PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT6935723

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	SECURITY INTEREST

CONVEYING PARTY DATA

Name	Execution Date
UHNDER, INC.	09/23/2021

RECEIVING PARTY DATA

Name:	WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT
Street Address:	1100 NORTH MARKET STREET
City:	WILMINGTON
State/Country:	DELAWARE
Postal Code:	19890

PROPERTY NUMBERS Total: 60

Property Type	Number
Patent Number:	9689967
Patent Number:	9945943
Patent Number:	10215853
Patent Number:	9599702
Patent Number:	9753132
Patent Number:	10073171
Patent Number:	9575160
Patent Number:	9720073
Patent Number:	10605894
Patent Number:	9753121
Patent Number:	9829567
Patent Number:	9772397
Patent Number:	10324165
Patent Number:	9806914
Patent Number:	10142133
Patent Number:	9945935
Patent Number:	10191142
Patent Number:	9869762
Patent Number:	10197671
Patent Number:	9791564

PATENT REEL: 057602 FRAME: 0451

506888902

Property Type	Number
Patent Number:	9989638
Patent Number:	10976431
Patent Number:	10261179
Patent Number:	9846228
Patent Number:	10145954
Patent Number:	11086010
Patent Number:	9791551
Patent Number:	9989627
Patent Number:	10551482
Patent Number:	10573959
Patent Number:	9954955
Patent Number:	10536529
Patent Number:	10908272
Patent Number:	9971020
Patent Number:	10866306
Patent Number:	10670695
Patent Number:	10935633
Application Number:	15822629
Application Number:	16443205
Application Number:	16383950
Application Number:	15496482
Application Number:	16220121
Application Number:	16259474
Application Number:	15978457
Application Number:	16740835
Application Number:	16259379
Application Number:	17164966
Application Number:	17120424
Application Number:	17020162
Application Number:	16815320
Application Number:	16816899
Application Number:	17148004
Application Number:	17147960
Application Number:	17147914
Application Number:	16674543
Application Number:	17189427
Application Number:	63167347
Application Number:	63194267

Property Type	Number	
Application Number:	63140567	
Application Number:	63141020	

CORRESPONDENCE DATA

Fax Number: (214)981-3400

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent

using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 214-981-3483
Email: dclark@sidley.com
Correspondent Name: DUSAN CLARK, ESQ.
Address Line 1: SIDLEY AUSTIN LLP

Address Line 2: 2021 MCKINNEY AVE., SUITE 2000

Address Line 4: DALLAS, TEXAS 75201

ATTORNEY DOCKET NUMBER:	63237-30130
NAME OF SUBMITTER:	DUSAN CLARK
SIGNATURE:	/Dusan Clark/
DATE SIGNED:	09/25/2021

Total Attachments: 8

source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page1.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page2.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page3.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page4.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page5.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page6.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page7.tif source=05. King Street - Uhnder - Intellectual Property Security Agreement (Patents) [EXECUTED]#page8.tif

NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS

NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS, dated as of September 23, 2021 (this "Notice"), made by UHNDER, INC., a Delaware corporation (the "Grantor"), in favor of WILMINGTON TRUST, NATIONAL ASSOCIATION, as Agent (as defined below).

Reference is made to the Loan and Security Agreement, dated as of September 23, 2021 (as amended, restated, supplemented or otherwise modified from time to time, the "Loan Agreement"), among the Grantor, Guarantors from time to time party thereto and Wilmington Trust, National Association, as administrative agent and collateral agent (together with its successors and permitted assigns in such capacity, the "Agent") for the Beneficiaries. The parties hereto agree as follows:

SECTION 1. <u>Terms</u>. Capitalized terms used in this Notice and not otherwise defined herein have the meanings specified in the Loan Agreement. The rules of construction specified in Section 1.1 of the Loan Agreement also apply to this Notice.

SECTION 2. Grant of Security Interest. As security for the prompt and complete payment when due (whether on the payment dates or otherwise) of all the Secured Obligations, the Grantor, pursuant to the Loan Agreement hereby grants to the Agent for the benefit of the Beneficiaries, a security interest in all of the Grantor's right, title and interest in or to any and all of the following assets and properties now owned or at any time hereafter acquired by the Grantor or in which the Grantor now has or at any time in the future may acquire any right, title or interest (collectively, the "Patent Collateral"):

all issued or applied for Patents of the United States of America, including those listed on Schedule I; provided, however, that the foregoing grant of security interest will not cover, and the Patent Collateral shall not include, any Excluded Asset.

