507164160 03/07/2022

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

EPAS ID: PAT7211005

SUBMISSION TYPE:

NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT
CONVEYING PARTY DATA
Name Execution Date
STUART JOHN INGLIS 08/19/2019
TIMOTHY KELLY DAWSON 08/19/2019
SHERIDAN JOHN LAMBERT 08/19/2019
RECEIVING PARTY DATA
Name: NYRIAD LIMITED
Street Address: LEWIS' CNR DICK & ALPHA STREETS
City: CAMBRIDGE
State/Country: NEW ZEALAND
Postal Code: 3434
PROPERTY NUMBERS Total: 1
Property Type Number
Application Number: 16544605

CORRESPONDENCE DATA
Fax Number:

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 2:
Address Line 4:

9727312288
dallaspatents@dfw.conleyrose.com
CONLEY ROSE, P.C.

4965 PRESTON PARK BOULEVARD
SUITE 195E

PLANO, TEXAS 75093

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

ATTORNEY DOCKET NUMBER:

4592-01100

NAME OF SUBMITTER:

MICHAEL W. PIPER

SIGNATURE:

/Michael W. Piper/

DATE SIGNED:

03/07/2022

Total Attachments: 47

source=4592-01100 NYR040P13468US01 Assignment#page1 .tif
source=4592-01100 NYR040P13468US01 Assignment#page?2.tif
source=4592-01100 NYR040P13468US01 Assignment#page3.tif

507164160

PATENT
REEL: 059335 FRAME: 0616

source=4592-01100 NYR040P13468US01 Assignment#page4.tif

source=4592-01100 NYR040P13468US01 Assignment#page5.tif

source=4592-01100 NYR040P13468US01 Assignment#page6.tif

source=4592-01100 NYR040P13468US01 Assignment#page?.tif

source=4592-01100 NYR040P13468US01 Assignment#page8.tif

source=4592-01100 NYR040P13468US01 Assignment#page9.tif

source=4592-01100 NYR040P13468US01 Assignment#page10.tif
source=4592-01100 NYR040P13468US01 Assignment#page11.tif
source=4592-01100 NYR040P13468US01 Assignment#page12.tif
source=4592-01100 NYR040P13468US01 Assignment#page13.tif
source=4592-01100 NYR040P13468US01 Assignment#page 14.tif
source=4592-01100 NYR040P13468US01 Assignment#page15.tif
source=4592-01100 NYR040P13468US01 Assignment#page16.tif
source=4592-01100 NYR040P13468US01 Assignment#page17.tif
source=4592-01100 NYR040P13468US01 Assignment#page18.tif
source=4592-01100 NYR040P13468US01 Assignment#page19.tif
source=4592-01100 NYR040P13468US01 Assignment#page20.tif
source=4592-01100 NYR040P13468US01 Assignment#page21 .tif
source=4592-01100 NYR040P13468US01 Assignment#page22.tif
source=4592-01100 NYR040P13468US01 Assignment#page23.tif
source=4592-01100 NYR040P13468US01 Assignment#page24.tif
source=4592-01100 NYR040P13468US01 Assignment#page25.tif
source=4592-01100 NYR040P13468US01 Assignment#page26.tif
source=4592-01100 NYR040P13468US01 Assignment#page27 .tif
source=4592-01100 NYR040P13468US01 Assignment#page28.tif
source=4592-01100 NYR040P13468US01 Assignment#page29.tif
source=4592-01100 NYR040P13468US01 Assignment#page30.tif
source=4592-01100 NYR040P13468US01 Assignment#page31 .tif
source=4592-01100 NYR040P13468US01 Assignment#page32.tif
source=4592-01100 NYR040P13468US01 Assignment#page33.tif
source=4592-01100 NYR040P13468US01 Assignment#page34.tif
source=4592-01100 NYR040P13468US01 Assignment#page35.tif
source=4592-01100 NYR040P13468US01 Assignment#page36.tif
source=4592-01100 NYR040P13468US01 Assignment#page37 .tif
source=4592-01100 NYR040P13468US01 Assignment#page38.tif
source=4592-01100 NYR040P13468US01 Assignment#page39.tif
source=4592-01100 NYR040P13468US01 Assignment#page40.tif
source=4592-01100 NYR040P13468US01 Assignment#page41 .tif
source=4592-01100 NYR040P13468US01 Assignment#page42.tif
source=4592-01100 NYR040P13468US01 Assignment#page43.tif
source=4592-01100 NYR040P13468US01 Assignment#page44.tif
source=4592-01100 NYR040P13468US01 Assignment#page45.tif
source=4592-01100 NYR040P13468US01 Assignment#page46.tif
source=4592-01100 NYR040P13468US01 Assignment#page47.tif

PATENT
REEL: 059335 FRAME: 0617

PARTIES

Stuart John Inglis, a New Zealand citizen care of Nyriad Limited, LEWIS’, Cnr Dick & Alpha Streets, Cambridge,
3434, New Zealand

Sheridan John Lambert, a New Zealand citizen care of Nyriad Limited, LEWIS’, Cnr Dick & Alpha Streets,
Cambridge, 3434, New Zealand

Timothy Kelly Dawson, a New Zealand citizen care of Nyriad Limited, LEWIS’, Cnr Dick & Alpha Streets,
Cambridge, 3434, New Zealand

(each individually the Assignor)

Nyriad Limited, a New Zealand company having its registered office at LEWIS’, Cnr Dick & Alpha Streets,
Cambridge, 3434, New Zealand

(the Assignee)

INTRODUCTION

A. The Assignor has devised or contributed to the Invention during employment by or under a commission from
the Assignee.

B. The Assignor acknowledges that the Assignee is or should be the legal and beneficial owner of the Invention
and the Intellectual Property Rights.

C. The Assignor has agreed to assign the Invention and the Intellectual Property Rights to the Assignee subject
to the terms and conditions of this assignment.

COVENANTS
1. DEFINITIONS
11 In this assignment, including the Introduction, the following terms will have the following meanings:

Copyright means:

(a) all copyrights and all rights in the nature of copyright, in any original artistic, literary and other works;
and

(b) any database rights,

comprising or relating to the Invention and/or the Design, that exist or may in the future exist anywhere in
the world;

Design means the designs described in the Schedule (as improved, modified, developed or amended at any
time before execution of this assignment by the Assignor);

Design Rights means all rights in and to the designs to be applied to articles of, or relating to, the Invention
and/or the Design, that exist or may in the future exist anywhere in the world including, but not limited to:

(a) the right to apply for and obtain protection for such designs in relation to such articles and the rights
conferred by such protection when granted;

Assignment of Intellectual Property Rights ID10001NZ00 1

PATENT
REEL: 059335 FRAME: 0619

(b) the right to claim priority under any international convention or agreement, including the Paris
Convention (as amended), from any such application referred to in paragraph (a) above;

(c) all unregistered design rights arising from the Invention and/or the Design; and

(d) all semi-conductor topography or integrated circuit layout rights arising from the Invention and/or the
Design;

Improvement means an improvement in, modification of, or addition to:

(a) the Invention and/or the Design;

(b) any original artistic, literary or other works relating to the Invention and/or the Design; or
(c) any designs to be applied to articles of or relating to the Invention and/or the Design,

devised, created, designed, contributed to or acquired by the Assignor, while the Assignor is employed by or
under any commission from the Assignee;

Intellectual Property Rights means all industrial and intellectual property rights (whether protectable by
statute, at common law or in equity) in and to the Invention and/or the Design that exist or may in the future
exist anywhere in the world and whether or not registered or registrable, including the Patent Rights,

Copyright and Design Rights;

Invention means any and all inventions described in the Schedule (as improved, modified, developed or
amended at any time before execution of this assignment by the Assignor);

Patent Applications means the patent applications identified in the Schedule; and

Patent Rights means all patent rights in and to the Invention and/or the Design that exist or may in the future
exist anywhere in the world including, but not limited to:

(a) the right to apply for and obtain patents or other similar forms of protection for the Invention and/or
the Design in any country;

(b) the right to claim priority under any international convention or agreement, including the Paris
Convention (as amended) from any application referred to in paragraph (a) above;

(c) all rights conferred by any patents or similar forms of protection obtained from any applications
referred to in paragraphs (a) and (b) above and

(d) the Patent Applications together with:
(i) any patents that may be granted pursuant to the Patent Applications; and
(ii) any future patent(s) and patent application(s) that are based on or derive priority from or have
equivalent claims to the Patent Applications in any country in the world (including divisionals,

continuations, continuations in part, patents of addition, supplementary protection certificates,
reissues, extensions, innovation patents, utility models and petty patents).

