PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT7418318 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|------------------------------| | NATURE OF CONVEYANCE: | RELEASE OF SECURITY INTEREST | ## **CONVEYING PARTY DATA** | Name | Execution Date | |---------------------------|----------------| | JPMORGAN CHASE BANK, N.A. | 07/06/2022 | ## **RECEIVING PARTY DATA** | Name: | CABOT MICROELECTRONICS CORPORATION | | |-----------------|--------------------------------------|--| | Street Address: | 870 N. COMMONS DR. | | | City: | AURORA | | | State/Country: | ILLINOIS | | | Postal Code: | 60504 | | | Name: | QED TECHNOLOGIES INTERNATIONAL, INC. | | | Street Address: | 1040 UNIVERSITY AVENUE | | | City: | ROCHESTER | | | State/Country: | NEW YORK | | | Postal Code: | 14607 | | | Name: | FLOWCHEM LLC | | | Street Address: | 43253 OLD HOUSTON HIGHWAY | | | City: | WALLER | | | State/Country: | TEXAS | | | Postal Code: | 77484 | | | Name: | KMG ELECTRONIC CHEMICALS, INC. | | | Street Address: | 300 THROCKMORTON STREET | | | City: | FORT WORTH | | | State/Country: | TEXAS | | | Postal Code: | 76102 | | | Name: | KMG-BERNUTH, INC. | | | Street Address: | 300 THROCKMORTON STREET | | | City: | FORT WORTH | | | State/Country: | TEXAS | | | Postal Code: | 76102 | | | Name: | MPOWER SPECIALTY CHEMICALS LLC | | | Street Address: | 43253 OLD HOUSTON HIGHWAY | | | City: | WALLER | | | | PATENT | | PATENT REEL: 060592 FRAME: 0260 507371395 | State/Country: | TEXAS | | |-----------------|-----------------------------------|--| | Postal Code: | 77484 | | | Name: | SEALWELD (USA), INC. | | | Street Address: | 300 THROCKMORTON STREET | | | City: | FORT WORTH | | | State/Country: | TEXAS | | | Postal Code: | 76102 | | | Name: | INTERNATIONAL TEST SOLUTIONS, LLC | | | Street Address: | 870 N. COMMONS DR. | | | City: | AURORA | | | State/Country: | ILLINOIS | | | Postal Code: | 60504 | | | Name: | CMC MATERIALS, INC. | | | Street Address: | 870 N. COMMONS DR. | | | City: | AURORA | | | State/Country: | ILLINOIS | | | Postal Code: | 60504 | | # **PROPERTY NUMBERS Total: 410** | Property Type | Number | |----------------|----------| | Patent Number: | 10029345 | | Patent Number: | 10066126 | | Patent Number: | 6293848 | | Patent Number: | 10100272 | | Patent Number: | 6316365 | | Patent Number: | 6319096 | | Patent Number: | 6347978 | | Patent Number: | 6348076 | | Patent Number: | 6350393 | | Patent Number: | 6375693 | | Patent Number: | 6383065 | | Patent Number: | 6395693 | | Patent Number: | 6409781 | | Patent Number: | 6461227 | | Patent Number: | 6468137 | | Patent Number: | 6471884 | | Patent Number: | 6527622 | | Patent Number: | 6527817 | | Patent Number: | 6527819 | | Property Type | Number | |----------------|---------| | Patent Number: | 6541434 | | Patent Number: | 6569350 | | Patent Number: | 6582623 | | Patent Number: | 6589100 | | Patent Number: | 6592776 | | Patent Number: | 6623331 | | Patent Number: | 6632377 | | Patent Number: | 6641632 | | Patent Number: | 6646348 | | Patent Number: | 6682575 | | Patent Number: | 6705926 | | Patent Number: | 6767476 | | Patent Number: | 6776810 | | Patent Number: | 6811474 | | Patent Number: | 6812193 | | Patent Number: | 6821897 | | Patent Number: | 6830503 | | Patent Number: | 6840843 | | Patent Number: | 6840971 | | Patent Number: | 6852632 | | Patent Number: | 6855266 | | Patent Number: | 6867140 | | Patent Number: | 6872328 | | Patent Number: | 6884156 | | Patent Number: | 6896591 | | Patent Number: | 6896593 | | Patent Number: | 6899598 | | Patent Number: | 6913517 | | Patent Number: | 6935931 | | Patent Number: | 6936542 | | Patent Number: | 6936543 | | Patent Number: | 6960120 | | Patent Number: | 6974777 | | Patent Number: | 6997777 | | Patent Number: | 6998166 | | Patent Number: | 7004819 | | Patent Number: | 7044836 | | Patent Number: | 7059936 | | Property Type | Number | |----------------|---------| | Patent Number: | 7097541 | | Patent Number: | 7160807 | | Patent Number: | 7161247 | | Patent Number: | 7195539 | | Patent Number: | 7195544 | | Patent Number: | 7198549 | | Patent Number: | 7204742 | | Patent Number: | 7238618 | | Patent Number: | 7247567 | | Patent Number: | 7255810 | | Patent Number: | 7265055 | | Patent Number: | 7267607 | | Patent Number: | 7288021 | | Patent Number: | 7294576 | | Patent Number: | 7306637 | | Patent Number: | 7311856 | | Patent Number: | 7311862 | | Patent Number: | 7316603 | | Patent Number: | 7354530 | | Patent Number: | 7368066 | | Patent Number: | 7377840 | | Patent Number: | 7381648 | | Patent Number: | 7425172 | | Patent Number: | 7427567 | | Patent Number: | 7435161 | | Patent Number: | 7435165 | | Patent Number: | 7442645 | | Patent Number: | 7447298 | | Patent Number: | 7456107 | | Patent Number: | 7485241 | | Patent Number: | 7501346 | | Patent Number: | 7504044 | | Patent Number: | 7524347 | | Patent Number: | 7531105 | | Patent Number: | 7563383 | | Patent Number: | 7582127 | | Patent Number: | 7585340 | | Patent Number: | 7677956 | | Property Type | Number | |----------------|---------| | Patent Number: | 7678700 | | Patent Number: | 7704122 | | Patent Number: | 7704125 | | Patent Number: | 7754098 | | Patent Number: | 7776230 | | Patent Number: | 7803203 | | Patent Number: | 7803711 | | Patent Number: | 7820067 | | Patent Number: | 7837888 | | Patent Number: | 7846842 | | Patent Number: | 7897061 | | Patent Number: | 7922926 | | Patent Number: | 7955519 | | Patent Number: | 7955520 | | Patent Number: | 7994057 | | Patent Number: | 7998228 | | Patent Number: | 7998866 | | Patent Number: | 8008202 | | Patent Number: | 8017524 | | Patent Number: | 8038752 | | Patent Number: | 8057561 | | Patent Number: | 8062096 | | Patent Number: | 8075372 | | Patent