506576310 03/25/2021 # PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT6623089 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | #### **CONVEYING PARTY DATA** | Name | Execution Date | | |-------------|----------------|--| | ARM LIMITED | 10/02/2020 | | ### **RECEIVING PARTY DATA** | Name: | CERFE LABS, INC. | |-----------------|----------------------| | Street Address: | 10621 OAK VIEW DRIVE | | City: | AUSTIN | | State/Country: | TEXAS | | Postal Code: | 78759 | #### **PROPERTY NUMBERS Total: 1** | Property Type | Number | |---------------------|----------| | Application Number: | 16940163 | #### **CORRESPONDENCE DATA** Fax Number: Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. Email: ecoffee@bltg-ip.com Correspondent Name: BERKELEY LAW AND TECHNOLOGY GROUP LLP Address Line 1: 17933 NE EVERGREEN PKWY, SUITE 250 Address Line 4: BEAVERTON, OREGON 97006 | ATTORNEY DOCKET NUMBER: | 394.P013C3 | |-------------------------|--------------------| | NAME OF SUBMITTER: | ELIZABETH COFFEE | | SIGNATURE: | /Elizabeth Coffee/ | | DATE SIGNED: | 03/25/2021 | #### **Total Attachments: 12** source=394 P013C3 Cerfe Assignment#page1.tif source=394 P013C3 Cerfe Assignment#page2.tif source=394 P013C3 Cerfe Assignment#page3.tif source=394 P013C3 Cerfe Assignment#page4.tif source=394 P013C3 Cerfe Assignment#page5.tif source=394 P013C3 Cerfe Assignment#page6.tif source=394 P013C3 Cerfe Assignment#page7.tif > **PATENT** 506576310 REEL: 055724 FRAME: 0406 source=394_P013C3_Cerfe Assignment#page8.tif source=394_P013C3_Cerfe Assignment#page9.tif source=394_P013C3_Cerfe Assignment#page10.tif source=394_P013C3_Cerfe Assignment#page11.tif source=394_P013C3_Cerfe Assignment#page12.tif > PATENT REEL: 055724 FRAME: 0407 ## **ASSIGNMENT** This ASSIGNMENT ("ASSIGNMENT") is made and entered into by and between Arm Limited, a private limited company incorporated under the laws of England and Wales ("ASSIGNOR") and Cerfe Labs, Inc., a Delaware corporation ("ASSIGNEE"). This Assignment is made and entered into in connection with the consummation of the transactions contemplated by that certain Asset Purchase Agreement, dated as of October 2, 2020 by and between ASSIGNOR and ASSIGNEE (the "PURCHASE AGREEMENT"). For good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, ASSIGNOR and ASSIGNEE agree as follows: - 1. ASSIGNOR hereby sells, assigns, and transfers to ASSIGNEE the entire worldwide right, title, and interest in the patent application(s) and patents listed in Schedule A hereto ("PATENT RIGHTS"): - 2. ASSIGNOR hereby sells, assigns, and transfers to ASSIGNEE the entire worldwide right, title, and interest in and to: (a) the PATENT RIGHTS, including any right of priority; (b) any provisional, divisional, continuation, substitute, renewal, reissue, and other related applications thereto which have been or may be filed in the United States or elsewhere in the world; (c) any patents which may be granted on the applications set forth in (a) and (b) above; and (d) the right to sue in its own name and to recover for past infringement of any or all of any applications or patents issuing therefrom together with all rights to recover damages for infringement of provisional rights. - 3. This ASSIGNMENT shall be construed and interpreted in accordance with the PURCHASE AGREEMENT. Nothing in this ASSIGNMENT shall, or shall be deemed to, modify or otherwise affect any provisions of the PURCHASE AGREEMENT or affect or modify any of the rights or obligations of the parties under the PURCHASE AGREEMENT. In the event of any conflict between the provisions hereof and the provisions of the PURCHASE AGREEMENT, the provisions of the PURCHASE AGREEMENT shall govern and control. - 4. This ASSIGNMENT may be executed in one or more counterparts, each of which shall be deemed an original and all of which may be taken together as one and the same ASSIGNMENT. | Duly Authorized Representative of ASSIGNOR | Date of Signature | |--|-------------------| | By: Jason Egal Name: Jason Egal | October 2, 2020 | | Title: EVP, Chief Strategy Officer | | | Arm Limited | | 1 of [2] | Duly Authorized Representative of ASSIGNEE | Date of Signature | |--|-------------------| | By: Eric Hennenhoefer | October 2, 2020 | | Name: Eric Hennenhoefer | | | Title: Chief Executive Officer/President | | | Cerfe Labs, Inc. | | # SCHEDULE A - PATENT RIGHTS | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |--------------------------------|-------------|--------------|---------------|-----------------------|---------------|------------| | CeRAM Integration and Use as | China | Published | 2016- | 201680051800,3 | | | | Programmable Fabric or High | | | 09-07 | | | | | Density Crosspoint Array | | | | | | | | CeRAM Integration and Use as | European | Published | 2016- | 16770296.8 | | | | Programmable Fabric or High | Patent | T GONSHOU | 09-07 | 10770250.0 | | | | Density Crosspoint Array | 1 41.614 | | 0,00 | | | | | CeRAM Integration and Use as | India | Published | 2016- | 201847012436 | | | | Programmable Fabric or High | maru | 1 donsiled | 09-07 | 201017012130 | | | | Density Crosspoint Array | | | 0,0, | | | | | CeRAM Integration and Use as | Japan | Application | 2016- | 2018-530978 | | | | Programmable Fabric or High | Japan | ripplication | 09-07 | 2010-330770 | | | | Density Crosspoint Array | | | 05-07 | | | | | CeRAM Integration and Use as | Korea, | Application | 2016- | 10-2018-7009852 | | | | Programmable Fabric or High | Republic of | Application | 09-07 | 10-2016-7009632 | | | | Density Crosspoint Array | (KR) | | 09-07 | | | | | CeRAM Integration and Use as | United | Granted | 2015- | 14/848,129 | 2019 | 10,056,143 | | | | Granted | | 14/848,129 | 2018- | 10,036,143 | | Programmable Fabric or High | States of | | 09-08 | | 08-21 | | | Density Crosspoint Array | America | C (1 | 2010 | 15/000 (04 | 2010 | 10.266.752 | | CeRAM Integration and Use as | United | Granted | 2018- | 15/999,694 | 2019- | 10,366,753 | | Programmable Fabric or High | States of | | 08-20 | | 07-30 | | | Density Crosspoint Array | America | * | 2010 | 4.5/80.8.400 | | | | CeRAM Integration and Use as | United | Published | 2019- | 16/525,432 | | | | Programmable Fabric or High | States of | | 07-29 | | | | | Density Crosspoint Array | America | | | | | | | Current Switchable CeRAM RC | China | Published | 2016- | 201680045146.5 | | | | device | | | 08-01 | | | | | Current Switchable CeRAM RC | European | Published | 2016- | 16751626.9 | | | | device | Patent | | 08-01 | | | | | Current Switchable CeRAM RC | India | Published | 2016- | 201847006514 | | | | device | | | 08-01 | | | | | Current Switchable CeRAM RC | Japan | Application | 2016- | 2018-504847 | | | | device | | | 08-01 | | | | | Current Switchable CeRAM RC | Korea, | Application | 2016- | 10-2018-7005808 | | | | device | Republic of | | 08-01 | | | | | | (KR) | | | | | | | Current Switchable CeRAM RC | Taiwan | Granted | 2016- | 105124025 | 2020- | I694607 | | device | | | 07-29 | | 05-21 | | | Current Switchable CeRAM RC | United | Granted | 2015- | 14/815,054 | 2017- | 9,735,766 | | device | States of | O TALLED | 07-31 | 11,010,001 | 08-15 | 3,750,700 | | | America | | | | ** 10 | | | Current Switchable CeRAM RC | United | Published | 2017- | 15/659,288 | | | | device | States of | 1 donsiled | 07-25 | 15/059,200 | | | | device | America | | 0, 23 | | | | | Non-Symetric and Reverse-polar | China | Published | 2016- | 201680052536.5 | | | | Switching in a CeRAM Device | Cinita | 1 donsiled | 09-09 | 201000032330.3 | | | | Non-Symetric and Reverse-polar | Taiwan | Granted | 2016- | 105129236 | 2020- | I692201 | | Switching in a CeRAM Device | Taiwaii | Giaineu | 09-09 | 103129230 | 04-21 | 1092201 | | | TInite 1 | Cmnt-1 | | 14/950 212 | _ | 0.755.146 | | Non-Symetric and Reverse-polar | United | Granted | 2015- | 14/850,213 | 2017- | 9,755,146 | | Switching in a CeRAM Device | States of | | 09-10 | | 09-05 | | | N. G | America | | 201- | 15/601.065 | 2010 | 10.01=01= | | Non-Symetric and Reverse-polar | United | Granted | 2017- | 15/681,236 | 2019- | 10,217,937 | | Switching in a CeRAM Device | States of | | 08-18 | | 02-26 | | | | America | | | | 1 | | | Non-Symetric and Reverse-polar | United | Granted | 2019- | 16/284,901 | 2020- | 10,763,433 | 3 of [2] PATENT REEL: 055724 FRAME: 0410 | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |--|--------------------------------|-------------|----------------|-----------------------|----------------|------------| | Switching in a CeRAM Device | States of
