13 | 93134209 | 10-Nov-
04 | I403144 | Randomized Modular
Reduction Method and
Hardware Therefor | TW | | Granted | Verimatrix | 5-Oct-10 | 10/781 311 | 18-Feb-
04 | 7,809,133 | Randomized Modular
Reduction Method and
Hardware Therefor | US | | Granted | Inside
Secure
(Joint
ownership) | 21-Jul-12 | 96133588 | 7-Sep-07 | 1368919 | System and Method for
Encrypting Data | TW | | Granted | Verimatrix
(Joint
ownership) | 30-Oct-12 | 11/517 641 | 8-Sep-06 | 8,301,905 | System and Method for
Encrypting Data | US | | Published | Verimatrix | | 112009000344.3 | 9-Feb-09 | | Access Rights on a Memory
Map | DE | | Granted | Verimatrix | 4-Dec-12 | 13/028 756 | 16-Feb-
11 | 8,327,100 | Access Rights on a Memory
Map | US | | Granted | Inside
Secure | 21-Nov-14 | 98104759 | 13-Feb-
09 | 1461914 | Access Rights on a Memory
Map | TW | | Granted | Verimatrix | 22-Feb-11 | 12/031 586 | 14-Feb-
08 | 7,895,404 | Access Rights on a Memory
Map | US | | Published | Verimatrix | | 11 2009 000
154.8 | 13-Jan-
09 | | REPRESENTATION
CHANGE OF A POINT ON
AN ELLIPTIC CURVE | DE | | Granted | Inside
Secure | 21-Nov-14 | 98101308 | 14-Jan-
09 | I462010 | REPRESENTATION
CHANGE OF A POINT ON
AN ELLIPTIC CURVE | TW | | | | | | | | | | | Verimatrix | | 13-Jan-16 | 06749987.1 | 12-Apr-
06 | 1,889,398 | Randomized Modular
Polynomial Reduction
Method and Hardware
Therefor | DE | |------------------|----------------|-----------|-------------------------|---------------|----------------------|---|----| | Verimatrix | | 28-Sep-10 | 11/203 939 | 15-Aug-
05 | 7,805,480 | Randomized Modular
Polynomial Reduction
Method and Hardware
Therefor | US | | Inside
Secure | | 21-Feb-13 | 95116180 | 8-May-
06 | 1386818 | Randomized Modular
Polynomial Reduction
Method and Hardware
Therefor | TW | | Verimatrix | | 6-Jul-07 | 0504779 | 12-May-
05 | 2,885,711 | Randomized Modular
Polynomial Reduction
Method and Hardware
Therefor | FR | | Inside
Secure | | 22-Oct-10 | 5-Nov-04 200480033595.5 | 5-Nov-04 | ZL2004800335
95.5 | Randomized Modular
Reduction Method and
Hardware Therefor | CN | | Inside
Secure | | 4-Jan-12 | 04800660.5 | 5-Nov-04 | 1,687,930 | Randomized Modular
Reduction Method and
Hardware Therefor | GB | | Verimatrix | V_{ϵ} | 4-Jan-12 | 04800660.5 | 5-Nov-04 | 1,687,930 | Randomized Modular
Reduction Method and
Hardware Therefor | FR | | Verimatrix | Ve | 4-Jan-12 | 04 800 660.5 | 5-Nov-04 | 1,687,930 | Randomized Modular
Reduction Method and
Hardware Therefor | DE | | | | | | | | | | | FR | CN | US | TW | FR | KR | JP | CN | GB | |--|---|---|---|---|---|---|---|---| | Procédé de protection par
chiffrement | Procédé de securisation pour la protection de donnees | Procédé de securisation pour la protection de donnees | Procédé de securisation pour la protection de donnees | Procédé de securisation pour la protection de donnees | Randomized Modular
Polynomial Reduction
Method and Hardware
Therefor | | 2,893,796 | ZL2006800325
29.5 | 7,791,898 | 1388048 | 2,888,975 | 10-1252318 | 4875700 | 101194457 | 1,889,398 | | 21-Nov-
05 | 20-Jun-
06 | 21-Oct-
05 | 20-Jul-06 | 21-Jul-05 | 12-Apr-
06 | 12-Apr-
06 | 12-Apr-
06 | 12-Apr-
06 | | 0511768 | 200680032529.5 | 11/256 124 | 95126522 | 0507766 | 10-2007-
7029023 | 20080511127 | 200680020941.5 | 06749987.1 | | 4-Jan-08 | 30-May-12 | 7-Sep-10 | 1-Mar-13 | 7-Sep-07 | 2-Apr-13 | 2-Dec-11 | 1-Jun-11 | 13-Jan-16 | | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Inside
Secure | Inside
Secure | Inside
Secure | | Granted | | Т | | | | - | | | |--|--|---|---|---|---|---|--| | EP | FR | GB | FR | DE | US | FR | US | | A Method for Backing Up