Number: | 8101093 | | Patent Number: | 8138091 | | Patent Number: | 8157876 | | Patent Number: | 8162723 | | Patent Number: | 8226841 | | Patent Number: | 8247326 | | Patent Number: | 8247327 | | Patent Number: | 8247328 | | Patent Number: | 8251777 | | Patent Number: | 8252687 | | Patent Number: | 8273142 | | Patent Number: | 8287793 | | Patent Number: | 8380339 | | Patent Number: | 8383003 | | Patent Number: | 8425797 | | Property Type | Number | |----------------|---------| | Patent Number: | 8435421 | | Patent Number: | 8439994 | | Patent Number: | 8486169 | | Patent Number: | 8497209 | | Patent Number: | 8518135 | | Patent Number: | 8529680 | | Patent Number: | 8541310 | | Patent Number: | 8551202 | | Patent Number: | 8557137 | | Patent Number: | 8591763 | | Patent Number: | 8597538 | | Patent Number: | 8597540 | | Patent Number: | 8623766 | | Patent Number: | 8623767 | | Patent Number: | 8628384 | | Patent Number: | 8637404 | | Patent Number: | 8657653 | | Patent Number: | 8691695 | | Patent Number: | 8697576 | | Patent Number: | 8702479 | | Patent Number: | 8715035 | | Patent Number: | 8741009 | | Patent Number: | 8759216 | | Patent Number: | 8778211 | | Patent Number: | 8778212 | | Patent Number: | 8808573 | | Patent Number: | 8815110 | | Patent Number: | 8821215 | | Patent Number: | 8864859 | | Patent Number: | 8883034 | | Patent Number: | 8906252 | | Patent Number: | 8916061 | | Patent Number: | 8920219 | | Patent Number: | 8920667 | | Patent Number: | 8932116 | | Patent Number: | 8960177 | | Patent Number: | 8961807 | | Patent Number: | 8968058 | | Property Type | Number | |----------------|---------| | Patent Number: | 9017140 | | Patent Number: | 9028302 | | Patent Number: | 9028572 | | Patent Number: | 9039914 | | Patent Number: | 9067297 | | Patent Number: | 9067298 | | Patent Number: | 9074118 | | Patent Number: | 9127187 | | Patent Number: | 9129907 | | Patent Number: | 9156124 | | Patent Number: | 9156125 | | Patent Number: | 9165489 | | Patent Number: | 9180570 | | Patent Number: | 9211628 | | Patent Number: | 9238294 | | Patent Number: | 9238753 | | Patent Number: | 9238754 | | Patent Number: | 9249273 | | Patent Number: | 9272388 | | Patent Number: | 9278424 | | Patent Number: | 9279067 | | Patent Number: | 9281210 | | Patent Number: | 9296085 | | Patent Number: | 9303187 | | Patent Number: | 9303188 | | Patent Number: | 9303189 | | Patent Number: | 9303190 | | Patent Number: | 9309442 | | Patent Number: | 9330703 | | Patent Number: | 9340706 | | Patent Number: | 9343330 | | Patent Number: | 9358659 | | Patent Number: | 9375823 | | Patent Number: | 9401104 | | Patent Number: | 9409276 | | Patent Number: | 9422455 | | Patent Number: | 9422456 | | Patent Number: | 9422457 | | Property Type | Number | |----------------|---------| | Patent Number: | 9425037 | | Patent Number: | 9434859 | | Patent Number: | 9463551 | | Patent Number: | 9469787 | | Patent Number: | 9481811 | | Patent Number: | 9499721 | | Patent Number: | 9505952 | | Patent Number: | 9528030 | | Patent Number: | 9534147 | | Patent Number: | 9548211 | | Patent Number: | 9555518 | | Patent Number: | 9556363 | | Patent Number: | 9566686 | | Patent Number: | 9567491 | | Patent Number: | 9597768 | | Patent Number: | 9597769 | | Patent Number: | 9597770 | | Patent Number: | 9597777 | | Patent Number: | 9617450 | | Patent Number: | 9631122 | | Patent Number: | 9633863 | | Patent Number: | 9649742 | | Patent Number: | 9687956 | | Patent Number: | 9688885 | | Patent Number: | 9701871 | | Patent Number: | 9752057 | | Patent Number: | 9758697 | | Patent Number: | 9771496 | | Patent Number: | 9796882 | | Patent Number: | 9803106 | | Patent Number: | 9803109 | | Patent Number: | 9818618 | | Patent Number: | 9828528 | | Patent Number: | 9828574 | | Patent Number: | 9834704 | | Patent Number: | 9850402 | | Patent Number: | 9850403 | | Patent Number: | 9868185 | | Property Type | Number | |----------------|---------| | Patent Number: | 9931728 | | Patent Number: | 9931729 | | Patent Number: | 9944828 | | Patent Number: | 9951054 | | Patent Number: | 9909032 | | Patent Number: | D640057 | | Patent Number: | 5951369 | | Patent Number: | 6506102 | | Patent
Number: | 6561874 | | Patent Number: | 6746310 | | Patent Number: | 6893322 | | Patent Number: | 6955589 | | Patent Number: | 6956657 | | Patent Number: | 7156724 | | Patent Number: | 7173691 | | Patent Number: | 7433057 | | Patent Number: | 7557566 | | Patent Number: | 7888929 | | Patent Number: | 8203719 | | Patent Number: | 8613640 | | Patent Number: | 8896293 | | Patent Number: | 8944883 | | Patent Number: | 9097612 | | Patent Number: | 9157010 | | Patent Number: | 8669304 | | Patent Number: | 8933149 | | Patent Number: | 9416331 | | Patent Number: | 9267094 | | Patent Number: | 6125871 | | Patent Number: | 6162370 | | Patent Number: | 6303514 | | Patent Number: | 6358899 | | Patent Number: | 5869570 | | Patent Number: | 5951946 | | Patent Number: | 6015779 | | Patent Number: | 6162773 | | Patent Number: | 6242395 | | Patent Number: | 6730750 | | Property Type | Number | |---------------------|----------| | Patent Number: | 6730752 | | Patent Number: | 6815011 | | Patent Number: | 6989357 | | Patent Number: | 7012046 | | Patent Number: | 7534403 | | Patent Number: | 7582708 | | Patent Number: | 8105547 | | Patent Number: | 8106114 | | Patent Number: | 8110150 | | Application Number: | 12673057 | | Application Number: | 13829990 | | Application Number: | 13955398 | | Application Number: | 14094921 | | Application Number: | 14209110 | | Application Number: | 14562589 | | Application Number: | 14611064 | | Application Number: | 14639434 | | Application Number: | 14686988 | | Application Number: | 14743583 | | Application