America | | 02-25 | | 09-01 | | | Multiple Impedance CeRAM integration | China | Published | 2016-
09-29 | 201680057845.1 | | | | Multiple Impedance CeRAM integration | Taiwan | Application | 2016-
09-30 | 105131576 | | | | Multiple Impedance CeRAM integration | United
States of | Granted | 2015-
09-30 | 14/871,692 | 2018-
12-04 | 10,147,879 | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | America
China | Application | 2017-
01-25 | 201780008546.3 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | European
Patent | Published | 2017-
01-25 | 17707391.3 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | India | Published | 2017-
01-25 | 201847031233 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | Japan | Application | 2017-
01-25 | 2018-557220 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | Korea,
Republic of
(KR) | Application | 2017-
01-25 | 10-2018-7024132 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | Taiwan | Application | 2017-
01-26 | 106103151 | | | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | United
States of
America | Granted | 2016-
01-26 | 15/006,889 | 2017-
04-18 | 9,627,615 | | Carbon Doping of Transition Metal
Oxide Films for CeRAM | United
States of
America | Granted | 2017-
03-20 | 15/463,546 | 2018-
07-31 | 10,038,141 | | Oxidation Barrier Layer for
CeRAM | China | Published | 2017-
02-27 | 201780013869.1 | | | | Oxidation Barrier Layer for
CeRAM | United
Kingdom | Published | 2017-
02-27 | 1814731.4 | | | | Oxidation Barrier Layer for
CeRAM | Korea,
Republic of
(KR) | Published | 2017-
02-27 | 10-2018-7026601 | | | | Oxidation Barrier Layer for
CeRAM | Taiwan | Published | 2017-
02-24 | 106106323 | | | | Oxidation Barrier Layer for
CeRAM | United
States of
America | Granted | 2016-
02-29 | 15/056,877 | 2017-
05-23 | 9,660,189 | | Oxidation Barrier Layer for
CeRAM | United
States of
America | Granted | 2017-
04-27 | 15/499,212 | 2018-
07-03 | 10,014,468 | | Nitrogen Based Doping of
Correlated Electron Materials | China | Published | 2017-
02-15 | 201780011895.0 | | | | Nitrogen Based Doping of
Correlated Electron Materials | United
Kingdom | Published | 2017-
02-15 | 1813620.0 | | | | Nitrogen Based Doping of
Correlated Electron Materials | Korea,
Republic of
(KR) | Published | 2017-
02-15 | 10-2018-7026611 | | | | Nitrogen Based Doping of
Correlated Electron Materials | Taiwan | Published | 2017-
02-16 | 106105049 | | | | Nitrogen Based Doping of
Correlated Electron Materials | United
States of
America | Published | 2016-
02-17 | 15/046,177 | | | | Varistor and Diode Based Access
Devices for CeRAM | China | Published | 2016-
12-20 | 201680075584.6 | | | | Varistor and Diode Based Access
Devices for CeRAM | European
Patent | Application | 2016-
12-20 | 16823308.8 | | | | Varistor and Diode Based Access | India | Published | 2016- | 201847026437 | | | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |--|--------------------------------|-------------|----------------|-----------------------|----------------|------------| | Devices for CeRAM | | | 12-20 | | | | | Varistor and Diode Based Access
Devices for CeRAM | Japan | Application | 2016-
12-20 | 2018-532661 | | | | Varistor and Diode Based Access
Devices for CeRAM | Korea,
Republic of
(KR) | Application | 2016-
12-20 | 10-2018-7020702 | | | | Varistor and Diode Based Access
Devices for CeRAM | Taiwan | Published | 2016-
12-15 | 105141533 | | | | Varistor and Diode Based Access
Devices for CeRAM | United
States of
America | Granted | 2015-
12-22 | 14/979,086 | 2017-
08-15 | 9,735,360 | | Varistor and Diode Based Access
Devices for CeRAM | United
States of
America | Granted | 2017-
07-10 | 15/645,061 | 2018-
11-20 | 10,134,987 | | Varistor and Diode Based Access
Devices for CeRAM | United