Assignment of Intellectual Property Rights ID10001NZ00 2

PATENT

REEL: 059335 FRAME: 0620

21

2.2

2.3

24

31

3.2

ASSIGNMENT

Assignment: In consideration of the sum of NZ$1.00 paid by the Assignee to the Assignor, the receipt and
sufficiency of which is hereby acknowledged by the Assignor, the Assignor assigns to the Assignee absolutely
all of the Assignor’s rights, title and interest in and to:

(a) the Invention;

(b) the Design; and

(c) the Intellectual Property Rights.

Rights of action: The assignments effected by clause 2.1 include:

(a) the assignment and transfer of:

(i) the right to sue for damages for infringement or misuse of the Intellectual Property Rights; and

(ii) all other rights of action, powers, legal and equitable remedies, and benefits arising from
ownership of the Intellectual Property Rights,

in relation to all causes of action arising before, on or after the date of this assignment.
Moral rights: The Assignor:

(a) waives all of the Assignor’s moral rights arising from the Invention and the Design throughout the
world; and

(b) consents to all uses and treatments of the Invention, the Design, and the Intellectual Property Rights,
to the extent that the Assignor may lawfully do so.
Authority to add application particulars:

(a) The Assignor acknowledges that it is the intention of the Assignee to file one or more patent and/or
design applications in various countries around the world in respect of the Invention and/or the Design.
The Assignor hereby irrevocably authorises the Assignee or its agent to add in the Schedule particulars
of any patent or design applications in respect of the Invention or Design that may be filed following
the date of execution by the Assignor of this assignment.

(b) The Assignor agrees and acknowledges that any addition under clause 2.4(a) will be valid and binding
upon the Assignor as if the addition had been made prior to execution by the Assignor of this
assignment.

CONFIDENTIALITY

Confidentiality obligations: The Assignor agrees to treat all information relating to the Invention and/or the
Design and the Intellectual Property Rights as secret and confidential. The Assignor will not use, disclose or
publish such information without the Assignee’s prior written consent.

Exceptions to confidentiality: The obligations of confidentiality in clause 3.1 do not extend to any
information that is or becomes generally available to the public through no act or default of the Assignor.

However, the Assignor will promptly advise the Assignee if the Assignor becomes aware of any actual or
potential loss of secrecy or confidentiality of the information referred to in clause 3.1.

Assignment of Intellectual Property Rights ID10001NZ00 3

PATENT

REEL: 059335 FRAME: 0621

4.1

4.2

5.1

5.2

IMPROVEMENTS

Disclosure: The Assignor will immediately disclose to the Assignee all Improvements as and when such
Improvements arise.

Ownership of Improvements:

(a) The Assignee will exclusively own all Improvements and all intellectual property rights in those
Improvements.

(b) If any Improvements or intellectual property rights in those Improvements are not owned by the
Assignee on their creation but are owned by the Assignor, the Assignor will hold those Improvements

and intellectual property rights on trust for the Assignee.

(c) The Assignor will at any time reasonably requested by the Assignee, and at the Assignee’s expense,
appropriately execute all documents necessary to:

(i) confirm the Assignee’s ownership of the Improvements and all intellectual property rights in
those Improvements; or

(ii) file, prosecute and defend any protective application for the Improvements and all intellectual
property rights in those Improvements.

EXECUTION OF DOCUMENTS AND FURTHER ACTIONS

Further actions: If requested by the Assignee the Assignor will, at the Assignee’s expense, execute all

documents, give such assistance and do all other acts and things that the Assignee considers necessary or

desirable to:

(a) apply for and obtain, or (if the Assignee thinks fit) join with the Assignee in applying for and obtaining,
protection of the Intellectual Property Rights. The Assignor acknowledges that all rights, title and
interest in and to such applications and any granted protection will be owned by the Assignee;

(b) vest in the Assignee ownership of any protection referred to in paragraph (a) above;

(c) amend, maintain, or renew any protection referred to in paragraph (a);

(d) enforce any of the Intellectual Property Rights (including by obtaining any remedies that may be
available for infringement of the Intellectual Property Rights);

(e) defeat any challenge to the validity of any of the Intellectual Property Rights;

(f) defend any opposition proceedings brought by a third party in relation to the Intellectual Property
Rights;

(g) conduct opposition proceedings regarding any application for intellectual property protection by a
third party, where such application may adversely affect the Assignee’s ability to exploit the
Intellectual Property Rights; and

(h) otherwise implement and carry out the Assignor’s obligations under this assignment.

Recordal: The Assignor authorises and requests the Commissioner of Patents and Trademarks of the United

States, and any official of any other country or state, whose duty it is to issue patents, to issue the same to
the Assignee in accordance with this assignment.

Assignment of Intellectual Property Rights ID10001NZ00 4

PATENT

REEL: 059335 FRAME: 0622

5.3

6.1

6.2

6.3

6.4

Power of attorney: The Assignor irrevocably appoints the Assignee as the Assignor’s attorney with full power
to act in the Assignor’s name and on the Assignor’s behalf to do any of the things required to be done by the
Assignor under clause 5.1 and 5.2:

(a) to the extent that the Assignor fails to do any of those things within a reasonable time after being
called upon to do so by the Assignee; or

(b) if the Assignee is unable, after making reasonable and proper inquiries, to locate the Assignor to ask
the Assignor to do those things.

GENERAL
Assignment binding and delivered: This assignment:

(a) is intended to be immediately and unconditionally binding upon the Assignor as soon as the Assignor
executes and delivers this assignment; and

(b) without limiting any other mode of delivery, will be delivered by the Assignor immediately upon the
earlier of:

(i) physical delivery of an original form of this assignment executed by the Assignor; or

(ii) transmission (whether by facsimile or email) of a copy of this assignment executed by the
Assignor,

to the Assignee or its solicitor, patent attorney, or agent.

Waiver: No failure or delay by any party in exercising any right, power or privilege under this assignment will
operate as a waiver of such right, power or privilege, nor will any single or partial exercise preclude any other
or further exercise of any right, power or privilege under this assignment.

Counterparts:

(a) This assignment may be executed in any number of counterparts (including facsimile or electronically
scanned copies) all of which, when taken together, will constitute one and the same instrument.

(b) A party may enter into this assignment by executing any counterpart. The parties acknowledge that
this assignment may be executed on the basis of an exchange of facsimile or electronically scanned
copies and confirm that their respective execution of this assignment by such means will be a valid
and sufficient execution.