Number: | 14823956 | | Application Number: | 14838460 | | Application Number: | 14875513 | | Application Number: | 14919404 | | Application Number: | 15042777 | | Application Number: | 15056198 | | Application Number: | 15091275 | | Application Number: | 15252567 | | Application Number: | 15273855 | | Application Number: | 15303696 | | Application Number: | 15346835 | | Application Number: | 15398933 | | Application Number: | 15399810 | | Application Number: | 15414786 | | Application Number: | 15433068 | | Application Number: | 15479779 | | Application Number: | 15564605 | | Application Number: | 15615591 | | Application Number: | 15629487 | | Property Type | Number | |---------------------|--------------| | Application Number: | 15649378 | | Application Number: | 15684470 | | Application Number: | 15706192 | | Application Number: | 15723886 | | Application Number: | 15784949 | | Application Number: | 15817959 | | Application Number: | 15825305 | | Application Number: | 15864720 | | Application Number: | 15866008 | | Application Number: | 15875773 | | Application Number: | 15920813 | | Application Number: | 15934219 | | Application Number: | 15951358 | | Application Number: | 15951598 | | Application Number: | 16000062 | | Application Number: | 16018281 | | Application Number: | 16131180 | | PCT Number: | US2016053283 | | PCT Number: | US2016058042 | | PCT Number: | US2017036203 | | PCT Number: | US2017038584 | | PCT Number: | US2017041988 | | PCT Number: | US2017056809 | | PCT Number: | US2017063586 | | PCT Number: | US2017067947 | | PCT Number: | US2018051012 | | PCT Number: | US2018054079 | | PCT Number: | US2018057478 | | PCT Number: | US1824067 | | PCT Number: | US1827234 | | PCT Number: | US1827281 | | PCT Number: | US1846429 | | Application Number: | 09624750 | | Application Number: | 10825718 | | Application Number: | 13961127 | | Application Number: | 15818386 | | Application Number: | 16290789 | | Application Number: | 16438162 | | Property Type | Number | |---------------------|----------| | Application Number: | 12630714 | | Application Number: | 13290015 | | Application Number: | 13290017 | | Application Number: | 14445003 | | Application Number: | 16228664 | | Application Number: | 15495873 | | Application Number: | 15723151 | | Application Number: | 16283592 | | Application Number: | 16283603 | | Application Number: | 16283607 | | Application Number: | 16283613 | | Application Number: | 16460877 | | Application Number: | 16460918 | | Application Number: | 16460929 | | Application Number: | 16460935 | | Application Number: | 16794068 | | Application Number: | 16684453 | | Application Number: | 16855841 | | Application Number: | 16872292 | | Application Number: | 13725827 | | Application Number: | 13971619 | | Application Number: | 15419840 | | Application Number: | 16136965 | | Application Number: | 16895106 | | Application Number: | 16664235 | | Application Number: | 17076989 | | Application Number: | 17077070 | | Application Number: | 17077155 | | Application Number: | 17077295 | | Application Number: | 17077414 | | Application Number: | 17077485 | | Application Number: | 17009961 | | Application Number: | 16513404 | | Application Number: | 16923688 | | Application Number: | 16868755 | | Application Number: | 16868965 | | Application Number: | 16849021 | | Application Number: | 16826409 | | Property Type | Number | |---------------------|----------| | Application Number: | 16729905 | | Application Number: | 16706991 | | Application Number: | 16208779 | | Application Number: | 16208703 | | Application Number: | 16389097 | | Application Number: | 16208797 | | Application Number: | 16208742 | | Application Number: | 16797438 | | Application Number: | 16271508 | | Application Number: | 16236962 | | Application Number: | 14577453 | #### **CORRESPONDENCE DATA** **Fax Number:** (800)914-4240 Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. **Phone:** 800-713-0755 Email: Michael.Violet@wolterskluwer.com, ECarrera@cahill.com Correspondent Name: CT CORPORATION Address Line 1: 4400 EASTON COMMONS WAY Address Line 2: SUITE 125 Address Line 4: COLUMBUS, OHIO 43219 | NAME OF SUBMITTER: | ELAINE CARRERA | |--------------------|------------------| | SIGNATURE: | /Elaine Carrera/ | | DATE SIGNED: | 07/06/2022 | #### **Total Attachments: 42** source=CMC - IP Release (Patents)#page1.tif source=CMC - IP Release (Patents)#page2.tif source=CMC - IP Release (Patents)#page3.tif source=CMC - IP Release (Patents)#page4.tif source=CMC - IP Release (Patents)#page5.tif source=CMC - IP Release (Patents)#page6.tif source=CMC - IP Release (Patents)#page7.tif source=CMC - IP Release (Patents)#page8.tif source=CMC - IP Release (Patents)#page9.tif source=CMC - IP Release (Patents)#page10.tif source=CMC - IP Release (Patents)#page11.tif source=CMC - IP Release (Patents)#page12.tif source=CMC - IP Release (Patents)#page13.tif source=CMC - IP Release (Patents)#page14.tif source=CMC - IP Release (Patents)#page15.tif source=CMC - IP Release (Patents)#page16.tif | | ORM COVER SHEET
IS ONLY | |---|---| | 300000000000000000000000000000000000000 | se record the attached documents or the new address(es) below | | 1. Name of conveying party(les) JPMORGAN CHASE BANK, N.A. | 2. Name and address of receiving party(ies) Name: CABOT MICROELECTRONICS CORPORATION Internal Address: | | Additional name(s) of conveying party(les) attached? | Street Address: 870 N. Commons Dr. City: Aurora | | ☐ Joint Research Agreement ☐ Government Interest Assignment ☐ Executive Order 9424, Confirmatory License ☐ Other Release of Security Interest | State: IL Country: USA Zip: 60504 Additional name(s) & address(es) attached? Yes No | | | document serves as an Oath/Declaration (37 CFR 1.63).