States of
America | Granted | 2018-
11-19 | 16/195,765 | 2020-
07-28 | 10,727,408 | | Method to Control Carbon in a
Correlated Electron Material | China | Published | 2017-
02-17 | 201780013466.7 | | | | Method to Control Carbon in a
Correlated Electron Material | United
Kingdom | Published | 2017-
02-17 | 1813622.6 | | | | Method to Control Carbon in a
Correlated Electron Material | Korea,
Republic of
(KR) | Published | 2017-
02-17 | 10-2018-7027069 | | | | Method to Control Carbon in a
Correlated Electron Material | Taiwan | Application | 2017-
02-17 | 106105209 | | | | Method to Control Carbon in a
Correlated Electron Material | United
States of
America | Published | 2016-
02-19 | 15/048,778 | | | | Oxidation Resistant Titanium
Nitride Electrodes for CeRAM | China | Application | 2017-
07-04 | 201780043177.1 | | | | Oxidation Resistant Titanium
Nitride Electrodes for CeRAM | Korea,
Republic of
(KR) | Application | 2017-
07-04 | 10-2019-7003701 | | | | Oxidation Resistant Titanium
Nitride Electrodes for CeRAM | Taiwan | Published | 2017-
07-11 | 106123165 | | | | Oxidation Resistant Titanium
Nitride Electrodes for CeRAM | United
States of
America | Granted | 2016-
07-12 | 15/207,708 | 2019-
12-24 | 10,516,110 | | Oxidation Resistant Titanium
Nitride Electrodes for CeRAM | United
States of
America | Published | 2019-
12-23 | 16/725,907 | | | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | China | Published | 2017-
02-17 | 201780012377.0 | | | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | United
Kingdom | Published | 2017-
02-17 | 1813623.4 | | | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | Korea,
Republic of
(KR) | Published | 2017-
02-17 | 10-2018-7027057 | | | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | Taiwan | Published | 2017-
02-17 | 106105200 | | | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | United
States of
America | Granted | 2016-
02-19 | 15/048,244 | 2019-
01-01 | 10,170,700 | | Fabrication of Correlated Electron
Material Devices Method to
Control Carbon | United
States of
America | Granted | 2016-
02-19 | 16/200,001 | 2020-
03-03 | 10,580,982 | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|-------------------------------|-------------|----------------|-----------------------|---------------|------------| | Alternate CeRAM Construction and Uses | China | Application | 2017-
09-18 | 201780057712.9 | | | | Alternate CeRAM Construction | European | Published | 2017- | 17772455.6 | _ | | | and Uses | Patent | Published | 09-18 | 1///2433.6 | | | | Alternate CeRAM Construction | India | Published | 2017- | 201947008299 | | | | and Uses | Illula | Fuonsieu | 09-18 | 201947008299 | | | | Alternate CeRAM Construction | Japan | Application | 2017- | 2019-515507 | + | | | and Uses | Јаран | Application | 09-18 | 2019-313307 | | | | Alternate CeRAM Construction | Korea, | Application | 2017- | 10-2019-7007482 | _ | | | and Uses | Republic of (KR) | Application | 09-18 | 10-2019-7007482 | | | | Alternate CeRAM Construction and Uses | Taiwan | Published | 2017-
09-19 | 106132059 | | | | Alternate CeRAM Construction | United | Granted | 2016- | 15/270,974 | 2018- | 9,978,942 | | and Uses | States of
America | | 09-20 | | 05-22 | | | Alternate CeRAM Construction | United | Granted | 2018- | 15/984,223 | 2019- | 10,446,609 | | and Uses | States of
America | | 05-18 | | 10-15 | | | Alternate CeRAM Construction | United | Published | 2019- | 16/600,372 | | | | and Uses | States of America | | 10-11 | | | | | Formation of Correlated Electron
Material Device using UV
Oxidation | China | Published | 2017-