Data Outside a Secure
Microcircuit | A Method for Backing Up
Data Outside a Secure
Microcircuit | Method for Managing
Memory Space in a Secure
Non-Volatile Memory of a
Secure Element | Method for Managing
Memory Space in a Secure
Non-Volatile Memory of a
Secure Element | Method for Managing
Memory Space in a Secure
Non-Volatile Memory of a
Secure Element | Method for Managing
Memory Space in a Secure
Non-Volatile Memory of a
Secure Element | Secure Processor With No
Non-Volatile Memory | Modular Multiplication
Method With
Precomputation Using One
Known Operand | | | | 2,626,804 | 2,626,804 | 2,626,804 | 9,430,650 | 2,991,797 | 8,024,391 | | 6-May-
13 | 12-Jun-
12 |
9-Feb-12 | 9-Feb-12 | 9-Feb-12 | 2-Apr-12 | 12-Jun-
12 | 6-Nov-06 | | 13727261.3 | 1201677 | 12154724.4 | 12154724.4 | 12154724.4 | 13/437 124 | 1201678 | 11/556 894 | | | | 13-Sep-17 | 13-Sep-17 | 13-Sep-17 | 30-Aug-16 | 30-Aug-19 | 20-Sep-11 | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | | Published | Published | Granted | Granted | Granted | Granted | Granted | Granted | | FR | US | N | EP | CN | FR | US | CN | GB | FR | DE | FR | |--|--|--|--|--|--|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--| | Method for Generating
Prime Numbers Proven
Suitable for Chip Cards | System for Detecting Call
Stack Tampering | Method for Providing a Secure Service | Method for Providing a
Secure Service | | 2,984,551 | 9,268,559 | | | ZL2013800415
53.5 | 2,994,290 | 9,621,550 | ZL2013800540
27.2 | 2,912,594 | 2,912,594 | 2,912,594 | 2,997,525 | | 30-May-
12 | 31-Jul-13 | 31-Jul-13 | 31-Jul-13 | 31-Jul-13 | 6-Aug-12 | 25-Sep-
13 | 25-Sep-
13 | 25-Sep-
13 | 25-Sep-
13 | 25-Sep-
13 | 26-Oct-
12 | | 1201550 | 14/417 639 | 31-Jul-13 341/CHENP/201 5 | 13756638.6 | 201380041553.5 | 1257635 | 14/431 153 | 201380054027.2 | 13779300.6 | 13779300.6 | 13779300.6 | 1260227 | | 17-Jul-15 | 23-Feb-16 | | | 8-Aug-17 | 6-Apr-18 | 11-Apr-17 | 8-Aug-17 | 10-Apr-19 | 10-Apr-19 | 10-Apr-19 | 4-Dec-15 | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Inside
Secure | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | | Granted | Granted | Published | Published | Granted | | | | | | | an Exponentiation | | |------------------|----------------|-----------|---------------------|---------------|-----------|--|----| | | -17 Verimatrix | 26-Apr-17 | 14703138.9 | 13-Jan-
14 | 2,946,284 | Cryptography Method Comprising an Operation of Multiplication by a Scalar or | FR | | 1 (8 | -17 Verimatrix | 26-Apr-17 | 14703138.9 | 13-Jan-
14 | 2,946,284 | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | DE | | Inside
Secure | | 15-Apr-15 | 13191662.9 | 5-Nov-13 | 2,731,006 | Cryptographic Method
Comprising a Modular
Exponentiation Operation | GB | | H. | -15 Verimatrix | 15-Apr-15 | 13191662.9 | 5-Nov-13 | 2,731,006 | Cryptographic Method
Comprising a Modular
Exponentiation Operation | FR | | erii | -15 Verimatrix | 15-Apr-15 | 13191662.9 | 5-Nov-13 | 2,731,006 | Cryptographic Method
Comprising a Modular
Exponentiation Operation | DE | | l eri | -16 Verimatrix | 2-Aug-16 | 14/072 155 | 5-Nov-13 | 9,405,729 | Cryptographic Method
Comprising a Modular
Exponentiation Operation | US | | erir | 17 Verimatrix | 14-Mar-17 | 14/365 899 | 12-Dec-
12 | 9,596,080 | Method for Generating
Prime Numbers Proven
Suitable for Chip Cards | US | | Inside
Secure | 70 | | 4637/CHENP/20
14 | 12-Dec-
12 | | Method for Generating
Prime Numbers Proven