B. Patent No.(s)
See Schedule I | | 5. Name and address to whom correspondence concerning document should be mailed: | 6. Total number of applications and patents involved: 410 | | Name: Elaine Carrera, Senior Paralegal Internal Address: Street Address: c/o Cahill Gordon & Reindel LLP, 32 Old Slip | 7. Total fee (37 CFR 1.21(h) & 3.41) \$ Authorized to be charged to deposit account Enclosed None required (government interest not affecting title) | | City: New York | 8. Payment Information | | State: NY Zip: 10005 | | | Phone Number: (212) 701-3365 Docket Number: ecarrera@cahill.com | Deposit Account Number | | 9. Signature: Signature Elaine Carrera Name of Person Signing Documents to be recorded (including cover sheel Mail Stop Assignment Recordation Services, Director of | | ### Addendum to Cover Page of Patents Form Cover Sheet ## 2. Name and address of receiving party(ies) ## QED TECHNOLOGIES INTERNATIONAL, INC. 1040 University Avenue Rochester, NY 14607 FLOWCHEM LLC 43253 Old Houston Highway Waller, Texas 77484 #### KMG ELECTRONIC CHEMICALS, INC. 300 Throckmorton Street Fort Worth, Texas 76102 KMG-BERNUTH, INC. 300 Throckmorton Street Fort Worth, Texas 76102 MPOWER SPECIALTY CHEMICALS LLC 43253 Old Houston Highway Waller, Texas 77484 SEALWELD (USA), INC. 300 Throckmorton Street Fort Worth, Texas 76102 INTERNATIONAL TEST SOLUTIONS, LLC 870 N. Commons Dr. Aurora, IL 60504 CMC MATERIALS, INC. 870 N. Commons Dr. Aurora, IL 60504 #### RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY This RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY (this "Release"), dated as of July 6, 2022 (the "Effective Date"), is made by JPMORGAN CHASE BANK, N.A., in its capacity as Collateral Agent (the "Agent"), in favor of the grantor parties identified on the signature pages hereto (each a "Grantor" and, together, the "Grantors"). WHEREAS, pursuant to that certain Collateral Agreement, dated as of November 15, 2018, by and among the Agent, the Grantors and certain other parties thereto (as amended, restated, amended and restated, supplemented or otherwise modified from time to time, the "Collateral Agreement"), the Grantors granted to the Agent, in its capacity as Collateral Agent a security interest in and to
certain collateral; WHEREAS, pursuant to the Collateral Agreement, CABOT MICROELECTRONICS CORPORATION, QED TECHNOLOGIES INTERNATIONAL, INC., FLOWCHEM LLC, KMG ELECTRONIC CHEMICALS, INC., KMG-BERNUTH, INC., MPOWER SPECIALTY CHEMICALS LLC, and SEALWELD (USA), INC. each executed and delivered a Notice of Grant of Security Interest in Trademarks, dated as of November 15, 2018 (the "2018 Trademark Security Agreement"), for recordal with the United States Patent and Trademark Office; WHEREAS, the 2018 Trademark Security Agreement was recorded with the United States Patent and Trademark Office on November 16, 2018 at Reel/Frame 6483/0177; WHEREAS, pursuant to the Collateral Agreement, INTERNATIONAL TEST SOLUTIONS, LLC executed and delivered a Notice of Grant of Security Interest in Trademarks, dated as April 30, 2021 (the "ITS Trademark Security Agreement"), for recordal with the United States Patent and Trademark Office; WHEREAS, the ITS Trademark Security Agreement was recorded with the United States Patent and Trademark Office on April 30, 2021 at Reel/Frame 7276/0107; WHEREAS, pursuant to the Collateral Agreement, CMC MATERIALS, INC. executed and delivered a Notice of Grant of Security Interest in Trademarks, dated as July 2, 2021 (the "CMC Trademark Security Agreement" and, together with the 2018 Trademark Security Agreement and the ITS Trademark Security Agreement, the "Trademark Security Agreements"), for recordal with the United States Patent and Trademark Office; WHEREAS, the CMC Trademark Security Agreement was recorded with the United States Patent and Trademark Office on July 2, 2021 at Reel/Frame 7345/0418; WHEREAS, pursuant to the Collateral Agreement, CABOT MICROELECTRONICS CORPORATION, QED TECHNOLOGIES INTERNATIONAL, INC., FLOWCHEM LLC, KMG ELECTRONIC CHEMICALS, INC., and MPOWER SPECIALTY CHEMICALS LLC each executed and delivered a Notice of Grant of Security Interest in Patents, dated as of November 15, 2018 (the "2018 Patent Security Agreement"), for recordal with the United States Patent and Trademark Office; WHEREAS, the 2018 Patent Security Agreement was recorded with the United States Patent and Trademark Office on November 16, 2018 at Reel/Frame 047588/0263; WHEREAS, pursuant to the Collateral Agreement, INTERNATIONAL TEST SOLUTIONS, LLC executed and delivered a Notice of Grant of Security Interest in Patents, dated as April 30, 2021 (the "ITS Patent Security