Governing law: The formation, validity, construction and performance of this assignment will be governed
by and construed in accordance with the laws of New Zealand. The parties irrevocably agree that the Courts
of New Zealand will have non-exclusive jurisdiction to hear and determine all disputes under or in connection
with this assignment. The parties irrevocably waive any objections to New Zealand as the forum for
proceedings on the grounds of forum non-conveniens or any similar grounds.

Assignment of Intellectual Property Rights ID10001NZ00 5

PATENT

REEL: 059335 FRAME: 0623

SIGNED A5 A DEED

Stuart John Inglis

Date

in the presence of

orgrrrooes

Assignment of intellectual Property Rights 10001NZ00

PATENT
REEL: 059335 FRAME: 0624

Timothy Kelly Dawson:

in the presence of

Witness”sighature

rgeare

. N

& y
Yooy oy
A

e,

e

e -~
s

By

~: N
8

os,

Witness name

¥ b
d i§

Y

Witness

Witness occupation

Assignment of intellectual Properiy Rights ID10ODTNZO0
PATENT
REEL: 059335 FRAME: 0625

sheridan Jehn Lanhert:

in the presence of

£ o
. ,:‘l» A - { =)
:
{59 &

AN e T
Witnesyrnane o

x Y B

& ; \\ t‘/ H Sy \“. Y
I Ll e MY e
\\w\‘{" ™y & Q P N 'X\ 3 \3*_« 13 \.”E g'i..-}“ \ ‘\.-\\. - »
Witness address ’ ¥

Witness occupation

Asstgnment of intellectual Propsriy Righis XTO00INIGO

PATENT
REEL: 059335 FRAME: 0626 .

SCHEDULE

INVENTION
The invention described in the attached specification.

This is filed as one or more patent applications according to the following particulars (to be completed under clause
2.4):

Country Number Filing date

Assignment of Intellectual Property Rights ID10001NZ00 9

PATENT
REEL: 059335 FRAME: 0627

10

15

20

25

PERSISTENT STORAGE DEVICE MANAGEMENT

FIELD

[0001] This relates to persistent storage device management.

BACKGROUND

[0002] Data may be stored on a persistent storage device, such as a hard drive,
which has a number of blocks. A request to write data to the drive may specify a
physical location (such as a block) of the persistent storage device at which to write
the data. A request to read data from the drive may specify a physical location

(such as a block) of the persistent storage device from which to read the data.

SUMMARY

[0003] In a first example embodiment, there is provided a method comprising:
receiving a request to write data at a virtual location; writing the data to a physical
location on a persistent storage device; and recording a mapping from the virtual
location to the physical location; wherein the physical location corresponds to a

next free block in a sequence of blocks on the persistent storage device.

BRIEF DESCRIPTION

[0004] The description is framed by way of example with reference to the
drawings which show certain embodiments. However, these are provided for

illustration only.

[0005] Figure 1 shows an example approach for handling a write request.

[0006] Figure 2 shows a worked example of the approach of Figure 1.

[0007] Figure 3 shows an example approach for handling a write request where

data is to be stored in stripes.

[0008] Figures 4A and 4B show a worked example of the approach of Figure 3.

[0009] Figure 5 shows an example approach for handling a read request.

PATENT

REEL: 059335 FRAME: 0628

10

15

20

[0010] Figure 6 shows an example approach for handling block reconstruction of

a missing block.

[0011] Figure 7 shows an example approach for handling an update request.

[0012] Figure 8 shows an example approach for garbage collection.

[0013] Figure 9 shows a worked example of the approach of Figure 8.

[0014] Figure 10 shows a block diagram of an example computer system 900.

DETAILED DESCRIPTION

[0015] Insome embodiments, thereis a provided a method for a driver to receive
a request to write data at a virtual location, writing data at the next free physical
location in sequence, and recording a mapping between the virtual and physical
locations. By always storing data on a next free block on the disk, this can be used
to avoid a disk going through a read-modify-write cycle. This can improve

throughput and write speed.

[0016] In this case, “next” may refer to the next in a sequence of blocks. The
sequence may be determined based on the configuration of the particular
persistent storage device. For example, “next” may be based, at least in part, on

the block having the lowest expected seek time from the current block.

[0017] This method may be implemented via a driver. The driver may provide a
functionality to write data, read data, and update data. In this way, the driver
provides all the necessary functionality for a block device, such as a persistent
storage device. In particular, the driver may be a userspace application which
receives system calls from a kernel module and in turn writes data to the

underlying persistent devices.

PATENT

REEL: 059335 FRAME: 0629

10

15

20

25

Writing
[0018] Figure 1 shows an example approach for the driver handling a write

request to a persistent storage device, such as a hard drive. This may be

implemented in a driver running on a system.

[0019] At step 101, a request is received to write data at a first location of the
persistent storage device. The request may be received by a function call of the
driver. The request may comprise the data or may comprise a pointer to where the

data may be retrieved from (for example, a memory address).

[0020] The first location is a virtual location, since it may not correspond to a
physical location on a persistent device. However, the first location is structured as
if it were a physical location, since the redirection by the driver is hidden from a
user of the driver. The request may therefore comprise an identifier of the first
location, such as a block index and disk identifier. A subsequent request to read
the data from the virtual location should therefore return the same data

irrespective of the physical location of the data.

[0021] Insome cases, the data may be part of a stream of data. A request to write
data is therefore received (or treated as being received) for each block in the

stream.

[0022] At step 102, the data is written to a second location. The second location
is a physical location which corresponds to a block on the persistent storage device.
However, this may be different from any block indicated by the virtual location.

The virtual location may not be correlated with the physical location.

[0023] In particular, the physical location may be a head of the persistent storage
device, that is, the next free block of the persistent storage device or a sequence
of next free blocks of the persistent storage device. This can be recorded at the
persistent storage device by a head counter which records the index of the next
free block of the persistent storage device. A free block is a block in which no data

is stored, or if data is stored, there is no need for that data to be retrievable. In this

PATENT

REEL: 059335 FRAME: 0630

10

15

20

25

4

way, the block is appended to the sequence of blocks which have already been

written.

[0024] By writing to a next free block {which, by definition, is free), there is no
need to determine whether the data at the indicated block has changed. This
avoids the need to initially read from the block, and therefore can result in

improved performance.

[0025] Moreover, because the physical location need not be correlated with the
virtual location, there is no need for the requestor (such as a program) to
determine where the next free block is to achieve this. The function of a location
as a label to retrieve data is decoupled from the function of a location as a
mechanism for managing a persistent storage device. These functions are

performed by the virtual location and the physical location respectively.

[0026] At step 103, a checksum for the data at the block indicated by the physical
location is calculated. The checksum may be a cryptographic hash. This can be used
to verify that data subsequently retrieved from the block is the same as the data
stored at the block. In some cases, the checksum may comprise parity information

which can correct some errors in the block.

[0027] At step 104, metadata for the persistent storage device is updated.

[0028] The metadata comprises a mapping from the virtual location to the
physical location. This links the virtual location (which the requestor or another
process can use to indicate the intended data to be retrieved) to the physical
location (where the actual data is stored). The metadata further comprises the

checksum for each block.

[0029] The metadata may be stored on the persistent storage device. For
example, this may be a predetermined part of the persistent storage device.
Additionally or alternatively, the metadata is stored on a separate persistent

storage device which may be optimized for use as a cache.

PATENT

REEL: 059335 FRAME: 0631

10

15

20

25

[0030] In some cases, updating metadata for the block comprises determining if
metadata for the block indicated by the first location already exists. If it exists, the
original metadata may be updated, and replacement metadata inserted (or the
new metadata overwritten on the original metadata). This can prevent the
metadata having multiple entries for the same data. The physical location
corresponding to the previous location may be marked as dirty, indicating that it is

free to be written over.