SECTION 3. <u>Loan Agreement</u>. The security interests granted to the Agent herein are granted in furtherance, and not in limitation of, the security interests granted to the Agent pursuant to the Loan Agreement. The Grantor hereby acknowledges and affirms that the rights and remedies of the Agent with respect to the Patent Collateral are more fully set forth in the Loan Agreement, the terms and provisions of which are hereby incorporated herein by reference as if fully set forth herein. In the event of any conflict between the terms of this Notice and the Loan Agreement, the terms of the Loan Agreement shall govern.

SECTION 4. <u>Counterparts</u>. This Notice may be executed in any number of counterparts, and by the different parties hereto on separate counterpart signature pages, each of which shall constitute an original, and all such counterparts taken together shall be deemed to constitute one and the same instrument. Delivery of an executed counterpart of a signature page to this Notice by telecopy, emailed .pdf or any other electronic means that reproduces an image of the actual executed signature page shall be effective as delivery of a manually executed counterpart of this Notice and such counterpart shall be deemed to be an original hereof.

SECTION 5. <u>Governing Law</u>. THIS NOTICE AND THE RIGHTS AND OBLIGATIONS OF THE PARTIES HEREUNDER (INCLUDING ANY CLAIMS SOUNDING IN CONTRACT LAW OR TORT LAW ARISING OUT OF THE SUBJECT MATTER HEREOF AND ANY

DETERMINATIONS WITH RESPECT TO POST-JUDGMENT INTEREST) SHALL BE GOVERNED BY, AND SHALL BE CONSTRUED AND ENFORCED IN ACCORDANCE WITH, THE LAWS OF THE STATE OF NEW YORK.

SECTION 6. <u>Recordation</u>. The Grantor authorizes and requests that the Commissioner for Patents and any other applicable government officer record this Notice.

[Signature Pages Follow]

2

IN WITNESS WHEREOF, the parties hereto have duly executed this Notice as of the day and year first above written.

UHNDER, INC	٠,
-------------	----

By: Manju Heyde

Name: Manju Hegde

Title: Chief Executive Officer

WILMINGTON TRUST, NATIONAL ASSOCIATION, as Agent

IN WITNESS WHEREOF, the parties hereto have duly executed this Notice as of the day and year first above written.

UHNDER, INC.

WILMINGTON TRUST, NATIONAL ASSOCIATION, as Agent

By: Name: Andrew Lennon

Title: Assistant Vice President

[Signature Page to Notice of Grant of Security Interest in Patents]

Schedule I to Notice of Grant of Security Interest in Patents

Patents Owned by UHNDER, INC.

Application Number	Application Date	Country	Title	Issue Number	Issue Date
15/481,648	April 7, 2016	US	ADAPTIVE TRANSMISSION AND INTERFERENCE CANCELLATION FOR MIMO RADAR	US 9,689,967	June 27, 2017
15/632,754	June 26, 2017	US	ADAPTIVE TRANSMISSION AND INTERFERENCE CANCELLATION FOR MIMO RADAR	US 9,945,943	April 17, 2018
15/953,700	April 16, 2018	US	ADAPTIVE TRANSMISSION AND INTERFERENCE CANCELLATION FOR MIMO RADAR	US 10,215,853	February 26, 2019
15/204,002	July 7, 2016	US	ON-DEMAND MULTI-SCAN MICRO DOPPLER FOR VEHICLE	US 9,599,702	March 21, 2017
15/463,298	March 20, 2017	US	ON-DEMAND MULTI-SCAN MICRO DOPPLER FOR VEHICLE	US 9,753,132	September 5, 2017
15/690,898	August 30, 2017	US	ON-DEMAND MULTI-SCAN MICRO DOPPLER FOR VEHICLE	US 10,073,171	September 11, 2018
15/204,003	July 7, 2016	US	VEHICULAR RADAR SENSING SYSTEM UTILIZING HIGH RATE RANDOM NUMBER GENERATOR	US 9,575,160	February 21, 2017
15/428,447	February 9, 2017	US	VEHICULAR RADAR SENSING SYSTEM UTILIZING HIGH RATE RANDOM NUMBER GENERATOR	US 9,720,073	August 1, 2017
15/662,409	July 28, 2017	US	VEHICULAR RADAR SENSING SYSTEM UTILIZING HIGH RATE TRUE RANDOM NUMBER GENERATOR	US 10,605,894	March 31, 2020
15/292,755	October 13, 2016	US	POWER CONTROL FOR IMPROVED NEAR-FAR PERFORMANCE OF RADAR SYSTEMS	US 9,753,121	September 5, 2017
15/690,899	August 30, 2017	US	POWER CONTROL FOR IMPROVED NEAR-FAR PERFORMANCE OF RADAR SYSTEMS	US 9,829,567	November 28, 2017
15/822,629	November 27, 2017	US	POWER CONTROL FOR IMPROVED NEAR-FAR PERFORMANCE OF RADAR SYSTEMS		
15/416,219	January 26, 2017	US	PMCW - PMCW INTERFERENCE MITIGATION	US 9,772,397	September 26, 2017
15/712,230	September 22, 2017	US	PMCW - PMCW INTERFERENCE MITIGATION	US 10,324,165	June 18, 2019
16/443,205	June 17, 2019	US	PMCW - PMCW INTERFERENCE MITIGATION		
15/491,193	April 19, 2017	US	SUCCESSIVE SIGNAL INTERFERENCE MITIGATION	US 9,806,914	October 31, 2017