Agreement"), for recordal with the United States Patent and Trademark Office; WHEREAS, the ITS Patent Security Agreement was recorded with the United States Patent and Trademark Office on April 30, 2021 at Reel/Frame 056104/0979; WHEREAS, pursuant to the Collateral Agreement, CMC MATERIALS, INC. executed and delivered a Notice of Grant of Security Interest in Patents, dated as July 2, 2021 (the "CMC Patent Security Agreement" and, together with the 2018 Patent Security Agreement and the ITS Patent Security Agreement, the "Patent Security Agreements"), for recordal with the United States Patent and Trademark Office; WHEREAS, the CMC Patent Security Agreement was recorded with the United States Patent and Trademark Office on July 2, 2021 at Reel/Frame 056752/0645; NOW, THEREFORE, for good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, the Agent hereby agrees as follows: - 1. <u>Defined Terms</u>. All capitalized terms used, but not otherwise defined herein, shall have the respective meanings ascribed in or otherwise referenced in the Collateral Agreement, the Trademark Security Agreements or the Patent Security Agreements, as applicable. - 2. Release. The Agent, without representation or warranty of any kind, hereby releases, fully discharges, terminates and cancels all of its continuing security interest in and to the IP Collateral, including the patents and patent applications set forth on Schedule I attached hereto and the trademark registrations and applications set forth on Schedule II attached hereto, in each case arising under the Collateral Agreement, the Trademark Security Agreements and the Patent Security Agreements, as applicable. If and to the extent that the Agent has acquired any right, title or interest in and to the IP Collateral under the Collateral Agreement, Trademark Security Agreements or the Patent Security Agreements, the Agent, without representation or warranty of any kind, hereby re-transfers, re-conveys and re-assigns such right, title or interest to the applicable Grantors. - 3. <u>Termination</u>. The Agent, without representation or warranty of any kind, terminates and cancels the Trademark Security Agreements and the Patent Security Agreements. - 4. <u>Further Assurances</u>. The Agent agrees to take all further actions, and provide to the Grantors and their successors, assigns or other legal representatives, all such cooperation and assistance (including, without limitation, the execution and delivery of any and all documents or other instruments), reasonably requested by the Grantors, at the Grantors' sole cost and expense, to more fully and effectively effectuate the purposes of this Release. - 5. <u>Governing Law</u>. This Release shall be governed exclusively under the laws of the State of New York, without regard to conflicts of law or choice of law principles. - 6. <u>Counterparts</u>. This Release may be executed in any number of counterparts, each of which shall be an original, and all of which, when taken together, shall constitute one agreement. The words "execution," "signed," "signature," "delivery," and words of like import in or relating to this Release and/or any document to be signed in connection with this Release and the transactions contemplated hereby shall be deemed to include Electronic Signatures (as defined below), deliveries or the keeping of records in electronic form, each of which shall be of the same legal effect, validity or enforceability as a manually executed signature, physical delivery thereof or the use of a paper-based recordkeeping system, as the case may be. "<u>Electronic Signatures</u>" means any electronic symbol or process attached to, or associated with, any contract or other record and adopted by a person with the intent to sign, authenticate or accept such contract or record. [Signature Pages Follow] IN WITNESS WHEREOF, the Agent has caused this Release to be executed by its duly authorized representative as of the Effective Date: JPMORGAN CHASE BANK, N.A. acting in its capacity as Collateral Agent By: EAJKW Name: Eleftherios Karsos Title: Authorized Officer #### **GRANTORS:** CABOT MICROELECTRONICS CORPORATION QED TECHNOLOGIES INTERNATIONAL, INC. FLOWCHEM LLC KMG ELECTRONIC CHEMICALS, INC. KMG-BERNUTH, INC. MPOWER SPECIALTY CHEMICALS LLC SEALWELD (USA), INC. INTERNATIONAL TEST SOLUTIONS, LLC CMC MATERIALS, INC. # **SCHEDULE I** # Release of Notice of Grant of Security Interest in Patents recorded November 16, 2018 at Reel/Frame 047588/0263 ## **Patents** #### **UNITED STATES PATENTS:** U.S. Patent Registrations: | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|--| | 1. | CABOT MICROELECTRONICS