08-10 | 201780049967.0 | | | | Formation of Correlated Electron | Taiwan | Published | 2017- | 106127436 | | | | Material Device using UV Oxidation | Turvun | 1 donsiled | 08-14 | 100127430 | | | | Formation of Correlated Electron | United | Granted | 2016- | 15/237,357 | 2019- | 10,276,795 | | Material Device using UV | States of | Granica | 08-15 | 10,237,307 | 04-30 | 10,270,750 | | Oxidation | America | | | | | | | Doping Correlated Electron | China | Application | 2017- | 201780042126.7 | | | | Material with Top or Bottom Electrode | | | 07-04 | | | | | Doping Correlated Electron | Korea, | Application | 2017- | 10-2019-7003312 | | | | Material with Top or Bottom Electrode | Republic of (KR) | | 07-04 | | | | | Doping Correlated Electron | Taiwan | Published | 2017- | 106122317 | | | | Material with Top or Bottom Electrode | | | 07-04 | | | | | Doping Correlated Electron | United | Granted | 2016- | 15/201,932 | 2018- | 10,134,986 | | Material with Top or Bottom Electrode | States of
America | | 07-05 | | 11-20 | | | Doping Correlated Electron | United | Published | 2018- | 16/195,779 | | | | Material with Top or Bottom Electrode | States of
America | | 11-19 | | | | | Formation of Correlated Electron
Switch using Delta Doping | China | Application | 2017-
08-10 | 201780048726,4 | | | | Formation of Correlated Electron
Switch using Delta Doping | United
Kingdom | Application | 2017-
08-10 | 1902616.0 | | | | Formation of Correlated Electron
Switch using Delta Doping | Korea,
Republic of
(KR) | Application | 2017-
08-10 | 10-2019-7005969 | | | | Formation of Correlated Electron
Switch using Delta Doping | Taiwan | Published | 2017-
08-11 | 106127276 | | | | Formation of Correlated Electron | United | Granted | 2016- | 15/234,854 | 2018- | 9,997,702 | | Switch using Delta Doping | States of
America | | 08-11 | 10,20 1,00 1 | 06-12 | 2,227,702 | | Formation of Correlated Electron | United | Granted | 2018- | 15/890,222 | 2019- | 10,381,560 | | Switch using Delta Doping | States of | | 02-06 | , | 08-13 | , , | | | America | | | | | | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|--------------------------------|-------------|----------------|-----------------------|----------------|------------| | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | China | Published | 2017-
01-25 | 201780008557.1 | 2 | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | European
Patent | Published | 2017-
01-25 | 17704524.2 | | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | India | Published | 2017-
01-25 | 201847031224 | | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | Japan | Application | 2017-
01-25 | 2018-557221 | | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | Korea,
Republic of
(KR) | Application | 2017-
01-25 | 10-2018-7024129 | | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | Taiwan | Published | 2017-
01-25 | 106102828 | | | | A Method for Making Nonvolatile
Memories of the Strongly
Correlated-electron (CeRAM) Type
Using Chemical Stabilization of
Metal-Ligand Defects by Ligand
Substitution with Back Donation | United
States of
America | Published | 2016-
12-20 | 15/385,719 | | | | Method for Making a Correlated
Electron Material by Oxidation of a
Metal Film | China | Application | 2017-
11-30 | 201780074027.7 | | | | Method for Making a Correlated
Electron Material by Oxidation of a
Metal Film | Taiwan | Published | 2017-
11-30 | 106141783 | | | | Method for Making a Correlated
Electron Material by Oxidation of a
Metal Film | United
States of
America | Granted | 2016-
12-01 | 15/367,052 | 2019-
01-29 | 10,193,063 | | Method for Making a Correlated
Electron Material by Oxidation of a
Metal Film | United
States of
America | Published | 2019-
01-28 | 16/259,917 | | | | A Method for Creating Electrodes
and Correlated Electron region in a
Correlated Electron Material
Device | China | Application | 2017-
12-06 | 201780074610.8 | | | | A Method for Creating Electrodes
and Correlated Electron region in a
Correlated Electron Material | Korea,
Republic of
(KR) | Application | 2017-
12-06 | 10-2019-7018795 | | | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|--------------------------------|-------------|----------------|-----------------------|----------------|------------| | Device | | | | | | | | A Method for Creating Electrodes
and Correlated Electron region in a
Correlated Electron Material
Device | Taiwan | Published | 2017-
12-06 | 106142658 | | | | A Method for Creating Electrodes
and Correlated Electron region in a
Correlated Electron Material
Device | United