Suitable for Chip Cards | N | | | | | | | | | | | H | Г | | <u> </u> | 1 | 0 | 0 | |--|--|--|--|--|--|--| | FR | DE | US | KR | Z | CN | GB | | Method of Updating the Operating System of a Secure Microcircuit | Method of Updating the Operating System of a Secure Microcircuit | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | Cryptography Method Comprising an Operation of Multiplication by a Scalar or an Exponentiation | | 2,772,868 | 2,772,868 | 9,772,821 | | | ZL2014800052
00.4 | 2,946,284 | | 11-Feb-
14 | 11-Feb-
14 | 13-Jan-
14 | 13-Jan-
14 | 13-Jan-
14 | 13-Jan-
14 | 13-Jan-
14 | | 14154663.0 | 14154663.0 | 14/762 010 | 10-2015-
7021332 | 2186/KOLNP/2
015 | 201480005200.4 | 14703138.9 | | 6-Dec-17 | 6-Dec-17 | 26-Sep-17 | | | 24-Oct-17 | 26-Apr-17 | | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Inside
Secure | Inside
Secure | Inside
Secure | | Granted | Granted | Granted | Published | Published | Granted | Granted | | Semiconductor Memory Irretrievable | |------------------------------------| | 7,200,759 | | 7,054,894 | | 6,856,981 | | 6,807,553 | | IL139415 | | 10054923 | | 2,325,652 | | 6,678,734 | | 2,772,868 | | Granted | Verimatrix | 14-Mar-17 | 12/319 308 | 6-Jan-09 | 9,594,541 | Système et procédé de détection de verrouillage | US | |---------|------------|-----------|------------|---------------|-----------|---|----| | Granted | Verimatrix | 16-Jun-09 | 10/402 734 | 28-Mar-
03 | 7,548,992 | Method for Preparing a Decision Tree for Packet Processing | US | | Granted | Verimatrix | 17-Mar-09 | 10/611 358 | 30-Jun-
03 | 7,505,473 | Transmission of Broadcast Packets in Secure Communication Connections Between Computers | US | | Granted | Verimatrix | 2-Dec-08 | 10/359 839 | 7-Feb-03 | 7,461,370 | Fast Hardware Processing of
Regular Expressions
Containing Sub-Expressions | US | | Granted | Verimatrix | 26-May-15 | 11/901 515 | 18-Sep-
07 | 9,043,272 | System and Method for Determining the Start of a Match of a Regular Expression | US | | Granted | Verimatrix | 4-Dec-07 | 10/773 595 | 6-Feb-04 | 7,305,391 | System and Method for Determining the Start of a Match of a Regular Expression | US | | Granted | Verimatrix | 27-Nov-07 | 10/104 790 | 22-Mar-
02 | 7,302,487 | Security System for a Data
Communications Network | US | | Granted | Verimatrix | 3-Jul-07 | 10/217 592 | 8-Aug-02 | 7,240,040 | Method of Generating of Dfa
State Machine That Groups
Transitions Into Classes in
Order to Conserve Memory | US | | Filed | Inside
Secure | | 829/KOL/2015 | 30-Jul-15 | | Elliptic Curve Encryption Method Comprising an Error Detection | N | |-----------|------------------|-----------|----------------|---------------|-----------|--|----| | Published | Inside
Secure | | 201510472582.8 | 4-Aug-15 | | Elliptic Curve Encryption Method Comprising an Error Detection | CN | | Published | Verimatrix | | 14165296.6 | 18-Apr-
14 | | A Digital Method and
Device for Generating True
Random Numbers | EP | | Granted | Verimatrix | 18-Nov-16 | 1358798 | 12-Sep-
13 | 3,010,561 | Procédé de protection de
l'integrite de donnees a l'aide
d'un nombre idempotent | FR | | Published | Verimatrix | | 14796156.9 | 8-Sep-14 | | Memory Circuit Comprising
Means for Detecting an Error
Injection | EP | | Granted | Verimatrix | 2-Oct-15 | 1358926 | 17-Sep-
13 | 3,010,822 | Memory Circuit Comprising
Means for Detecting an Error
Injection | FR | | Granted | Verimatrix | 22-Oct-13 | 12/586 965 | 30-Sep-
09 | 8,566,920 | Application Gateway System
and Method for Maintaining
Security in a Packet-
Switched Information
Network | US | | Granted | Verimatrix | 23-Jan-13 | 09180596.0 | 23-Dec-
09 | 2,207,088 | Système et procédé de détection de verrouillage | FR | | Granted | Verimatrix | 23-Jan-13 | 09180596.0 | 23-Dec-