CORPORATION | 10,029,345 | METHODS AND COMPOSITIONS FOR PROCESSING DIELECTRIC SUBSTRATE | | 2. | CABOT MICROELECTRONICS
CORPORATION | 10,066,126 | TUNGSTEN PROCESSING SLURRY WITH CATALYST | | 3. | CABOT MICROELECTRONICS
CORPORATION | 6,293,848 | COMPOSITION AND METHOD FOR PLANARIZING SURFACES | | 4. | CABOT MICROELECTRONICS
CORPORATION | 10,100,272 | CLEANING COMPOSITION FOLLOWING CMP AND METHODS RELATED THERETO | | 5. | CABOT MICROELECTRONICS
CORPORATION | 6,316,365 | CHEMICAL-MECHANICAL POLISHING METHOD | | 6. | CABOT MICROELECTRONICS
CORPORATION | 6,319,096 | COMPOSITION AND METHOD FOR PLANARIZING SURFACES | | 7. | CABOT MICROELECTRONICS
CORPORATION | 6,347,978 | COMPOSITION AND METHOD FOR POLISHING RIGID DISKS | | 8. | CABOT MICROELECTRONICS
CORPORATION | 6,348,076 | SLURRY FOR MECHANICAL POLISHING (CMP) OF
METALS AND USE THEREOF | | 9. | CABOT MICROELECTRONICS
CORPORATION | 6,350,393 | USE OF CSOH IN A DIELECTRIC CMP SLURRY | | 10. | CABOT MICROELECTRONICS
CORPORATION | 6,375,693 | CHEMICAL-MECHANICAL PLANARIZATION OF
BARRIERS OR LINERS FOR COPPER METALLURGY | | 11. | CABOT MICROELECTRONICS
CORPORATION | 6,383,065 | CATALYTIC REACTIVE PAD FOR METAL CMP | | 12. | CABOT MICROELECTRONICS
CORPORATION | 6,395,693 | CLEANING SOLUTION FOR SEMICONDUCTOR
SURFACES FOLLOWING CHEMICAL-MECHANICAL
POLISHING | | 13. | CABOT MICROELECTRONICS
CORPORATION | 6,409,781 | POLISHING SLURRIES FOR COPPER AND ASSOCIATED MATERIALS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|---| | 14. | CABOT MICROELECTRONICS
CORPORATION | 6,461,227 | METHOD OF POLISHING A MEMORY OR RIGID DISK
WITH AN AMMONIA AND/OR HALIDE CONTAINING
COMPOSITION | | 15. | CABOT MICROELECTRONICS
CORPORATION | 6,468,137 | METHOD FOR POLISHING A MEMORY OR RIGID
DISK WITH AN OXIDIZED HALIDE-CONTAINING
POLISHING SYSTEM | | 16. | CABOT MICROELECTRONICS
CORPORATION | 6,471,884 | METHOD FOR POLISHING A MEMORY OR RIGID DISK WITH AN AMINO ACID-CONTAINING COMPOSITION | | 17. | CABOT MICROELECTRONICS
CORPORATION | 6,527,622 | CMP METHOD FOR NOBLE METALS | | 18. | CABOT MICROELECTRONICS
CORPORATION | 6,527,817 | COMPOSITION AND METHOD FOR PLANARIZING SURFACES | | 19. | CABOT MICROELECTRONICS
CORPORATION | 6,527,819 | POLISHING SLURRIES FOR COPPER AND ASSOCIATED MATERIALS | | 20. | CABOT MICROELECTRONICS
CORPORATION | 6,541,434 | CLEANING SOLUTION FOR SEMICONDUCTOR
SURFACES FOLLOWING CHEMICAL-MECHANICAL
POLISHING | | 21. | CABOT MICROELECTRONICS
CORPORATION |
6,569,350
(Expired) | CHEMICAL MECHANICAL POLISHING SLURRY USEFUL FOR COPPER SUBSTRATES | | 22. | CABOT MICROELECTRONICS
CORPORATION | 6,582,623 | CMP COMPOSITION CONTAINING SILANE
MODIFIED ABRASIVE PARTICLES | | 23. | CABOT MICROELECTRONICS
CORPORATION | 6,589,100 | RARE EARTH SALT/OXIDIZER-BASED CMP
METHOD | | 24. | CABOT MICROELECTRONICS
CORPORATION | 6,592,776 | POLISHING COMPOSITION FOR METAL CMP | | 25. | CABOT MICROELECTRONICS
CORPORATION | 6,623,331 | POLISHING DISK WITH END-POINT DETECTION PORT | | 26. | CABOT MICROELECTRONICS
CORPORATION | 6,632,377 | CHEMICAL-MECHANICAL PLANARIZATION OF METALLURGY | | 27. | CABOT MICROELECTRONICS
CORPORATION | 6,641,632 | POLISHING COMPOSITIONS AND USE THEREOF | | 28. | CABOT MICROELECTRONICS
CORPORATION | 6,646,348 | SILANE CONTAINING POLISHING COMPOSITION
FOR CMP | | 29. | CABOT MICROELECTRONICS
CORPORATION | 6,682,575 | METHANOL-CONTAINING SILICA-BASED CMP
COMPOSITIONS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|---| | 30. | CABOT MICROELECTRONICS
CORPORATION | 6,705,926 | BORON-CONTAINING POLISHING SYSTEM AND METHOD | | 31. | CABOT MICROELECTRONICS
CORPORATION | 6,767,476
(Expired) | POLISHING COMPOSITION FOR METAL CMP | | 32. | CABOT MICROELECTRONICS
CORPORATION | 6,776,810 | ANIONIC ABRASIVE PARTICLES TREATED WITH POSITIVELY CHARGED POLYELECTROLYTES FOR CMP | | 33. | CABOT MICROELECTRONICS
CORPORATION | 6,811,474 | POLISHING COMPOSITION CONTAINING CONDUCTING POLYMER | | 34. | CABOT MICROELECTRONICS
CORPORATION | 6,812,193 | SLURRY FOR MECHANICAL POLISHING (CMP) OF
METALS AND USE THEREOF | | 35. | CABOT MICROELECTRONICS
CORPORATION | 6,821,897 | METHOD FOR COPPER CMP USING POLYMERIC COMPLEXING AGENTS | | 36. | CABOT MICROELECTRONICS
CORPORATION | 6,830,503 | CATALYST/OXIDIZER-BASED CMP SYSTEM FOR ORGANIC POLYMER FILMS | | 37. | CABOT MICROELECTRONICS
CORPORATION | 6,840,843 | METHOD FOR MANUFACTURING A POLISHING PAD HAVING A COMPRESSED TRANSLUCENT REGION | | 38. | CABOT MICROELECTRONICS
CORPORATION | 6,840,971 | CHEMICAL MECHANICAL POLISHING SYSTEMS
AND METHODS FOR THEIR USE | | 39. | CABOT MICROELECTRONICS
CORPORATION | 6,852,632 | METHOD OF POLISHING A MULTI-LAYER
SUBSTRATE | | 40. | CABOT MICROELECTRONICS