[0031] At step 105, the head counter is updated to reflect the next free block.

[0032] This may comprise incrementing the head counter to the next block in the
sequence of blocks of the persistent storage device (or wrapping around to the
first block, once the final block has been reached). However, in some cases, certain
blocks may be skipped (for example, if they correspond to faulty portions of the

persistent storage device or if the persistent storage device is missing).

[0033] This may involve calculating a tail. The tail may correspond to the earliest
block in the sequence of blocks before the head where there has been data
written. The earliest block may not have the lowest index. If the incremented head
counter is equal to the tail, this indicates that the nominal next free block indicated
by the head counter is actually not free: it has data written to it. In this case, a
notification, warning, or error may be raised and/or a garbage collection process
may be performed. An example garbage collection process is shown with reference
to Figure 8. Until the garbage collection process is completed, the driver may

refuse to handle any more requests to write data.

[0034] Alternatively, the tail may be the location at which data could be written

sequentially. In some cases, this may correspond to a garbage collected region.

[0035] Insome cases, the tail may be recorded as a tail counter which is updated

based on a garbage collection procedure.

[0036] This approach provides a high-performance approach to writing data to

persistent storage device, since the read—modify—write cycle of some conventional

PATENT

REEL: 059335 FRAME: 0632

10

15

20

25

6

write approaches may be avoided. In addition, because data is written sequentially,

this typically results in a faster write speed.

[0037] A further benefit is that the lifespan of persistent storage devices may be
prolonged using the current approach. In conventional approaches, when a single
block fails or reaches its maximum number of writes, the whole device is often
replaced. For example, in the case of a hard disk, a single hot-spot (corresponding
to one physical address) can cause a persistent storage device to reach the end of
its life even if the bulk of the persistent storage device has never been written to.
However, in the current approach, the head moves across the whole persistent
storage device. Because data is always written to the head, this will naturally lead
to equal levels of writing across the persistent storage device. That is, each block
will generally be written to once before any block is written to a second time,
irrespective of the virtual address of the data being written. This approach

therefore may avoid premature wearing of persistent storage devices.

Example of Writing

[0038] Figure 2 shows a worked example of how the approach shown in Figure 1
can be used to write a stream of data to a persistent storage device. In Figure 2,

the driver writes data to a single persistent storage device (such as a hard drive).

[0039] At 200, the system is shown in its initial state. The head counter indicates

location 0 as the next free block to be written to. The mapping is empty.

[0040] At 201, the driver receives a request to write data a to virtual location 6.
Because the head counter indicates physical location 0 as the next free block, data
a is written at physical location 0, along with a checksum h(a). The mapping is
updated to show a mapping from virtual location 6 to physical location 0. The head
counter is incremented to physical location 1. The tail is computed to be at physical

location 0, which is different from the head counter.

[0041] At 202, the driver receives a request to write data b to virtual location 3.

Because the head counter indicates physical location 1 as the next free block, data

PATENT

REEL: 059335 FRAME: 0633

10

15

20

25

7

b is written at physical location 1, along with a checksum h(b). The mapping is
updated to show a mapping from virtual location 3 to physical location 1. The head
counter is incremented to physical location 2. The tail is computed to be at physical

location 0, which is different from the head counter.

[0042] At 203, the driver receives a request to write data ¢ to virtual location 2.
Because the head counter indicates physical location 2 as the next free block, data
c is written at physical location 2, along with a checksum h(c). The mapping is
updated to show a mapping from virtual location 2 to physical location 2. The head
counter is incremented to physical location 3. The tail is computed to be at physical

location 0, which is different from the head counter.

[0043] At 204, the driver receives a request to write data b’ to virtual location 3.
Because the head counter indicates physical location 3 as the next free block, data
d is written at physical location 3, along with a checksum h(b’). The mapping is
updated to show a mapping from virtual location 3 to physical location 3. This
replaces the previous mapping from virtual location 3 to physical location 1.
Physical location 1 is therefore marked as dirty and can be freed in a garbage
collection process. However, the data at physical location 1 remains at physical

location 1 until this garbage collection process occurs.

[0044] The head counter is incremented to physical location 4. The tail is

computed to be at physical location 0, which is different from the head counter.

[0045] This example demonstrates the sequential nature of writing under the
current approach. While the driver receives requests to write data at varied virtual
locations, the driver actually writes in sequence. This avoids the need for the driver
to read from the persistent storage device during write operations, and therefore

may provide a higher performance for writing random data.

PATENT

REEL: 059335 FRAME: 0634

10

15

20

25

Writing to Arrays

[0046] A similar approach may be used to write data as a stripe across an array
of persistent storage devices. In this way, a subset of the devices can be used for

data and the remaining devices can be used for parity.

[0047] During configuration, the driver may be configured to have a particular
resilience. That is, among an array of n persistent storage devices, data is stored in
stripes across the data. Each stripe comprises n blocks, one of which is on each
persistent storage device. Within each stripe, k of the blocks include data and m of
the block are parity, such that n = k + m. Consequently, the data can be recovered
if any k of the blocks within a stripe is available (whether the block are data or
parity). This may be described as k + m parity. One common arrangement is 8 + 2
parity, where within a stripe there are 8 blocks of data and 2 blocks of parity,

however any value for k and m may be used.

[0048] One approach for generating the parity data in such a scheme is to use

erasure encoding. Erasure encoding is described in more detail below.

[0049] The blocks of each stripe are stored in the same indexed physical location
on all of the persistent storage devices. For example, stripe 0 consists of the blocks
at location 0 on every device. The driver can therefore maintain a single head

counter that is common to all of the devices.

[0050] While a single head counter is described for simplicity, in practice each
persistent storage device may maintain a separate head counter. This can allow for
garbage collection to occur on one device while a write is occurring on another

device.

[0051] It can be useful for subsequent stripes to use different drives for parity.
One way to administer this is to hominate a starting drive for each stripe: stripe 0
starts at drive 0, stripe 1 starts at drive 1, and so on. This will naturally cause the

parity blocks (which are written after the data blocks) to be on different drives.

PATENT

REEL: 059335 FRAME: 0635

10

15

20

25

[0052] Figure 3 shows an example approach for handling a write request where
data is to be stored in such stripes. This may be implemented in a driver running

on a system.

[0053] At step 301, a request to write k blocks of data is received. The request

corresponds to a request received at step 101.

[0054] At step 302, after k data blocks have been received, the driver calculates

parity data based on written data. This results in m blocks of parity data.

[0055] At step 303, each of the k blocks of data and m blocks of parity data is
written to corresponding persistent storage devices at the physical location
indicated by the head counter. This results in the stripe being completed. In

addition, k+m checksums are written to the metadata, each corresponding to a

block.

[0056] At step 304, the head counter is updated to reflect the physical location
of the next free block at each device, in a similar manner to step 105. Once a block
has been written to each persistent storage device at the physical location
indicated by the head counter, the head counter may be incremented to the next

free location in the sequence.

[0057] This approach provides a high-performance approach to writing data to
an array of persistent storage devices, since the read—modify—write cycle of some

conventional write approaches may be avoided.

[0058] This also avoids the penalty that comes with higher parity in conventional
approaches. Where data can be modified, the parity must be updated after every
modification. Thus, if there are two parity blocks in a stripe, modifying a piece of
data requires a read—modify—write cycle for the data itself, plus two further read—
modify—write cycles for each parity block. This amplification places a performance
limit on the level of parity that is practical within convention systems. In practice,

parity is limited to 2 in conventional systems because of this.