States of
America | Granted | 2016-
12-07 | 15/371,457 | 2019-
02-26 | 10,217,935 | | A Method for Creating Electrodes
and Correlated Electron region in a
Correlated Electron Material
Device | United
States of
America | Published | 2019-
02-25 | 16/284,932 | | | | A Method for Integrating a CEM device | China | Application | 2017-
12-05 | 201780073490.X | | | | A Method for Integrating a CEM device | European
Patent | Application | 2017-
12-05 | 17825276.3 | | | | A Method for Integrating a CEM device | India | Published | 2017-
12-05 | 201947024687 | | | | A Method for Integrating a CEM device | Japan | Application | 2017-
12-05 | 2019-528859 | | | | A Method for Integrating a CEM device | Korea,
Republic of
(KR) | Application | 2017-
12-05 | 10-2019-7018205 | | | | A Method for Integrating a CEM device | Taiwan | Published | 2017-
12-05 | 106142512 | | | | A Method for Integrating a CEM device | United
States of
America | Granted | 2016-
12-06 | 15/370,168 | 2019-
10-22 | 10,454,026 | | A Method for Integrating a CEM device | United
States of
America | Published | 2019-
10-21 | 16/659,206 | | | | Layered Correlated Electron
Material for Switching Device | China | Published | 2017-
08-04 | 201780051577.7 | | | | Layered Correlated Electron Material for Switching Device | Taiwan | Published | 2017-
08-22 | 106128369 | | | | Layered Correlated Electron
Material for Switching Device | United
States of
America | Granted | 2016-
08-22 | 15/243,668 | 2020-
03-10 | 10,586,924 | | Metal wetting layer for metal compound CEM device formation | China | Application | 2017-
12-18 | 201780076883.6 | | | | Metal wetting layer for metal compound CEM device formation | Taiwan | Published | 2017-
12-19 | 106144562 | | | | Metal wetting layer for metal compound CEM device formation | United
States of
America | Published | 2016-
12-19 | 15/383,926 | | | | A Method | China | Published | 2017-
08-25 | 201780056439.8 | | | | A Method | Taiwan | Published | 2017-
09-11 | 106130925 | | | | A Method | United
States of
America | Granted | 2016-
09-14 | 15/264,851 | 2018-
10-16 | 10,103,327 | | A Method | United
States of
America | Granted | 2016-
09-14 | 16/160,291 | 2019-
09-03 | 10,403,816 | | Chemical Signature for CEM
Devices | China | Published | 2017-
08-18 | 201780054201.1 | | | | Chemical Signature for CEM | European | Published | 2017- | 17758910.8 | | | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|--------------------------------|-------------|----------------|-----------------------|----------------|------------| | Devices | Patent | | 08-18 | Trumper | Date | | | Chemical Signature for CEM
Devices | India | Published | 2017-
08-18 | 201917005054 | | | | Chemical Signature for CEM
Devices | Japan | Published | 2017-
08-18 | 2019-512983 | | | | Chemical Signature for CEM
Devices | Korea,
Republic of
(KR) | Published | 2017-
08-18 | 10-2019-7004987 | | | | Chemical Signature for CEM
Devices | Taiwan | Published | 2017-
09-08 | 106130755 | | | | Chemical Signature for CEM
Devices | United
States of
America | Granted | 2016-
09-09 | 15/260,515 | 2018-
11-13 | 10,128,438 | | Chemical Signature for CEM
Devices | United
States of
America | Granted | 2016-
09-09 | 16/169,372 | 2020-
05-19 | 10,658,587 | | CeRAM Device Structures for
High Yield Integration | China | Published | 2018-
01-23 | 201880007258.0 | | | | CeRAM Device Structures for
High Yield Integration | Korea,
Republic of
(KR) | Published | 2018-
01-23 | 10-2019-7022847 | | | | CeRAM Device Structures for
High Yield Integration | Taiwan | Published | 2018-
01-23 | 107102322 | | | | CeRAM Device Structures for
High Yield Integration | United
States of
America | Granted | 2017-
01-24 | 15/414,520 | 2018-
11-27 | 10,141,504 | | CeRAM Device Structures for
High Yield Integration | United
States of
America | Granted | 2018-
11-26 | 16/200,214 | 2020-
07-07 | 10,707,415 | | Electrode Liner for CEM Devices | Taiwan | Published | 2017-
11-28 | 106141303 | | | | Electrode Liner for CEM Devices | United
States of
America | Granted | 2016-
11-29 | 15/363,216 | 2018-