CORPORATION | 6,855,266 | POLISHING SYSTEM WITH STOPPING COMPOUND AND METHOD OF ITS USE | | 41. | CABOT MICROELECTRONICS
CORPORATION | 6,867,140 | METHOD OF POLISHING A MULTI-LAYER
SUBSTRATE | | 42. | CABOT MICROELECTRONICS
CORPORATION | 6,872,328 | METHOD OF POLISHING OR PLANARIZING A
SUBSTRATE | | 43. | CABOT MICROELECTRONICS
CORPORATION | 6,884,156 | MULTI-LAYER POLISHING PAD MATERIAL FOR CMP | | 44. | CABOT MICROELECTRONICS
CORPORATION | 6,896,591 | MIXED-ABRASIVE POLISHING COMPOSITION AND METHOD FOR USING THE SAME | | 45. | CABOT MICROELECTRONICS
CORPORATION | 6,896,593 | MICROPOROUS POLISHING PADS | | 46. | CABOT MICROELECTRONICS
CORPORATION | 6,899,598 | MICROPOROUS POLISHING PADS | | 47. | CABOT MICROELECTRONICS
CORPORATION | 6,913,517 | MICROPOROUS POLISHING PADS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|--| | 48. | CABOT MICROELECTRONICS
CORPORATION | 6,935,931 | MICROPOROUS POLISHING PADS | | 49. | CABOT MICROELECTRONICS
CORPORATION | 6,936,542 | POLISHING SLURRIES FOR COPPER AND ASSOCIATED MATERIALS | | 50. | CABOT MICROELECTRONICS
CORPORATION | 6,936,543 | USE OF NON-IONIC SURFACTANTS TO REDUCE TA
AND OXIDE REMOVAL RATE | | 51. | CABOT MICROELECTRONICS
CORPORATION | 6,960,120 | CMP PAD WITH COMPOSITE TRANSPARENT WINDOW | | 52. | CABOT MICROELECTRONICS
CORPORATION | 6,974,777 | CMP COMPOSITIONS FOR LOW-K DIELECTRIC MATERIALS | | 53. | CABOT MICROELECTRONICS
CORPORATION | 6,997,777 | ULTRASONIC WELDING METHOD FOR THE
MANUFACTURE OF A POLISHING PAD COMPRISING
AN | | | | | OPTICALLY TRANSMISSIVE REGION | | 54. | CABOT MICROELECTRONICS
CORPORATION | 6,998,166 | POLISHING PAD WITH ORIENTED PORE
STRUCTURE | | 55. | CABOT MICROELECTRONICS
CORPORATION | 7,004,819 | CMP SYSTEMS AND METHODS UTILIZING AMINE-
CONTAINING POLYMERS | | 56. | CABOT MICROELECTRONICS
CORPORATION | 7,044,836 | COATED METAL OXIDE PARTICLES FOR CMP | | 57. | CABOT MICROELECTRONICS
CORPORATION | 7,059,936 | LOW SURFACE ENERGY CMP PAD | | 58. | CABOT MICROELECTRONICS
CORPORATION | 7,097,541 | CMP METHOD FOR NOBLE METALS | | 59. | CABOT MICROELECTRONICS
CORPORATION | 7,160,807 | CMP OF NOBLE METALS | | 60. | CABOT MICROELECTRONICS
CORPORATION | 7,161,247 | POLISHING COMPOSITION FOR NOBLE METALS | | 61. | CABOT MICROELECTRONICS
CORPORATION | 7,195,539 | POLISHING PAD WITH RECESSED WINDOW | | 62. | CABOT MICROELECTRONICS
CORPORATION | 7,195,544 | CMP POROUS PAD WITH COMPONENT-FILLED PORES | | 63. | CABOT MICROELECTRONICS
CORPORATION | 7,198,549 | CONTINUOUS CONTOUR POLISHING OF A MULTI-
MATERIAL SURFACE | | 64. | CABOT MICROELECTRONICS
CORPORATION | 7,204,742 | POLISHING PAD COMPRISING HYDROPHOBIC
REGION AND ENDPOINT DETECTION PORT | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|--| | 65. | CABOT MICROELECTRONICS
CORPORATION | 7,238,618 | SYSTEM FOR THE PREFERENTIAL REMOVAL OF SILICON OXIDE | | 66. | CABOT MICROELECTRONICS
CORPORATION | 7,247,567 | METHOD OF POLISHING A TUNGSTEN-
CONTAINING SUBSTRATE | | 67. | CABOT MICROELECTRONICS
CORPORATION | 7,255,810 | POLISHING SYSTEM COMPRISING A HIGHLY BRANCHED POLYMER | | 68. | CABOT MICROELECTRONICS
CORPORATION | 7,265,055 | CMP OF COPPER/RUTHENIUM SUBSTRATES | | 69. | CABOT MICROELECTRONICS
CORPORATION | 7,267,607 | TRANSPARENT MICROPOROUS MATERIALS FOR CMP | | 70. | CABOT MICROELECTRONICS
CORPORATION | 7,288,021 | CHEMICAL-MECHANICAL POLISHING OF METALS IN AN OXIDIZED FORM | | 71. | CABOT MICROELECTRONICS
CORPORATION | 7,294,576 | TUNABLE SELECTIVITY SLURRIES IN CMP
APPLICATIONS | | 72. | CABOT MICROELECTRONICS
CORPORATION | 7,306,637 | ANIONIC ABRASIVE PARTICLES TREATED WITH POSITIVELY CHARGED POLYELECTROLYTES FOR CMP | | 73. | CABOT MICROELECTRONICS
CORPORATION | 7,311,856 | POLYMERIC INHIBITORS FOR ENHANCED PLANARIZATION | | 74. | CABOT MICROELECTRONICS
CORPORATION | 7,311,862 | METHOD FOR MANUFACTURING MICROPOROUS
CMP MATERIALS HAVING CONTROLLED PORE SIZE | | 75. | CABOT MICROELECTRONICS
CORPORATION | 7,316,603 | COMPOSITIONS AND METHODS FOR TANTALUM CMP | | 76. | CABOT MICROELECTRONICS
CORPORATION | 7,354,530 | CHEMICAL MECHANICAL POLISHING SYSTEMS
AND METHODS FOR THEIR USE | | 77. | CABOT MICROELECTRONICS
CORPORATION | 7,368,066 | GOLD CMP COMPOSITION AND METHOD | | 78. | CABOT MICROELECTRONICS
CORPORATION | 7,377,840 | METHODS FOR PRODUCING IN-SITU GROOVES IN CHEMICAL MECHANICAL PLANARIZATION (CMP) PADS, AND NOVEL CMP PAD DESIGNS | | 79. | CABOT MICROELECTRONICS
CORPORATION | 7,381,648 | CHEMICAL MECHANICAL POLISHING SLURRY USEFUL FOR COPPER SUBSTRATES | | 80. | CABOT MICROELECTRONICS
CORPORATION | 7,425,172 | CUSTOMIZED POLISH PADS FOR CHEMICAL MECHANICAL PLANARIZATION | | 81. | CABOT MICROELECTRONICS
