507052835 12/30/2021

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT7099673

SUBMISSION TYPE:	NEW ASSIGNMENT
NATURE OF CONVEYANCE:	SECURITY INTEREST

CONVEYING PARTY DATA

Name	Execution Date
OMAX CORPORATION	12/30/2021

RECEIVING PARTY DATA

Name:	BANK OF AMERICA, N.A.
Street Address:	900 W. TRADE STREET
Internal Address:	NC1-026-06-09 (MACLEGAL)
City:	CHARLOTTE
State/Country:	NORTH CAROLINA
Postal Code:	28255

PROPERTY NUMBERS Total: 4

Property Type	Number
Application Number:	17207515
Application Number:	17127736
Application Number:	17023227
Application Number:	16942539

CORRESPONDENCE DATA

Fax Number: (617)502-5002

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 617-248-5000

Email: PatentDocket@choate.com

Correspondent Name: CHOATE HALL & STEWART LLP-PATENT DOCKET

Address Line 1: TWO INTERNATIONAL PLACE
Address Line 4: BOSTON, MASSACHUSETTS 02110

ATTORNEY DOCKET NUMBER: 2005936-0015 OMAX

NAME OF SUBMITTER: SAMUEL POLIO, PHD

SIGNATURE: /Samuel R. Polio/

DATE SIGNED: 12/30/2021

Total Attachments: 7

source=BofA - Omax - Patent Security Agreement#page1.tif

PATENT REEL: 058510 FRAME: 0840

507052835

NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS

December 30, 2021

United States Patent and Trademark Office

Ladies and Gentlemen:

Please be advised that pursuant to the Second Amended and Restated Security and Pledge Agreement dated as of December 30, 2021 (as amended, modified, extended, restated, renewed, replaced, or supplemented from time to time, the "Agreement") by and among the Grantors party thereto (each a "Grantor" and collectively, the "Grantors") and Bank of America, N.A., as Collateral Agent (the "Collateral Agent") for the Secured Parties referenced therein, the undersigned Grantors have granted a continuing security interest in and continuing lien upon the patents and patent applications shown on Schedule 1 attached hereto to the Collateral Agent for the ratable benefit of the Secured Parties.

The undersigned Grantors and the Collateral Agent, on behalf of the Secured Parties, hereby acknowledge and agree that the security interest in the foregoing patents and patent applications (a) may only be terminated in accordance with the terms of the Agreement and (b) is not to be construed as an assignment of any patent or patent application.

[SIGNATURE PAGES FOLLOW]

OMAX CORPORATION

By: Curly July Name: Carolyn Maloney Title: Treasurer

HYPERTHERM, INC.

Name: Robert Masson

Title: Executive Vice President and

Chief Financial Officer

ACTIVE/114195623-2

[Signature Page to Patent Security Agreement]

BANK OF AMERICA, N.A.,

as Collateral Agent

Name: John Lynch

Title: Senior Vice President

Schedule 1

Patents and Patent Applications **Hypertherm, Inc.**

Title	Country	Serial Number	Filed Date	Patent Number	Issue Date	Status
CYLINDER FOR A LIQUID JET PUMP WITH MULTI-FUNCTIONAL INTERFACING LONGITUDINAL ENDS	US	17/216194	2021-03- 29			Pending
FREELY CLOCKING CHECK VALVE	SU	17/213043	2021-03- 25			Pending
HIGH-PRESSURE SEAL FOR A	SN	17/210068	2021-03- 23			Pending
Systems and Methods for Determining Characteristics of a	<u>-</u>	17/205821	2021-03-			
Workpiece in a Plasma Arc Processing System	Ć	1720002	18			
HIGH PRESSURE LIQUID-JET SEAL	SN	17/203132	2021-03- 16			Pending
Cathode Seated Liquid Coolant Tube for a Plasma Arc Cutting System	US	17/203610	2021-03- 16			Pending
Consumable Cartridge For A Plasma Arc Cutting System	US	17/164106	2021-02- 01			Pending
Swirl Ring and Contact Element for a Plasma Arc Torch Cartridge	US	17/146090	2021-01- 11			Pending
NOZZLES FOR LIQUID COOLED PLASMA ARC CUTTING TORCHES WITH CLOCKING-INDEPENDENT PASSAGES	US	17/144845	2021-01- 08			Pending
LIQUID JET CUTTING HEAD SENSOR SYSTEMS AND	US	17/125819	2020-12- 17			Pending
CONSUMABLE DESIGNS FOR A PLASMA ARC TORCH	SU	16/952952	2020-11- 19			Pending

Controlling Plasma Arc Torches and Related Systems and Methods	Highly Positioned Laser Processing Nozzle	Systems and Methods for Cloud- Based Expertise Delivery via APIs	Motion Distribution in Robotic Systems	Cartridge for a Liquid-Cooled Plasma Arc Torch	ADJUSTABLE LENGTH CONSUMABLES FOR A LIQUID- COOLED PLASMA ARC TORCH	Configuring signal devices in thermal processing systems	Computer-implemented methods and systems for generating material processing robotic tool paths	Locking Mechanisms in a Material Processing System	Cost Effective Cartridge for a Plasma Arc Torch	a Arc Torches and and Methods	Systems and Methods for Separating Consumables Under Pressure in a Plasma Arc Torch
S	US	US	US	US	US	US	US	US	US	US	US
16/737574	16/742699	16/785027	16/787418	16/795752	16/840973	16/892736	16/909512	16/911917	17/036921	17/080089	16/952806
2020-01- 08	2020-01- 14	2020-02- 07	2020-02- 11	2020-02- 20	2020-04- 06	2020-06- 04	2020-06- 23	2020-06- 25	2020-09- 29	2020-10- 26	2020-11- 19
						US11087100B2	US10933529B2				
						2021-08- 10	2021-03- 02				
Pending	Pending	Pending	Pending	Pending	Pending	Patented	Patented	Pending	Pending	Pending	Pending

Patents and Patent Applications OMAX CORPORATION

Title	Country Serial	Serial	Filed	Patent	Issue	Status
		e T	Date	Number	Date	
GENERATING OPTIMIZED TOOL			50 rc0c			
PATHS AND MACHINE COMMANDS	SU	17/207515	2021-03-			Pending
FOR BEAM CUTTING TOOLS			<u>ا</u>			
MOTORIZED SYSTEMS AND						
ASSOCIATED METHODS FOR			2020 12			
CONTROLLING AN ADJUSTABLE	SU	17/127736	18			Pending
DUMP ORIFICE ON A LIQUID JET			ō			
CUTTING SYSTEM						
METHOD AND APPARATUS FOR						
MONITORING PARTICLE LADEN			2020 00			
PNEUMATIC ABRASIVE FLOW IN	SU	17/023227	2020-09-			Pending
AN ABRASIVE FLUID JET CUTTING			ō			
SYSTEM						
MEASURING ABRASIVE FLOW	SU	16/942539	2020-07-			Pendina
RATES IN A CONDUIT	0	10,012,000	29			

-Schedule-Page 7 -

RECORDED: 12/30/2021