09 | 2,207,088 | Système et procédé de détection de verrouillage | DE | | | | | | | | | | | US | EP | FR | GB | FR | DE | US | |---|---|---|--|--|--|--| | A Method of Countermeasure Against an Attack by Analysis of Electrical Consumption for Cryptographic Device | A Method of Countermeasure Against an Attack by Analysis of Electrical Consumption for Cryptographic Device | A Method of Countermeasure Against an Attack by Analysis of Electrical Consumption for Cryptographic Device | Elliptic Curve Encryption Method Comprising an Error Detection | Elliptic Curve Encryption Method Comprising an Error Detection | Elliptic Curve Encryption Method Comprising an Error Detection | Elliptic Curve Encryption Method Comprising an Error Detection | | | 3,198,515 | 3,026,206 | 2,983,083 | 2,983,083 |
2,983,083 | 9,780,946 | | 23-Sep-
15 | 23-Sep-
15 | 23-Sep-
14 | 22-Jul-15 | 22-Jul-15 | 22-Jul-15 | 5-Aug-15 | | 15/463 364 | 15787251.6 | 1458951 | 15177904.8 | 15177904.8 | 15177904.8 | 14/818 684 | | | 20-Nov-19 | 1-Dec-17 | 12-Apr-17 | 12-Apr-17 | 12-Apr-17 | 3-0ct-17 | | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | | Published | Granted | Granted | Granted | Granted | Granted | Granted | | atrix Published de Published atrix Published atrix Granted | Verimatrix | | | | | Two Functional Entities | | |---|------------------|-----------|----------------|---------------|-----------|---|----| | | | 22-Dec-17 | 1553369 | 16-Apr-
15 | 3,035,241 | Method for Sharing a
Memory Between at Least | FR | | | Verimatrix | | 15/808 362 | 10-May-
16 | | Method of Securing a Comparison of Data During the Execution of a Program | US | | | Inside
Secure | | 201737037429 | 10-May-
16 | | Method of Securing a Comparison of Data During the Execution of a Program | N | | | Verimatrix | | 16731207.3 | 10-May-
16 | | Method of Securing a Comparison of Data During the Execution of a Program | EP | | de Published | Inside
Secure | | 201680027175.9 | 10-May-
16 | | Method of Securing a Comparison of Data During the Execution of a Program | CN | | atrix Granted | Verimatrix | 19-May-17 | 1554348 | 13-May-
15 | 3,036,203 | Method of Securing a Comparison of Data During the Execution of a Program | FR | | de Granted
ire | Inside
Secure | 6-Jun-18 | 15164808.6 | 23-Apr-
15 | 3,086,503 | Fault Detection for Systems Implementing a Block Cipher | GB | | atrix Granted | Verimatrix | 6-Jun-18 | 15164808.6 | 23-Apr-
15 | 3,086,503 | Fault Detection for Systems Implementing a Block Cipher | FR | | atrix Granted | Verimatrix | 6-Jun-18 | 15164808.6 | 23-Apr-
15 | 3,086,503 | Fault Detection for Systems
Implementing a Block
Cipher | DE | | Published | Inside
Secure | | 201737035051 | 6-Apr-16 | | Method for Securing the Execution of a Program | IN | |---------------|------------------|-----------|-------------------------|---------------|-----------|--|----| | Published | Verimatrix | | 16731193.5 | 6-Apr-16 | | Method for Securing the Execution of a Program | EP | | Published | Inside
Secure | | 6-Apr-16 201680021925.1 | 6-Apr-16 | | Method for Securing the Execution of a Program | CN | | Granted | Verimatrix | 6-Apr-18 | 1500794 | 15-Apr-
15 | 3,035,240 | Method for Securing the Execution of a Program | FR | | Allowanc
e | Verimatrix | | 15/784 007 | 13-Oct-
17 | | Method for Sharing a
Memory Between at Least
Two Functional Entities | US | | Published | Inside
Secure | | 201737033222 | 7-Apr-16 | | Method for Sharing a
Memory Between at Least
Two Functional Entities | N | | Published | Inside
Secure | | 7-Apr-16 201680021722.2 | 7-Apr-16 | | Method for Sharing a