11-06 | 10,121,967 | | Electrode Liner for CEM Devices | United
States of
America | Granted | 2018-
10-24 | 16/169,114 | 2020-
07-28 | 10,727,406 | | TMO based non-polar BEOL diode and access device | China | Application | 2018-
05-30 | 201880033755.8 | | | | TMO based non-polar BEOL diode and access device | Korea,
Republic of
(KR) | Application | 2018-
05-30 | 10-2019-7038146 | | | | TMO based non-polar BEOL diode and access device | Taiwan | Published | 2018-
05-30 | 107118436 | | | | TMO based non-polar BEOL diode and access device | United
States of
America | Granted | 2017-
05-31 | 15/610,288 | 2019-
07-02 | 10,340,453 | | TMO based non-polar BEOL diode and access device | United
States of
America | Granted | 2019-
07-01 | 16/459,518 | 2020-
06-30 | 10,700,280 | | Surface Stoichiometry for CeRAM | China | Published | 2018-
06-28 | 201880044924.8 | | | | Surface Stoichiometry for CeRAM | Korea,
Republic of
(KR) | Published | 2018-
06-28 | 10-2019-7038309 | | | | Surface Stoichiometry for CeRAM | United
States of
America | Granted | 2017-
07-03 | 15/641,143 | 2019-
02-19 | 10,211,398 | | Surface Stoichiometry for CeRAM | United
States of | Granted | 2017-
07-03 | 16/261,413 | 2020-
03-17 | 10,593,880 | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|---------------------------------|-------------|----------------|-----------------------|----------------|------------| | | America | | | | | | | Methods of making a correlated electron device | China | Published | 2018-
07-03 | 201880043755.6 | | | | Methods of making a correlated electron device | Korea,
Republic of
(KR) | Application | 2018-
07-03 | 10-2020-7002218 | | | | Methods of making a correlated electron device | Taiwan | Published | 2018-
07-02 | 107122806 | | | | Methods of making a correlated electron device | United
States of
America | Published | 2017-
07-03 | 15/641,124 | | | | Methods of making a correlated electron device | United
States of
America | Application | 2020-
07-23 | 16/937,403 | | | | Integration of CeRAM films for optimal performance | Taiwan | Published | 2019-
03-28 | 108110846 | | | | Integration of CeRAM films for optimal performance | United
States of
America | Published | 2018-
03-28 | 15/939,160 | | | | Integration of CeRAM films for optimal performance | Patent
Cooperation
Treaty | Application | 2019-
03-21 | PCT/GB2019/050804 | | | | Method of forming a CeRAM | Taiwan | Application | 2019-
03-28 | 108110918 | | | | Method of forming a CeRAM | United
States of
America | Granted | 2018-
03-28 | 15/939,183 | 2019-
09-17 | 10,418,553 | | Method of forming a CeRAM | United
States of
America | Published | 2019-
09-16 | 16/572,521 | | | | Method of forming a CeRAM | Patent
Cooperation
Treaty | Application | 2019-
03-21 | PCT/GB2019/050796 | | | | CeRAM as a Synapse or a Neuron for brain-based computing | China | Application | 2019-
01-11 | 201980015833.6 | | | | CeRAM as a Synapse or a Neuron for brain-based computing | Taiwan | Published | 2019-
01-21 | 108102231 | | | | CeRAM as a Synapse or a Neuron for brain-based computing | United
States of
America | Published | 2018-
01-31 | 15/884,612 | | | | CeRAM as a Synapse or a Neuron for brain-based computing | Patent
Cooperation
Treaty | Published | 2019-
01-11 | PCT/GB2019/050080 | | | | Ligand based Correlated electron device | Taiwan | Application | 2020-
08-17 | 109127869 | | | | Ligand based Correlated electron device | United
States of
America | Application | 2019-
09-12 | 16/569,495 | | | | Ligand based Correlated electron device | Patent
Cooperation
Treaty | Application | 2020-
08-25 | PCT/GB2020/052038 | | | | CeRAM top metal contact integration to reduce parasitic capacitance | Korea,
Republic of
(KR) | Application | 2019-
02-28 | 10-2020-7026279 | | | | CeRAM top metal contact integration to reduce parasitic capacitance | Taiwan | Published | 2019-
03-22 | 108110011 | | | | CeRAM top metal contact integration to reduce parasitic capacitance | United
States of
America | Granted | 2018-
03-23 | 15/933,747 | 2020-