15/791,495	October 24, 2017	US	SUCCESSIVE SIGNAL INTERFERENCE MITIGATION	US 10,142,133	November 27, 2018
15/492,159	April 20, 2017	US	DIGITAL FREQUENCY MODULATED CONTINUOUS WAVE RADAR USING HANDCRAFTED CONSTANT ENVELOPE MODULATION	US 9,945,935	April 17, 2018
15/953,826	April 16, 2018	US	DIGITAL FREQUENCY MODULATED CONTINUOUS WAVE RADAR USING HANDCRAFTED CONSTANT ENVELOPE MODULATION	US 10,191, 142	January 29, 2019
15/705,627	September 18, 2017	US	VIRTUAL RADAR CONFIGURATION FOR 2D ARRAY	US 9,869,762	January 16, 2018
15/871,175	January 15, 2018	US	VIRTUAL RADAR CONFIGURATION FOR 2D ARRAY	US 10,197,671	February 5, 2019
15/492,160	April 20, 2017	US	ADAPTIVE FILTERING FOR FMCW INTERFERENCE MITIGATION IN PMCW RADAR SYSTEMS	US 9,791,564	October 17, 2017
15/782,304	October 12, 2017	US	ADAPTIVE FILTERING FOR FMCW INTERFERENCE MITIGATION IN PMCW RADAR SYSTEMS	US 9,989,638	June 5, 2018
15/994,360	May 31, 2018	US	ADAPTIVE FILTERING FOR FMCW INTERFERENCE MITIGATION IN PMCW RADAR SYSTEMS	US 10,976,431	April 13, 2021
15/496,038	April 25, 2017	US	SOFTWARE DEFINED AUTOMOTIVE RADAR	US 10,261,179	April 19, 2019
16/383,950	April 15, 2019	US	SOFTWARE DEFINED AUTOMOTIVE RADAR		
15/496,313	April 25, 2017	US	SOFTWARE DEFINED AUTOMOTIVE RADAR SYSTEMS	US 9846228	December 19, 201
15/844,994	December 18, 2017	US	SOFTWARE DEFINED AUTOMOTIVE RADAR SYSTEMS	US 10,145,954	December 4, 2018
16/207,910	December 3, 2018	US	SOFTWARE DEFINED AUTOMOTIVE RADAR SYSTEMS	US 11,086,010	August 10, 2021
15/496,314	April 25, 2017	US	VEHICULAR RADAR SYSTEM WITH SELF-INTERFERENCE CANCELLATION	US 9,791,551	October 15, 2017
15/782,305	October 12, 2017	US	VEHICULAR RADAR SYSTEM WITH SELF-INTERFERENCE CANCELLATION	US 9,989,627	June 5, 2018
15/994,465	May 31, 2018	US	VEHICULAR RADAR SYSTEM WITH SELF-INTERFERENCE CANCELLATION	US 10,551,482	February 4, 2020
15/496,482	April 25, 2017	US	VEHICLE RADAR SYSTEM USING SHAPED ANTENNA PATTERNS		
15/598,664	May 18, 2017	US	VEHICLE RADAR SYSTEM USING SHAPED ANTENNA PATTERNS	US 10,573,959	February 25, 2020
15/496,039	April 25, 2017	US	VEHICLE RADAR SYSTEM WITH A SHARED RADAR AND COMMUNICATION SYSTEM	US 9,954,955	April 25, 2018
15/959,524	April 23, 2018	US	VEHICLE RADAR SYSTEM WITH A SHARED RADAR AND COMMUNICATION SYSTEM	US 10,536,529	January 14, 2020