PATENT

REEL: 059335 FRAME: 0636

10

15

20

25

10

[0059] In contrast, the approach shown in Figure 3 does not involve any read—
modify—write cycles. Increasing parity therefore increases the overhead at a much
lower rate than conventional approaches. Accordingly, parity may be almost

unlimited, and in practice 2, 4, or 12 parity may be used.

[0060] Similarly, the approach shown in Figure 3 is not limited to any particular
size of array, and there may be hundreds of persistent storage devices in the array.

In practice, an array having around 10 persistent storage devices may be used.

[0061] Moreover, because the number of operations at each device is relatively
low, even slower persistent storage devices may provide high levels of

performance.

[0062] In some cases, one device in the array may fail or otherwise be
unavailable. When this occurs, a block which may have intended to be written to
that device may simply be written to the next device in the array. In this manner, a

failed device does not substantially impede writing.

[0063] In such cases, the system may still be said to use k + m parity. However,
for each stripe, there may end up being less than k data blocks {due to the failed

device) written in a stripe to maintain m blocks of parity.

Example of Writing to Arrays

[0064] Figures 4A and 4B shows an example process by which the approach
shown in Figure 3 can be used to write a stream of data to an array of persistent
storage device. In Figures 4A and 4B, the driver writes data to an array of five
persistent devices. The driver is configured to use 3+2 parity (that is, 2 blocks of

parity for every 3 blocks of data).

[0065] At 400, the system is shown in its initial state. The head counter indicates
location 0 as the next free block to be written to. The mapping is empty. Each of

drives 0, 1, 2, 3, and 4 are empty.

PATENT

REEL: 059335 FRAME: 0637

10

15

20

25

11

[0066] At 401, the driver receives a request to write data a to virtual location 6.
Because the head counter indicates physical location 0 as the next free block, data
a is written at physical location 0 on drive 0, along with a checksum h(a). The
mapping is updated to show a mapping from virtual location 6 to physical location
0 on drive 0. Because the stripe has not yet been completed, the head counter is

not incremented.

[0067] At 402, the driver receives a request to write data b to virtual location 3.
Because the head counter indicates physical location 0 as the next free block, data
b is written at physical location 0 on drive 1, along with a checksum h(b). The
mapping is updated to show a mapping from virtual location 3 to physical location
0 on drive 1. Because the stripe has not yet been completed, the head counter is

not incremented.

[0068] At 403, the driver receives a request to write data ¢ to virtual location 2.
Because the head counter indicates physical location 0 as the next free block, data
c is written at physical location 0 on drive 2, along with a checksum h(c). The
mapping is updated to show a mapping from virtual location 2 to physical location
0 on drive 2. Because the stripe has not yet been completed, the head counter is

not incremented.

[0069] Now that 3 data blocks have been written, the stripe is completed by
adding parity blocks to the 2 remaining devices. The parity data is computed based
on the data that has been written to the devices. This may be read from the
devices, or it may be stored in memory. This results in parity data d and parity data

e.

[0070] At 404, because the head counter indicates physical location 0 as the next
free block, parity data d is written at physical location 0 on drive 3, along with a
checksum h(d), and parity data e is written at physical location 0 on drive 4, along
with a checksum h(e). In addition, now that the stripe has been completed, the
head counter is incremented to the next free location in the sequence, and is now

1.

PATENT

REEL: 059335 FRAME: 0638

10

15

20

25

12

[0071] Inthis way, a stripe may be written without the need for the driver to read
from the persistent storage device during write operations, and therefore may

provide a higher performance for writing random data with any level of parity.

Reading

[0072] Figure 5 shows an example approach for handling a read request. This

may be implemented in the same manner as the approach of Figure 1.

[0073] At step 501, a request is received to read data from a virtual location. The
request may be received in the same manner as the request at step 101. For
example, this may be received by a function call of the driver. The request may
comprise a pointer to where the data should be stored once retrieved (for

example, a memory address).

[0074] At step 502, a physical location for the data corresponding to the first
location is obtained from the metadata. This may be obtained by finding the virtual
location in the mapping of the metadata and finding the corresponding physical

location which was previously stored at step 104.

[0075] If the metadata does not contain references to the virtual location, the

read request may fail, and an error may be raised.

[0076] At step 503, the data is retrieved by reading from the physical location at
the appropriate permanent storage device. The data may then be stored in a

memory location indicated in the request or another location.

[0077] At step 504, the retrieved data is validated to ensure that the retrieved
data is the data which was originally stored. This may involve calculating a
checksum for the retrieved data and comparing it to the checksum stored with the

data. If the checksums match, it is highly likely the data was successfully retrieved.

[0078] If the checksums do not match, but the data can be recovered, this may

be performed. This may make use of parity information stored in the same stripe

PATENT

REEL: 059335 FRAME: 0639

10

15

20

25

13

as the data. If the errors cannot be corrected, a notification, warning, or error may

be raised.

[0079] The retrieved data can then be returned to the process which issued the
read request. This may comprise providing a success value (such as 0) as a return

value to a function call.

[0080] In some cases, step 504 may be omitted. For example, on reads where it

is desirable to maximize throughput, step 504 may be selectively skipped.

[0081] From the point of view of the other requestor, the data was stored at, and
retrieved from, the virtual location. The management and configuration of the
persistent storage device is therefore obscured from the process which attempts

to read the data.

Block Reconstruction

[0082] Occasionally, it may not be possible to retrieve data at a particular physical
location, or that physical location may be overly slow. This may occur if step 503 is
unsuccessful due to the hardware failure of a block or device, or step 504 is
unsuccessful due to retrieved, but unverified, data. When this occurs, a block

reconstruction process may be undertaken.

[0083] Figure 6 shows an example approach for handling block reconstruction of
a missing block. In this example, the data is stored at an array of persistent storage

devices which are configured to use k + m parity.

[0084] At step 601, the driver reads data from at least k blocks in the same stripe
as the missing block. Since each block in the stripe is from a different persistent
storage device, it is highly unlikely in practice that multiple blocks within a stripe

will become unavailable at the same time.

[0085] At step 602, the driver usesthe available data to reconstruct the data from
the missing block. This is possible since, for k + m parity, any k blocks of a stripe

can be used to reconstruct all the blocks within that stripe. If the blocks in a stripe

PATENT

REEL: 059335 FRAME: 0640

10

15

20

25

14

have been encoded using erasure encoding to produce the parity, any missing

blocks can be derived by erasure decoding, as described below.

[0086] At step 603, the reconstructed data is written at the head (that is, the next
free block, as indicated by the head counter). This may be implemented in the

same manner at steps 102 and 103.

[0087] At step 604, the metadata is updated such that the virtual location
corresponding to the missing block is now mapped to the block at which the
reconstructed data was written. The missing block can then be marked as dirty (if
there is no hardware issue) or be recorded as unusable (if there is a hardware

issue).

[0088] In this manner, the data can be recovered immediately after a single failed
read. The block reconstruction process occurs quickly since only the failed block
needs to be rewritten. This allows minimal speed loss: while there may be a slight
delay in reconstructing the data after the first read, any subsequent reads will

revert to the original speed even if the hardware issue has not been resolved.

[0089] When block reconstruction is required due to a failed persistent storage
device, all blocks may be reconstructed and rewritten to non-failed devices. Once
this process occurs, the speed of the array recovers from a degraded condition
without the need to re-write any data of the other non-failed persistent storage

devices.