Memory Between at Least
Two Functional Entities | CN | | Granted | Inside
Secure | 20-Mar-19 | 16730870.9 | 7-Apr-16 | 3,283,968 | Method for Sharing a
Memory Between at Least
Two Functional Entities | GB | | Granted | Verimatrix | 20-Mar-19 | 16730870.9 | 7-Apr-16 | 3,283,968 | Method for Sharing a
Memory Between at Least
Two Functional Entities | FR | | Granted | Verimatrix | 20-Mar-19 | 16730870.9 | 7-Apr-16 | 3,283,968 | Method for Sharing a
Memory Between at Least
Two Functional Entities | DE | | | | | | | | Injection Attacks by Optical and Electromagnetic Pulses | | |--------|------------------|-----------|------------|---------------|------------|--|----| | 1X | Verimatrix | 28-May-19 | 15/947 379 | 3-Oct-16 | 10,303,903 | Countermeasures for Fault- | US | | | Inside
Secure | 21-Aug-19 | 16790646.0 | 3-0ct-16 | 3,360,073 | Countermeasures for Fault-
Injection Attacks by Optical
and Electromagnetic Pulses | GB | | × × | Verimatrix | 21-Aug-19 | 16790646.0 | 3-0ct-16 | 3,360,073 | Countermeasures for Fault-
Injection Attacks by Optical
and Electromagnetic Pulses | FR | | × | Verimatrix | 21-Aug-19 | 16790646.0 | 3-Oct-16 | 3,360,073 | Countermeasures for Fault-
Injection Attacks by Optical
and Electromagnetic Pulses | DE | | × | Verimatrix | 24-Nov-17 | 1559497 | 6-0ct-15 | 3,042,055 | Countermeasures for Fault-
Injection Attacks by Optical
and Electromagnetic Pulses | FR | | | Inside
Secure | 5-Dec-18 | 16170012.5 | 17-May-
16 | 3,246,845 | Secure Asset Management System | GB | | × | Verimatrix | 5-Dec-18 | 16170012.5 | 17-May-
16 | 3,246,845 | Secure Asset Management System | FR | | \sim | Verimatrix | 5-Dec-18 | 16170012.5 | 17-May-
16 | 3,246,845 | Secure Asset Management
System | DE | | × | Verimatrix | | 15/594 122 | 12-May-
17 | | Secure Asset Management
System | US | | _ ^ | Verimatrix | | 15/784 010 | 13-Oct-
17 | | Method for Securing the Execution of a Program | US | | 1 | | | | | | | | | GB | FR | DE | СН | GB | FR | |--|--|--|--|--|---| | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Preventing cloning of high value software using embedded hardware and software functionality | Procédé de transaction
comprenant des opérations
d'écriture de données dans
une mémoire non volatile | | 1,813,107 | 1,813,107 | 1,813,107 | 1,813,107 | 1,747,504 | | | 18-Oct-
05 | 18-Oct-
05 | 18-Oct-
05 | 18-Oct-
05 | 8-Apr-05 | 5-Jul-16 | | 05811812.6 | 05811812.6 | 05811812.6 | 05811812.6 | 05737024.9 | 1656413 | | 18-Mar-15 | 18-Mar-15 | 18-Mar-15 | 18-Mar-15 | 6-Feb-08 | | | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | | Granted | Granted | Granted | Granted | Granted | Published | | US | US | US | US | US | Ħ | |--|--|--|--|--|--| | Method and apparatus for supporting broadcast efficiency and security enhancements | Method and apparatus for supporting broadcast efficiency and security enhancements | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | Method and Apparatus for
Supporting Multiple
Broadcasters Independently
Using a Single Conditional
Access System | | 8,879,729 | 7,970,138 | 9,712,786 | 9,014,375 | 8,243,925 | 1,813,107 | | 4-May-
11 | 26-May-
06 | 21-Apr-
15 | 3-Jul-12 | 18-Oct-
05 | 18-Oct-
05 | | 13/100 565 | 11/441 888 | 14/692 500 | 13/541 492 | 11/795 272 | 05811812.6 | | 4-Nov-14 | 28-Jun-11 | 18-Jul-17 | 21-Apr-15 | 14-Aug-12 | 18-Mar-15 | | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | | Granted | Granted | Granted | Granted | Granted | Granted | | US |---|---|---|---|---|---|---|--|--| | Hardware-Enforced, Always-
on Insertion of a Watermark