15/689,273	August 29, 2017	US	REDUCED COMPLEXITY FFT BASED CORRELATION FOR AUTOMOTIVE RADAR	US 10,908,272	February 2, 2021
16/220,121	December 14, 2018	US	LFM SIGNAL CANCELLATION IN VARIABLE POWER MODE FOR RADAR APPLICATIONS		
16/259474	January 28, 2019	US	MILLIMETER WAVE AUTOMOTIVVE RADAR SYSTEMS		
15/892,764	February 9, 2018	US	RADAR DATA BUFFERING	US 9,971,020	May 15, 2018
15/978,457	May 14, 2018	US	RADAR DATA BUFFERING		
15/893,021	February 9, 2018	US	INCREASING PERFORMANCE OF A RECEIVE PIPELINE OF A RADAR WITH MEMORY OPTIMIZATION	US 10,866,306	December 15, 2020
15/892,865	February 9, 2018	US	PROGRAMMABLE CODE GENERATON FOR RADAR SENSING SYSTEMS	US 10,670,695	June 2, 2020
16740835	January 13, 2020	US	VEHICLE RADAR SYSTEM WITH A SHARED RADAR AND COMMUNICATION SYSTEM		
16259379	01-28-2019		DIGITAL FREQUENCY MODULATED CONTINUOUS WAVE RADAR USING HANDCRAFTED CONSTANT		
17189427	03-02-2021		ENVELOPE MODULATION PROGRAMMABLE CODE GENERATION FOR RADAR SENSING SYSTEMS		
17164966	02-02-2021		REDUCED COMPLEXITY FFT- BASED CORRELATION FOR AUTOMOTIVE RADAR		
17120424	12-14-2020		INCREASING PERFORMANCE OF A RECEIVE PIPELINE OF A RADAR WITH MEMORY OPTIMIZATION		
16884155	05-27-2020		PROGRAMMABLE CODE GENERATION FOR RADAR SENSING SYSTEMS	10935633	03-02-2021
17020162	09-14-2020		POWER CONTROL FOR IMPROVED NEAR-FAR PERFORMANCE OF RADAR SYSTEMS		
16815320	03-11-2020		METHOD AND APPARATUS FOR MITIGATION OF LOW FREQUENCY NOISE IN RADAR SYSTEMS		
16816899	03-12-2020		MULTI-CHIP SYNCHRONIZATION FOR DIGITAL RADARS		
17148004	01-13-2021		METHOD AND SYSTEM FOR INTEFRENCE MANAGEMENT FOR DIGITAL RADARS		
17147960	01-13-2021		METHOD AND SYSTEM FOR MULTI-CHIP OPERATION OF RADAR SYSTEMS		
17147914	01-13-2021		METHOD AND SYSTEM FOR ANTENNA ARRAY CALIBRATION FOR CROSS- COUPLING AND GAIN/PHASE VARIATIONS IN RADAR SYSTEMS		

16674543	11-05-2019	PULSE DIGITAL MIMO RADAR SYSTEM	
17189427	03-02-2021	PROGRAMMABLE CODE GENERATION FOR RADAR SENSING SYSTEMS	
63167347	03-29-2021	METHOD AND SYSTEM FOR MIMO RADAR SYSTEM	
63194267	05-28-2021	RADAR SYSTEM ARCHITECTURE FOR BEAMFORMING AND PHASED ARRAY OPERATION WITH VIRTUAL RECEIVER ALIGNMENT	
63140567	01-25-2021	A RADAR SYSTEM ARCHITECTURE WITH IMPROVED BEAMFORMING FOR TARGET DETECTION AND INTERFERENCE AVOIDANCE	
63141020	01-25-2021	DUAL-POLARIZED MIMO RADAR	

RECORDED: 09/25/2021