Duplication

[0090] In some cases, it may be desirable to have a single virtual address
corresponding to multiple physical addresses. The same data is duplicated at each

physical address.

[0091] In this manner, a read request may read from any of the physical
addresses corresponding to the virtual address. If the block at one of the physical
addresses fails, the read request may resolve from any of the other physical

addresses. The failed block may be reconstructed using a block reconstruction

PATENT

REEL: 059335 FRAME: 0641

10

15

20

25

15

technigue noted above. This can avoid the delay of reconstruction while still

providing that reconstruction can occur.

[0092] Alternatively, in some cases duplicates may be stored at once of more
immediately following physical addresses. If a first physical address is unavailable,
the data can be retrieved from the next physical address where the data is

duplicated.

[0093] Thus, from the point of view of a user, the array may appear to never be

slow, even if there is a failure of a persistent storage device within the array.

Update

[0094] Figure 7 shows an example approach for handling an update request. This

may be implemented in the same manner as the approach of Figure 1.

[0095] At step 701, a request is received to update the data from a virtual
location. The request may be received in the same manner as the request at step

101. For example, this may be received by a by a function call of the driver.

[0096] At step 702, references to the virtual location are removed from the
metadata and the corresponding physical location is marked as dirty. This indicates

that the physical location is free for future use.

[0097] Once the metadata is updated, there is ho need for further persistent
storage device operations. If the virtual location is not in the metadata, then the
corresponding data at the physical location could not be retrieved. The physical

location will eventually be reused after a garbage collection process has occurred.

Dirty Blocks

[0098] Updating data has been described in terms of selected blocks being
marked as dirty. This may be implemented by each stripe maintaining a counter of
the number of unused blocks in the stripe. When a block is marked dirty or is
inaccessible (for example, due to a corresponding device failing), the number of

gaps for the stripe may be incremented. When each data block is rewritten to the

PATENT

REEL: 059335 FRAME: 0642

10

15

20

25

16

head (for example, during garbage collection), the number of gaps for the stripe
may also be incremented. Once the counter reaches a predetermined limit (which

may be the number of non-parity blocks stored in a stripe), the stripe may

Garbage Collection

[0099] When data indicated by a virtual location is updated, the corresponding
physical location may be marked dirty indicating that the physical location can be
reused. Thus, although data may initially be written sequentially on a persistent

storage device, over time gaps in the sequence of data may appear.

[0100] One way to mitigate this is to periodically perform garbage collection. This
aims to move data from the tail (that is, the earliest non-dirty block in the sequence

of written blocks) to the head, until there are no gaps in the sequence.

[0101] Garbage collection may be performed in response to one or more garbage

collection conditions being met.

[0102] A first garbage collection condition may be that a number of gaps on the
persistent storage device exceeds a predetermined threshold. For example, where
the number of gaps exceeds 1% of the capacity of the persistent storage device,

the garbage collection condition may be met.

[0103] A second garbage collection condition may be that an activity level of
persistent storage device falls below a threshold. For example, if the persistent
storage device has not been used for several minutes, a garbage collection process

may commence.

[0104] A third garbage collection condition may be that a free capacity of the
persistent storage device falls below a threshold. For example, when the head

counter gets near to the tail, it may be useful to try to recover some usable space.

[0105] A fourth garbage collection condition may be that a certain time period
has passed. That is, it may be useful for a garbage collection process to commence

periodically.

PATENT

REEL: 059335 FRAME: 0643

10

15

20

17

[0106] Additionally or alternatively, garbage collection may occur any time the

driver is not processing a request and there exists one or more dirty blocks.

[0107] Figure 8 shows an example garbage collection process.

[0108] At step 801, the tail is calculated. The tail is the non-dirty block (that is,
the block which is storing data) that is earliest in the sequence of written blocks.

In other words, this is the oldest written non-dirty block.

[0109] At step 802, the data stored at the tail is written to the block indicated by

the head counter.

[0110] At step 803, the metadata for the persistent storage device is updated. A
new entry mapping the virtual address for the newly written block to the head

counter replaces the previous entry for that block.

[0111] At step 804, the head counter is updated to reflect the next free block in

the same manner as at step 105.

[0112] This process is repeated until one of the garbage collection conditions is
no longer met or until there are no dirty blocks left. By iteratively moving blocks
from the tail to the head, eventually there will be no remaining gaps. This avoids

any

[0113] Moreover, this process can be stopped at any time. Once step 804
terminates, the driver is ready to process further requests (including writing new
blocks). In this way, garbage collection can be started and stopped without causing

significant downtime.

[0114] In this manner, overall storage capacity can be recovered when data is

updated without limiting the performance of other requests.

PATENT

REEL: 059335 FRAME: 0644

10

15

20

25

18
Example of Garbage Collection

[0115] Figure 9 shows a worked example approach for performing garbage
collection. This may be performed by the same driver as that which performs the

method of Figure 1, for example.

[0116] In Figure 9, the driver is configured to use 2+1 parity (that is, 1 block of
parity for each 2 blocks of data). In practice, the same approach may be applied to

any level of parity. The head counter and mapping are omitted from Figure 9.

[0117] At 900, the system is shown with data that has previously been written.
Drive 0 has blocks marked dirty at physical locations 0 and 2. Drive 1 has a block
marked dirty at physical location 1. Drive 2 has a block marked dirty at physical
location 1. Blocks at locations 6 and 7 in all drives are empty. All other blocks in all
drives have non-dirty data. The head counter is at physical location 6, since that
represents the next free block. The tail is at 0, since the block at location 0 on drive

1 is the oldest non-parity non-dirty block.

[0118] At 901, the data in all non-dirty, non-parity blocks at the tail {location 0)
has been moved to the head. The data at location 0 on drive 0 (a) is not moved, as
it has been marked dirty. The data at location 0 on drive 2 (ab} is not moved, as it
is parity data. Only the data at location 0 on drive 1 (b) is moved to the head. This
has been moved to location 6 on drive 0. Location 6 is derived from the head
counter (which indicates location 6 as the next free block). Drive 0 is derived by
cycling through the starting drive of each stripe: since the stripe at location 5

started with drive 2, the stripe at location 6 starts with drive 0.

[0119] After the move, the mapping is updated so that the virtual location which
previously mapped to location 0 on drive 1 now maps to location 6 on drive 0.
Location 0 on drive 1 is marked as dirty, since the data is no longer needed, and
the block can be reused. The head counter remains at 6. The tail moves to 2, since
the next oldest non-dirty, non-parity data is at location 2 on drive 2. All of location
1 is dirty or parity on all drives (or in other words, the number of gaps in stripe 1 is

2).

PATENT

REEL: 059335 FRAME: 0645

10

15

20

25

19

[0120] At 902, the data in all non-dirty, non-parity blocks at the tail {location 2)
has been moved to the head. The data at location 1 on drive 1 (c), location 1 on
drive 2 (d), and location 2 on drive 0 (f) is not moved, as it has been marked dirty.
The data at location 1 on drive 0 {cd) and location 2 on drive 1 (ef) is not moved,
as it is parity data. Only the data at location 2 on drive 2 (e) is moved to the head.
This has been moved to location 6 on drive 1. Location 6 is derived from the head
counter (which indicates location 6 as the next free block). Drive 1 is derived from
the previous written block in the stripe: since drive 0 was previously written to,

drive 1 is the next drive in the sequence.

[0121] After the move, the mapping is updated so that the virtual location which
previously mapped to location 2 on drive 2 now maps to location 6 on drive 1.
Location 2 on drive 2 is marked as dirty, since the data is no longer needed, and

the block can be reused.