in a Video Processing Path | Hardware-Enforced, Always-
on Insertion of a Watermark
in a Video Processing Path | Hardware-Enforced, Always-
on Insertion of a Watermark
in a Video Processing Path | Building block for a secure cmos logic cell library | Method and
Apparatus for Camouflaging a Printed Circuit Board | Method and Apparatus for Camouflaging a Printed Circuit Board | Method and Apparatus for Camouflaging a Printed Circuit Board | System and method for media transcoding and presentation | Method and Apparatus for Providing Secure Internet Protocol Media Services | | 10,277,935 | 9,942,586 | 9,355,426 | 8,111,089 | 9,355,199 | 8,418,091 | 8,151,235 | 8,281,359 | 8,761,393 | | 27-Mar-
18 | 27-May-
16 | 26-Jan-
12 | 24-May-
10 | 7-Mar-13 | 13-Oct-
09 | 24-Feb-
09 | 11-Aug-
09 | 12-Oct-
07 | | 15/937 772 | 15/167 319 | 13/981 289 | 12/786 205 | 13/789 267 | 12/578 441 | 12/380 094 | 12/539 400 | 11/974 329 | | 30-Apr-19 | 10-Apr-18 | 31-May-16 | 7-Feb-12 | 31-May-16 | 9-Apr-13 | 3-Apr-12 | 2-Oct-12 | 24-Jun-14 | | Verimatrix | Granted | Granted | Inside
Secure | 31-Jul-19 | 13755054.7 | 1-Mar-13 | 2,820,546 | Blackbox Security Provider Programming System | GB | |---------|------------------|-----------|------------|-----------|-----------|--|----| | Granted | Verimatrix | 31-Jul-19 | 13755054.7 | 1-Mar-13 | 2,820,546 | Blackbox Security Provider Programming System Permitting Multiple Customer Use and in Field Conditional Access Switching | FR | | Granted | Verimatrix | 31-Jul-19 | 13755054.7 | 1-Mar-13 | 2,820,546 | Blackbox Security Provider Programming System Permitting Multiple Customer Use and in Field Conditional Access Switching | DE | | Granted | Verimatrix | 10-Apr-18 | 15/373 334 | 8-Dec-16 | 9,940,425 | Method and apparatus for camouflaging a standard cell based integrated circuit with micro circuits and post processing | US | | Granted | Verimatrix | 10-Jan-17 | 13/940 585 | 12-Jul-13 | 9,542,520 | Method and apparatus for camouflaging a standard cell based integrated circuit with micro circuits and post processing | US | | Granted | Verimatrix | 13-Aug-13 | 13/370 118 | 9-Feb-12 | 8,510,700 | Method and apparatus for camouflaging a standard cell based integrated circuit with micro circuits and post processing | Sn | | | | | | | | | | | US | US | EP | CA | US | US | | |--|--|--|--|--|--|---| | Physically Unclonable
Camouflage Structure and
Methods for Fabricating
Same | Physically Unclonable
Camouflage Structure and
Methods for Fabricating
Same | Method and apparatus for providing secure internet protocol media services | Method and apparatus for providing secure internet protocol media services | Method and apparatus for providing secure internet protocol media services | Blackbox Security Provider Programming System Permitting Multiple Customer Use and in Field Conditional Access Switching | Permitting Multiple
Customer Use and in Field
Conditional Access
Switching | | | 9,735,781 | | | 9,277,259 | 9,800,405 | | | 11-Aug-
17 | 30-Dec-
15 | 23-Jun-
15 | 23-Jun-
15 | 23-Jun-
14 | 1-Mar-13 | | | 15/675 418 | 14/985 270 | 15811834.9 | 2953485 | 14/312 560 | 14/382 539 | | | | 15-Aug-17 | | | 1-Mar-16 | 24-Oct-17 | | | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Verimatrix | | | Allowanc
e | Granted | Published | Published | Granted | Granted | | | US | EP | CN | US | US | |--|---|---|--|--| | Method and Apparatus for Obfuscating an Integrated Circuit With Camouflaged Gates and Logic Encryption | Method and Apparatus for
Obfuscating an Integrated
Circuit With Camouflaged
Gates and Logic Encryption | Method and Apparatus for
