PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT6949000

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	RELEASE OF SECURITY INTEREST

CONVEYING PARTY DATA

Name	Execution Date
DEUTSCHE BANK AG NEW YORK BRANCH	10/01/2021

RECEIVING PARTY DATA

Name:	SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
Street Address:	5005 E. MCDOWELL RD.
Internal Address:	MD A700
City:	PHOENIX
State/Country:	ARIZONA
Postal Code:	85008

PROPERTY NUMBERS Total: 38

Property Type	Number
Application Number:	13355537
Application Number:	13433317
Application Number:	13433313
Application Number:	13727642
Application Number:	15062239
Application Number:	14583715
Application Number:	15606756
Application Number:	14964689
Application Number:	14984042
Application Number:	15188010
Application Number:	15423311
Application Number:	14976322
Application Number:	16447404
Application Number:	16144115
Application Number:	16203149
Application Number:	16453033
Application Number:	16455469
Application Number:	16583663
Application Number:	16454749

PATENT REEL: 057674 FRAME: 0203

506902176

Property Type	Number
Application Number:	16686773
Application Number:	16660370
Application Number:	16829358
Application Number:	16696623
Application Number:	16715028
Application Number:	16715047
Application Number:	16801406
Application Number:	17011075
Application Number:	63047091
Application Number:	17011106
Application Number:	63047110
Application Number:	17027913
Application Number:	17160915
Application Number:	17187251
Application Number:	17157039
Application Number:	16799404
Application Number:	16738200
Application Number:	16857102
Application Number:	16139339

CORRESPONDENCE DATA

Fax Number:

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 6027176338

Email: patents@onsemi.com

Correspondent Name: ONSEMI

Address Line 1: 5005 E. MCDOWELL RD.

Address Line 2: MD A700

Address Line 4: PHOENIX, ARIZONA 85008

NAME OF SUBMITTER:	BECKY NEWNAM	
SIGNATURE:	/Becky Newnam/	
DATE SIGNED:	10/01/2021	

Total Attachments: 5

source=2021.10.01 DB - SCI Partial Release#page1.tif source=2021.10.01 DB - SCI Partial Release#page2.tif source=2021.10.01 DB - SCI Partial Release#page3.tif source=2021.10.01 DB - SCI Partial Release#page4.tif source=2021.10.01 DB - SCI Partial Release#page5.tif

PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS

This Partial Release of Security Interest in Patents ("<u>Patent Release</u>") is made as of October 1, 2021, by **DEUTSCHE BANK AG NEW YORK BRANCH**, a German banking corporation (the "<u>Collateral Agent</u>") in favor of **SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC**, a Delaware limited liability company with an address at 5005 E. McDowell Road, MD A700, Phoenix, Arizona 85008 (the "Grantor").

WITNESSETH:

WHEREAS, (i) Grantor entered into a certain patent security agreement dated February 10, 2017 with Collateral Agent, notice of which was recorded on June 22, 2018 at the United States Patent and Trademark Office (the "USPTO") at Reel 046410, Frame 0933; (ii) Grantor entered into a certain patent security agreement dated July 26, 2017 with Collateral Agent, notice of which was recorded on November 17, 2017 at the USPTO at Reel 044481, Frame 0594; (iii) Grantor entered into a certain patent security agreement dated May 4, 2017 with Collateral Agent, notice of which was recorded on November 17, 2017 at the USPTO at Reel 044481, Frame 0541; (iv) Grantor entered into a certain patent security agreement dated August 12, 2019 with Collateral Agent, notice of which was recorded on August 23, 2019 at the USPTO at Reel 050156, Frame 0421; (v) Grantor entered into a certain patent security agreement dated October 18, 2018 with Collateral Agent, notice of which was recorded on November 1, 2018 at the USPTO at Reel 047399, Frame 0631; (vi) Grantor entered into a certain patent security agreement dated January 22, 2019 with Collateral Agent, notice of which was recorded on February 13, 2019 at the USPTO at Reel 048327, Frame 0670; (vii) Grantor entered into a certain patent security agreement dated October 15, 2019 with Collateral Agent, notice of which was recorded on November 26, 2019 at the USPTO at Reel 051145, Frame 0062; (viii) Grantor entered into a certain patent security agreement dated May 5, 2020 with Collateral Agent, notice of which was recorded on May 13, 2020 at the USPTO at Reel 052656, Frame 0842; (ix) Grantor entered into a certain patent security agreement dated February 13, 2020 with Collateral Agent, notice of which was recorded on October 16, 2020 at the USPTO at Reel 054090, Frame 0617; (x) Grantor entered into a certain patent security agreement dated August 10, 2020 with Collateral Agent, notice of which was recorded on August 27, 2020 at the USPTO at Reel 053613, Frame 0621; (xi) Grantor entered into a certain patent security agreement dated November 5, 2020 with Collateral Agent, notice of which was recorded on November 25, 2020 at the USPTO at Reel 054523, Frame 0378; and (xii) Grantor entered into a certain patent security agreement dated May 6, 2021 with Collateral Agent, notice of which was recorded on June 15, 2021 at the USPTO at Reel 056595, Frame 0177 (collectively, the "Patent Security Agreements").

Capitalized terms used but not otherwise defined herein have the meanings given to them in the Patent Security Agreements.

WHEREAS, the Grantor granted the Collateral Agent, under the terms of the applicable Patent Security Agreement, a continuing security interest (the "Security Interest") in favor of the Collateral Agent, in and to its Patent Collateral, including the Patents listed in Schedule 1.

1

WHEREAS, the Collateral Agent has agreed to terminate and release its security interest in the Patents listed in Schedule 1 as herein provided.

NOW, THEREFORE, in consideration of the foregoing and intending to be legally bound, the Collateral Agent, for itself and on behalf of the lenders in association with the Security Interest, hereby releases, terminates and discharges any and all of its interest in the Patents listed in Schedule 1 hereto, and assigns, transfers and conveys to the Grantor any interest in such intellectual property, including the Security Interest.

[Remainder of this page intentionally left blank; signature page follows]

IN WITNESS WHEREOF, the Collateral Agent has caused this Patent Release to be executed as of the day and year first written above.

DEUTSCHE BANK AG NEW YORK BRANCH,

as Collateral Agent

By:

Philip Tancorra

Name: Vice President

Title: philip.tancorra@db.com

212-250-6576

By:

Suzan Onal

Name: Vice President

suzan.onal@db.com 212-250-3174

SCHEDULE 1

Title	Country	Application No.	Patent No.
HIGH CONVERSION GAIN HIGH	US	13/355537	8629708
SUPPRESSION BALANCED CASCODE			
FREQUENCY QUADRUPLER			
ELECTRONIC PACKAGE FOR MILLIMETER	US	13/433317	9219041
WAVE SEMICONDUCTOR DIES			
HIGH FREQUENCY TRANSITION	US	13/433313	8912634
MATCHING IN AN ELECTRONIC PACKAGE			
FOR MILLIMETER WAVE SEMICONDUCTOR			
DIES			
SYSTEM, A METHOD AND A COMPUTER	US	13/727642	8988119
PROGRAM PRODUCT FOR ELECTRONIC			
SUB-INTEGER FREQUENCY DIVISION			
MULTIPLE WAVEGUIDES EMBEDDED	US	15/062239	9882258
AROUND THE PERIPHERY OF A CHIP TO			
PROVIDE SIMULTANEOUS DIRECT			
TRANSITIONS BETWEEN THE CHIP AND			
THE MULTIPLE WAVEGUIDES			
A DIRECT CHIP TO WAVEGUIDE	US	14/583715	9564671
TRANSITION INCLUDING RING SHAPED			
ANTENNAS DISPOSED IN A THINNED			
PERIPHERY OF THE CHIP			
DIRECT TRANSITION FROM A WAVEGUIDE	US	15/606756	9893428
TO A BURIED CHIP			
DIRECT TRANSITION FROM A WAVEGUIDE	US	14/964689	9692135
TO A BURIED CHIP			
BALUN BASED PHASE INVERTER USING	US	14/984042	9548704
REPLICA LOAD			
SYSTEM AND METHOD FOR CONTROLLING	US	15/188010	9602050
A VOLTAGE CONTROLLED OSCILLATOR			
SYSTEM AND METHOD FOR CONTROLLING	US	15/423311	9787249
A VOLTAGE CONTROLLED OSCILLATOR			
SYSTEM AND METHOD FOR CONTROLLING	US	14/976322	9385729
A PHASE LOCK LOOP			
Current-mode logic latches for a PVT-robust mod	US	16/447404	10566957
3 frequency divider			
ACTIVE REFLECTOR WITH OSCILLATION	US	16/144115	
INHIBITION			
RECONFIGURABLE MIMO RADAR	US	16/203149	11047956
AMPLIFIERS SUITABLE FOR MM-WAVE	US	16/453033	
SIGNAL SPLITTING AND COMBINING			11057011
SWITCHABLE FMCW/PMCW RADAR	US	16/455469	
TRANSCEIVER			
MULTI-INPUT DOWNCONVERSION MIXER	US	16/583663	11105891
DUAL-MODE FREQUENCY MULTIPLIER	US	16/454749	10686474
MINIMIZING PHASE NOISE IN FMCW	US	16/686773	
RADAR AND DETECTING RADAR HOUSING			
COATING			
RADAR ARRAY PHASE SHIFTER	US	16/660370	
VERIFICATION			
MIMO RADAR SYSTEM WITH DUAL MODE	US	16/829358	10958323
OUTPUT POWER AMPLIFICATION			

CHIRP SEQUENCE SYNTHESIS IN A DYNAMIC DISTRIBUTION NETWORK	US	16/696623	10911094
CALIBRATING ARRAY ANTENNAS BASED	US	16/715028	
ON SIGNAL ENERGY DISTRIBUTION AS A	03	10//13028	
FUNCTION OF VELOCITY			
CALIBRATING ARRAY ANTENNAS	US	16/715047	
BASED ON SIGNAL ENERGY DISTRIBUTION			
AS A FUNCTION OF ANGLE			
MIMO RADAR WITH RECEIVE ANTENNA	US	16/801406	10812154
MULTIPLEXING			
PHASE SHIFTER SELF-TEST	US	17/011075	
PHASE SHIFTER SELF-TEST	US	63/047091	
SPLIT-STEER AMPLIFIER WITH	US	17/011106	
INVERTIBLE OUTPUT			
SPLIT-STEER AMPLIFIER WITH	US	63/047110	
INVERTIBLE OUTPUT			
FAST CHIRP SYNTHESIS VIA SEGMENTED	US	17/027913	
FREQUENCY SHIFTING			
MIMO CHANNEL EXTENDERS WITH	US	17/160915	
ASSOCIATED SYSTEMS AND METHODS			
INTEGRATED ELECTROMAGNETIC-	US	17/187251	
ACOUSTIC SENSOR AND SENSING			
CENTRALIZED OCCUPANCY DETECTION	US	17/157039	
SYSTEM			
HIGH RESOLUTION MIMO RADAR SYSTEM	US	16/799404	
ENVELOPE REGULATION IN A	US	16/738200	
FREQUENCY-MODULATED CONTINUOUS-			
WAVE RADAR SYSTEM			
ENHANCED RANGE-VELOCITY FINDING IN	US	16/857102	
FREQUENCY-MODULATED CONTINUOUS			
WAVE RADAR			
METHODS AND APPARATUS FOR IN-PLACE	US	16/139339	10783216
FAST FOURIER TRANSFORM	1		1

RECORDED: 10/01/2021