02-18 | 10,566,527 | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|---------------------------------|-------------|-------------------------|-----------------------|----------------|------------| | CeRAM top metal contact integration to reduce parasitic | Patent
Cooperation | Published | 2019-
02-28 | PCT/GB2019/050559 | | | | capacitance | Treaty | | | | | | | Dual Damascene contact to CeRAM | Taiwan | Application | 2019-
09-02 | 108131462 | | | | Dual Damascene contact to
CeRAM | United
States of
America | Published | 2019-
02-08 | 16/271,377 | | | | Dual Damascene contact to
CeRAM | Patent
Cooperation
Treaty | Published | 2019-
02-21 | PCT/GB2019/050479 | | | | Process integrations for CeRAM sidewall protection and restoration | Korea,
Republic of
(KR) | Application | 2019-
02-28 | 10-2020-7026281 | | | | Process integrations for CeRAM sidewall protection and restoration | United
States of
America | Published | 2018-
03-23 | 15/933,818 | | | | Process integrations for CeRAM sidewall protection and restoration | Taiwan | Published | 2019-
03-22 | 108109985 | | | | Process integrations for CeRAM sidewall protection and restoration | Patent
Cooperation
Treaty | Published | 2019-
02-28 | PCT/GB2019/050562 | | | | CeRAM integration to prevent shunting short | United
States of
America | Published | 2018-
10-17 | 16/163,246 | | | | Alternative interconnect integration for making contact to CeRAM pillars | United
States of
America | Granted | 2018-
11-30 | 16/206,725 | 2020-
06-02 | 10,672,982 | | Alternative interconnect integration for making contact to CeRAM pillars | United
States of
America | Application | 2020-
06-02 | 16/890,881 | | | | Alternative interconnect integration for making contact to CeRAM pillars | Patent
Cooperation
Treaty | Published | 2019-
11-15 | PCT/GB2019/053257 | | | | A Method to Design Transition
Metal Oxides Suitable for Metal
Insulator Transition Mott Like
Memories and Switches | United
States of
America | Granted | 2018-
08-07 | 16/057,515 | 2020-
03-03 | 10,580,981 | | A Method to Design Transition
Metal Oxides Suitable for Metal
Insulator Transition Mott Like
Memories and Switches | United
States of
America | Published | 2018-
08-07 | 16/750,168 | | | | A Method to Design Transition
Metal Oxides Suitable for Metal
Insulator Transition Mott Like
Memories and Switches | Patent
Cooperation
Treaty | Published | 2019-
07-31 | PCT/GB2019/052144 | | | | Bizmuth doping to achieve
ferroelectric behavior in TMO,
PTMO, TMC and PTMC but with
an emphasis on HfO as the primary
material of choice | United
States of
America | Application | 2019-
01-15 | 16/248,496 | | | | Bizmuth doping to achieve ferroelectric behavior in TMO, PTMO, TMC and PTMC but with an emphasis on HfO as the primary material of choice | Patent
Cooperation
Treaty | Application | 2019-
12-23 | PCT/GB2019/053688 | | | | Configurable Josephson Junction with non-volatility | United
States of
America | Application | 2020-
02-13 | 16/790,729 | | | | Hydrogen barrier for CeRAM integration | United
States of | Application | 2019-
05 - 09 | 16/408,452 | | | | Patent Application Title | Country | Status | Filed
Date | Application
Number | Grant
Date | Patent No. | |---|---------------------------------|-------------|----------------|-----------------------|---------------|------------| | | America | | | | | | | Hydrogen barrier for CeRAM integration | Patent
Cooperation
Treaty | Application | 2020-
03-12 | PCT/GB2020/050630 | | | | Morphology Enhanced Correlated
Electron Switch | United
States of
America | Application | 2020-
04-29 | 16/862,428 | | | | Dopant activation anneal for CeRAM | Taiwan | Application | 2020-
08-17 | 109127860 | | | | Dopant activation anneal for CeRAM | United
States of
America | Application | 2019-
08-28 | 16/554,385 | | | | Dopant activation anneal for CeRAM | Patent
Cooperation
Treaty | Application | 2020-
08-19 | PCT/GB2020/051980 | | | | Method to adjust Ni/O ratio to create active CERAM device layer | United
States of
America | Application | 2020-
04-16 | 16/850,875 | | | | Novel CeRAM stack to enhance single polar switching | United
States of
America | Application | 2020-
01-21 | 16/748,555 | | | **RECORDED: 03/25/2021**