Obfuscating an Integrated
Circuit With Camouflaged
Gates and Logic Encryption | Method and apparatus for a blackbox programming system permitting downloadable applications and multiple security profiles providing hardware separation of services in hardware constrained devices | Method and apparatus for a blackbox programming system permitting downloadable applications and multiple security profiles providing hardware separation of services in hardware constrained devices | | | | | | 10,348,501 | | 19-Sep-
17 | 19-Sep-
17 | 19-Sep-
17 | 8-Jul-19 | 11-Jul-16 | | 16/333 589 | 17853755.1 | 201780057579.7 | 16/505 477 | 15/207 332 | | | | | | 9-Jul-19 | | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | | Published | Published | Published | Filed | Granted | | Published | Verimatrix | | US2018/042542 | 17-Jul-18 | | Method and apparatus for supporting multiple broadcasters independently | WO | |-----------|------------------|-----------|---------------|---------------|------------|--|----| | Filed | Verimatrix | | 16/670 957 | 31-Oct-
19 | | Method and apparatus for supporting multiple broadcasters independently using a single conditional access system | US | | Filed | Verimatrix | | 16/670 912 | 31-Oct-
19 | | Method and apparatus for supporting multiple broadcasters independently using a single conditional access system | US | | Granted | Verimatrix | 12-Nov-19 | 15/652 082 | 17-Jul-17 | 10,477,151 | Method and apparatus for supporting multiple broadcasters independently using a single conditional access system | US | | Filed | Inside
Secure | | 201917024836 | 9-Jan-18 | | Signaling Conditional Access System Switching and Key Derivation | IN | | Published | Verimatrix | | 18701577.1 | 9-Jan-18 | | Signaling Conditional Access System Switching and Key Derivation | EP | | Granted | Verimatrix | 12-Nov-19 | 15/791 260 | 23-Oct-
17 | 10,476,883 | Signaling Conditional Access System Switching and Key Derivation | US | | | | | | | | | Γ | | |---|--|--|---|---|---|---|---|--| | US | US | US | US | S | ΕP | WO | US | | | System and method for managing in-field | CAMOUFLAGED FINFET
AND METHOD FOR
PRODUCING SAME | OBFUSCATED SHIFT
REGISTERS FOR
INTEGRATED CIRCUITS | Network interface with timestamping and data protection | Network interface with timestamping and data protection | Network interface with timestamping and data protection | Secure logic locking and configuration with camouflaged programmable micro netlists | Secure logic locking and configuration with camouflaged programmable micro netlists | using a single conditional access system | | | | | | | | | | | | 25-Mar-
19 | 8-Mar-19 | 8-Mar-19 | 27-Aug-
19 | 27-Aug-
19 | 28-Aug-
18 | 2-Aug-18 | 6-Aug-18 | | | 16/363 958 | 16/297 516 | 16/297 511 | 16/552 919 | 201910799377.0 | 18191268.4 | PCT/IB2018/05
5813 | 16/056 268 | | | | | | | | | | | | | Verimatrix | Verimatrix | Verimatrix | Verimatrix | Inside
Secure | Verimatrix | Verimatrix | Verimatrix | | | Published | Filed | Filed | Filed | Filed | Filed | Published | Filed | | **RECORDED: 12/12/2019** | EP | EP | US | | |---|---|--|--| | Side-Channel Attack Protected Gates Having Low-Latency and Reduced Complexity | Side-Channel Attack Protected Gates Having Low-Latency and Reduced Complexity | Method and apparatus for camouflaging an integrated circuit using virtual camouflage cells | deployment of multiple conditional access and watermarking systems | | | | | | | 26-Sep-
19 | 26-Sep-
19 | 25-Mar-
19 | | | 19199955.6 | 19199955.6 | 16/364 056 | | | | | | | | Verimatrix | Verimatrix | Verimatrix | | | Filed | Filed | Filed | |