[0122] Since the data in stripe 6 is now completed, parity data (be) is calculated
and written to the remaining block in stripe 6 (that is, at location 6 on drive 1). The
head counter moves to 7, since the next free block is in location 7. The tail moves
to 3, since the next oldest non-dirty, non-parity data is at location 3 on drives 0 and

1.

[0123] Following this garbage collection process, all of locations 0, 1, and 2 on all
drives is now free for use. Once stripe 7 is completed, the head counter will loop
to stripe 0. Garbage collection therefore allows a persistent storage device or array

of persistent storage devices to be more fully utilized.

Erasure Coding

[0124] As noted above, erasure coding is an approach in which a piece of data is
encoded to form n data fragments. The original data is recoverable from any k data
fragments (k < n). Each data fragment is a w-bit word, where w can be any
positive integer. For example, 1-bit and 8-bit are common. Generally, the higher
the values for n and w, the more computationally intensive the erasure encoding

and decoding process is.

PATENT

REEL: 059335 FRAME: 0646

10

15

20

25

20

[0125] First, the original data is segmented into w X k-bit data segments.

[0126] Second, k data fragments d, ...d; are formed by separating each data

segment into k w-bit sized data words. These are data words.

[0127] Third, m = n — k data fragments ¢, ...c,, are formed based on linear

combinations of the data words with coefficients, such that:
€ = @iodo + -+ Ay pdy

where the arithmetic is defined over the Galois field GF(2"%). These are coding

words.

[0128] The data fragments can be stored in a stripe over an array of persistent
storage devices, such that the data fragments are distributed over the persistent
storage devices. In some cases, different persistent storage devices can hold
different numbers of data fragments. Optionally, a checksum based on the data
segment is also stored. Once all data segments are stored, a further checksum

based on the original data can also be stored.

[0129] There are multiple ways to select the coefficients. One approach is to use
a Cauchy Reed-Solomon code. This occurs by selecting n numbers in GF(2") and
partitioning them into two distinct sets X = {x4, ..., x,}and ¥ = {y4, ..., Vi }, with
X NY = @ such that:

_ 1

ai,j

where the arithmetic is defined over the Galois field GF(2").

[0130] Once the data is stored, any k of the data fragments can be used to
retrieve the data. For example, if the data words d; ... d;, were obtained, these can
be combined using the inverse of how they were segmented. If a coding word c; is
used, a system of equations based on the equation noted above can be solved to

obtain the missing data fragment.

PATENT

REEL: 059335 FRAME: 0647

10

15

20

25

21

[0131] In some situations, erasure encoding can be performed efficiently using
one or more GPUs while the request itself is handled by one or more CPUs. This

can result in improved overall performance.

[0132] Erasure encoding provides an approach which allows for high resilience
and flexibility. The data fragments can be stored across multiple independent
systems. If m or fewer fragments are lost, the corresponding data segment can be
recovered, and thus the original data can be calculated. In addition, any k data
fragments can be used to recover the original data, which allows any of the storing

systems to respond.

System

[0133] Figure 10 shows a block diagram of an example computer system 1000.

[0134] The system 1000 comprises a CPU (central processing unit) 1010, a main
memory 1020, one or more peripherals 1030, and a GPU (graphics processing unit)
1050. The CPU 1010, main memory 1020, peripherals 1030, and GPU 1050 are
connected by a bus 1040. In the case of a PCle (PCl Express) topology, the bus 1040
includes a root complex, and each of the peripherals 1030 and the GPU 1050 are
PCle endpoints. The GPU 1050 can communicate with the peripherals 1030 directly
via the bus 1040. In some cases, more than one CPU 1010 and/or more than one

GPU 1050 is provided.

[0135] The peripherals 1030 may include persistent storage devices (such as hard
disk drives, solid state drives, or the like), storage controllers (such as RAID
controllers), network controllers (such as network interface cards), switches (such
as PCle switches configured to connect further peripherals), or any of a variety of

devices.

[0136] The peripherals 1030 and the GPU 1050 may have access to the main
memory 1020 via the bus 1040. Through DMA (direct memory access), this can

allow the peripheral 1030 or the GPU 1050 to read data to and write data from the

PATENT

REEL: 059335 FRAME: 0648

10

15

20

25

22

main memory. This may involve copying the data from main memory 1020 to a

memory local to the peripheral 1030 or the GPU 1050.

[0137] Insome cases, the memory space for the CPU 1010 and the GPU 1050 can
be shared via unified virtual memory. This allows for a pointer to a single memory
address to be passed between the CPU and the GPU without the need to copy data

between a main memory 1020 and a local memory.

[0138] Computer system 500 may be used to implement the methods noted
above. For example, CPU 1010 or GPU 1050 may run a program which operates as

a driver to one or more of the storage device peripherals 1030.

[0139] The storage device peripherals 1030 may be of different types. A relatively
fast storage device peripheral 1030 may be used to store metadata (such as a
mapping between virtual and physical locations) and an array of relatively slow
storage device peripherals 1030 may be used to store the underlying data. In some
cases, some of the storage device peripherals 1030 used to store the underlying
data can be of mixed types, including one or more hard disk drives, solid state

drives, RAM devices, or non-volatile RAM devices.

Interpretation

[0140] A number of methods have been described above. It will be appreciated
that any of these methods may be embodied by a series of instructions, which may
form a computer program. These instructions, or this computer program, may be
stored on a computer readable medium, which may be non-transitory. When
executed, these instructions or this program may cause a processor, such as a CPU

or GPU, to perform the described methods.

[0141] Where an approach has been described as being implemented by a
processor, this may comprise a plurality of processors. That is, at least in the case
of processors, the singular should be interpreted as including the plural. Where
methods comprise multiple steps, different steps or different parts of a step may

be performed by different processors. In some cases, one step may be performed

PATENT

REEL: 059335 FRAME: 0649

10

15

23

by a first type of processor (for example, processing of large sets of data may be
performed by a GPU) and another step may be performed by a second type of

processor (such as metadata lookup being performed by a CPU).

[0142] The order of steps within methods may be altered, such that steps are
performed out of order or in parallel, except where one step is dependent on

another having been performed, or the context otherwise requires.

[0143] The term “comprises” and other grammatical forms is intended to have
an inclusive meaning unless otherwise noted. That is, they should be taken to
mean an inclusion of the listed components, and possibly of other non-specified

components or elements.

[0144] While the present invention has been explained by the description of
certain embodiments and with reference to the drawings, the invention is not
intended to be restricted to such details. Additional advantages and modifications
will readily appear to those skilled in the art. Therefore, the invention in its broader
aspects is not limited to the specific details, representative apparatuses and
methods, and illustrative examples shown and described. Accordingly, departures
may be made from such details without departure from the spirit or scope of the

general inventive concept.

PATENT

REEL: 059335 FRAME: 0650

24

CLAIMS

1. A method comprising:
receiving a request to write data at a virtual location;
writing the data to a physical location on a persistent storage device; and
5 recording a mapping from the virtual location to the physical location;
wherein the physical location corresponds to a next free block in a sequence

of blocks on the persistent storage device.

2. The method of claim 1, wherein the virtual location and the physical location

are not correlated.

10 3. The method of claim 1 or 2, wherein the physical location is determined by
a head counter.
4. The method of claim 3, further comprising:

after writing the data to the physical location, updating the head counter.

5. The method of any of claims 1 to 4, further comprising:

15 receiving one or more requests to write further data to corresponding virtual

locations;

wherein the data and the further data form a data stream.

6. The method of any of claims 1 to 5, wherein writing the data to a second

location occurs without performing a read from the persistent storage device.

20 7. The method of any of claims 1 to 6, further comprising:

calculating a checksum for the data; and

PATENT
REEL: 059335 FRAME: 0651

25

recording the checksum in metadata associated with the persistent storage
device.
8. The method of any of claims 1 to 7, further comprising:
determining that a garbage collection condition is met.
5 9. The method of claim 8, wherein the garbage collection condition comprises
one or more of:

a number of gaps on the persistent storage device exceeds a predetermined

threshold;
an activity level of the persistent storage device falls below a threshold;
10 a free capacity of the persistent storage device falls below a threshold; or
a time period has passed.
10. The method of claim 8 or 9, further comprising, in response to determining
that a garbage collection condition is met:
determining a block at the tail of the sequence of blocks;
15 writing the data at the block to the head of the sequence of blocks; and
updating the mapping based on the writing.
11. The method of any of claims 1 to 10, wherein writing the data to a physical
location on a persistent storage device comprises:

writing the data to a physical location on a persistent storage device, the
20 physical location corresponding to a block within a stripe, the stripe
comprising corresponding a plurality of blocks, each block being a physical

location on each of a plurality of persistent storage device.

PATENT
REEL: 059335 FRAME: 0652

10

15

20

12.

13.

14.

15.

26

The method of claim 11, further comprising:

determining that a predetermined number of blocks within the stripe have

been written;

calculating parity corresponding to the data written to the predetermined

number of blocks within the stripe; and

writing the parity data in one or more blocks within the stripe.

The method of claim 12, further comprising:
retrieving a checksum for the retrieved data;
calculating a checksum for the retrieved data; and

comparing the calculated checksum with the retrieved checksum.

The method of any of claims 11 to 13, further comprising:
determining that a block of a stripe is missing;

reconstructing the data at the missing block from one or more other blocks

in the stripe;
writing the data to the head of the sequence of blocks; and

updating the mapping based on the writing.

The method of any of claims 11 to 14, further comprising:

determining that a persistent storage device among the plurality of

persistent storage devices is unavailable; and

wherein writing the data to a physical location on a persistent storage device

comprises:

writing the data to a physical location on a different one of the

persistent storage devices.

PATENT

REEL: 059335 FRAME: 0653

10

15

20

16.

27

The method of any of claims 1 to 14, wherein recording a mapping from the

virtual location to the physical location comprises:

17.

18.

19.

20.

identifying a mapping from the virtual location to a previous physical

location; and

updating the mapping to record a mapping from the virtual location to the
physical location.

The method of claim 16, further comprising:

recording the block corresponding to the previous physical location as dirty.

The method of any of claims 1 to 17, further comprising:

writing a duplicate of the data to a subsequent physical location.

A system comprising:
one or more processors; and
a memory;

wherein the memory comprises instructions which, when executed by the
one or more processors, configure the one or more processors to perform

the method of any of claims 1 to 18.

One or more non-transitory computer readable media comprising

instructions which, when executed by one or more processors, cause the one or

more processors to perform the method of any of claims 1 to 18.

21.

A computer program which, when executed by one or more processors,

cause the one or more processors to perform the method of any of claims 1 to 18.

PATENT

REEL: 059335 FRAME: 0654

1/10

Receive a request to write data at
a virtual location

—— 101

Write the data to a physical location —— 102

Calculate a checksum for the data —~—103
Update metadata —— 104
Update the head counter —— 105
FIG. 1
PATENT

REEL: 059335 FRAME: 0655

200

201

202

203

204

0 1 2 3 6
a
h(a)
a b
h(a) | h(b)
a b c
h(a) | h(b) [h(c)
a b C b’
h(a) | (B | h(c) |h(b")
FIG. 2

HEAD MAP
0

1 6->0

2 6->0

3->1

3 6->0

3->1

252

4 6->0

353

252

PATENT

REEL: 059335 FRAME: 0656

3/10

Receive request to write k blocks of data ——301

Calculate parity data —— 302

Write k blocks of data, m blocks of parity

—— 303
data and k+m checksums
Update head counter —— 304
FIG. 3
PATENT

REEL: 059335 FRAME: 0657

4/10

o 1 2 3 4 5 6 7 HEAD MAP

400 Drive 0

Drive

Drive

Drive

Drive

o 1 2 3 4 5 6 7 HEAD MAP

401 Drive| 2@ 0 6—>0:0
0 [h(a)
Drive

Drive

Drive

Drive

o 1 2 3 4 5 6 7 HEAD MAP

402 Drive| 2 0 6-0:0
0 |h@) 6->1:0

Drive| b
1 |h(b)
Drive

Drive

Drive

FIG. 4A

PATENT
REEL: 059335 FRAME: 0658

o 1 2 3 4 5 6 7 HEAD MAP

403 Drive| @ 0 6—>0:0
0 |h@) 3-51:0
Drive| b 220
1 |h(b)
Drive| ¢
2 |h(c)
Drive

Drive

404 Drive| 2 1
0 [h(a)

Drive| b
1 |h(b)
Drive| ¢
2 |h(e)
Drive| d
3 |h(d)
Drive| €
4 |[h(e)

N W
N 2 4
NRO
ooo

FIG. 4B

PATENT
REEL: 059335 FRAME: 0659

6/10

Receive a request to read data 501
from a virtual location
Obtain a physical location for the data SO
from the metadata
Retrieve the data from the physical location 503
and a checksum
Validate the retrieved data —— 504
FIG. 5
PATENT

REEL: 059335 FRAME: 0660

7/10

Read data from at least k blocks in the
same stripe of the missing block

——— 601

Use the available data to reconstruct the
data from the missing block

—— 602

Write the reconstructed data at the head [———603

Update the metadata —— 604

FIG. 6

PATENT
REEL: 059335 FRAME: 0661

8/10

Receive a request to update data
at a virtual location

——— 701

Update reference to the virtual location
in the metadata

—— 702

FIG. 7

Calculate the tail

——— 801

Write the data at the tail to the head

—— 802

Update the metadata

——— 803

Update the head counter

—— 804

FIG. 8

PATENT

REEL: 059335 FRAME: 0662

9/10

900 a cd f

_ g ij 1
Drive 0 h(cd) h(g) | h(ij) | h@)
_ b C ef h 1 k1
Drive 1 h(b) h(ef) | h(h) | h(i) | h(kl)
. ab d e gh j k
Drive 2 h(ab) h(e) | h(gh) | h(G) | h(k)

901 _ a/| o |\& g8 | 1] 1 b
Drive O h(cd) h(g) | h(ij) | h(1) | h(b)
) b C ef h 1 kl
Drive 1 h(ef) | h(h) | h@i) | h(kl)
. ab d e gh j k
Drive 2 h(ab) h(e) | h(gh) | h(G) | h(k)
0 1 2 3 4 5 6 7
902 _ a cd f g ij 1 b
Drive O h(cd) h(g) | h(ij) | h(1) | h(b)
) b C ef h 1 k1 e
Drive 1 h(ef) | h(h) | h(i) | h(kl) | h(e)
. ab d e gh j k be
Drive 2 h(ab) h(gh) | h(3) | h(k) | h(be)
FIG.9
PATENT

REEL: 059335 FRAME: 0663

10/10

1000
\7 CPU
1010
GPU Memory

1050 1020

Peripheral Bus Peripheral
1030 1030

Peripheral Peripheral
1030 1040 1030

FIG. 10

PATENT
RECORDED: 03/07/2022 REEL: 059335 FRAME: 0664