CORPORATION | 7,427,567 | POLISHING SLURRIES FOR COPPER AND
ASSOCIATED MATERIALS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|------------------------|--| | 82. | CABOT MICROELECTRONICS
CORPORATION | 7,435,161 | MULTI-LAYER POLISHING PAD MATERIAL FOR CMP | | 83. | CABOT MICROELECTRONICS
CORPORATION | 7,435,165 | TRANSPARENT MICROPOROUS MATERIALS FOR CMP | | 84. | CABOT MICROELECTRONICS
CORPORATION | 7,442,645 | METHOD OF POLISHING A SILICON-CONTAINING DIELECTRIC | | 85. | CABOT MICROELECTRONICS
CORPORATION | 7,447,298 | DECONTAMINATION AND STERILIZATION SYSTEM USING LARGE AREA X-RAY SOURCE | | 86. | CABOT MICROELECTRONICS
CORPORATION | 7,456,107 | COMPOSITIONS AND METHODS FOR CMP OF LOW-
K DIELECTRIC MATERIALS | | 87. | CABOT MICROELECTRONICS
CORPORATION | 7,485,241 | CHEMICAL MECHANICAL POLISHING COMPOSITION AND METHOD FOR USING THE SAME | | 88. | CABOT MICROELECTRONICS
CORPORATION | 7,501,346 | GALLIUM AND CHROMIUM IONS FOR OXIDE RATE ENHANCEMENT | | 89. | CABOT MICROELECTRONICS
CORPORATION | 7,504,044 | POLISHING COMPOSITION AND METHOD FOR HIGH
SILICON NITRIDE TO SILICON OXIDE REMOVAL
RATE RATIOS | | 90. | CABOT MICROELECTRONICS
CORPORATION | 7,524,347 | CMP COMPOSITION COMPRISING SURFACTANT | | 91. | CABOT MICROELECTRONICS
CORPORATION | 7,531,105 | POLISHING COMPOSITION AND METHOD FOR HIGH
SILICON NITRIDE TO SILICON OXIDE REMOVAL
RATE RATIOS | | 92. | CABOT MICROELECTRONICS
CORPORATION | 7,563,383 | CMP COMPOSITION WITH A POLYMER ADDITIVE FOR POLISHING NOBLE METALS | | 93. | CABOT MICROELECTRONICS
CORPORATION | 7,582,127 | METHOD OF POLISHING A TUNGSTEN-
CONTAINING SUBSTRATE | | 94. | CABOT MICROELECTRONICS
CORPORATION | 7,585,340 | POLISHING COMPOSITION CONTAINING POLYETHER AMINE | | 95. | CABOT MICROELECTRONICS
CORPORATION | 7,677,956 | COMPOSITIONS AND METHODS FOR DIELECTRIC CMP | | 96. | CABOT MICROELECTRONICS
CORPORATION | 7,678,700 | SILICON CARBIDE POLISHING METHOD UTILIZING WATER-SOLUBLE OXIDIZERS | | 97. | CABOT MICROELECTRONICS
CORPORATION | 7,704,122 | CUSTOMIZED POLISH PADS FOR CHEMICAL MECHANICAL PLANARIZATION | | 98. | CABOT MICROELECTRONICS
CORPORATION | 7,704,125 | CUSTOMIZED POLISH PADS FOR CMP AND METHODS OF FABRICATION AND USE THEREOF | |
 OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|---| | 99. | CABOT MICROELECTRONICS
CORPORATION | 7,754,098 | CHEMICAL MECHANICAL POLISHING
COMPOSITION AND METHOD FOR USING THE
SAME | | 100. | CABOT MICROELECTRONICS
CORPORATION | 7,776,230 | CMP SYSTEM UTILIZING HALOGEN ADDUCT | | 101. | CABOT MICROELECTRONICS
CORPORATION | 7,803,203 | COMPOSITIONS AND METHODS FOR CMP OF SEMICONDUCTOR MATERIALS | | 102. | CABOT MICROELECTRONICS
CORPORATION | 7,803,711 | LOW PH BARRIER SLURRY BASED ON TITANIUM DIOXIDE | | 103. | CABOT MICROELECTRONICS
CORPORATION | 7,820,067 | HALIDE ANIONS FOR METAL REMOVAL RATE CONTROL | | 104. | CABOT MICROELECTRONICS
CORPORATION | 7,837,888 | COMPOSITION AND METHOD FOR DAMASCENE CMP | | 105. | CABOT MICROELECTRONICS
CORPORATION | 7,846,842 | POLISHING COMPOSITION AND METHOD FOR HIGH
SILICON NITRIDE TO SILICON OXIDE REMOVAL
RATE RATIOS | | 106. | CABOT MICROELECTRONICS
CORPORATION | 7,897,061 | COMPOSITIONS AND METHODS FOR CMP OF PHASE CHANGE ALLOYS COMPOSITIONS AND METHODS FOR CMP OF PHASE CHANGE ALLOYS | | 107. | CABOT MICROELECTRONICS
CORPORATION | 7,922,926 | COMPOSITION AND METHOD FOR POLISHING
NICKEL-PHOSPHOROUS-COATED ALUMINUM
HARD DISKS | | 108. | CABOT MICROELECTRONICS
CORPORATION | 7,955,519 | COMPOSITION AND METHOD FOR PLANARIZING SURFACES | | 109. | CABOT MICROELECTRONICS
CORPORATION | 7,955,520 | COPPER-PASSIVATING CMP COMPOSITIONS AND METHODS | | 110. | CABOT MICROELECTRONICS
CORPORATION | 7,994,057 | POLISHING COMPOSITION AND METHOD
UTILIZING ABRASIVE PARTICLES TREATED WITH
AN AMINOSILANE | | 111. | CABOT MICROELECTRONICS
CORPORATION | 7,998,228 | TANTALUM CMP COMPOSITIONS AND METHODS | | 112. | CABOT MICROELECTRONICS
CORPORATION | 7,998,866 | SILICON CARBIDE POLISHING METHOD UTILIZING WATER-SOLUBLE OXIDIZERS | | 113. | CABOT MICROELECTRONICS
CORPORATION | 8,008,202 | RUTHENIUM CMP COMPOSITIONS AND METHODS | | 114. | CABOT MICROELECTRONICS
CORPORATION | 8,017,524 | STABLE, HIGH RATE SILICON SLURRY | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|--| | 115. | CABOT MICROELECTRONICS
CORPORATION | 8,038,752 | METAL ION-CONTAINING CMP COMPOSITION AND METHOD FOR USING THE SAME | | 116. | CABOT MICROELECTRONICS
CORPORATION | 8,057,561 | POLYOXOMETALATE COMPOSITIONS AND METHODS | | 117. | CABOT MICROELECTRONICS
CORPORATION | 8,062,096 | USE OF CMP FOR ALUMINUM MIRROR AND SOLAR CELL FABRICATION | | 118. | CABOT MICROELECTRONICS
CORPORATION | 8,075,372 | POLISHING PAD WITH MICROPOROUS REGIONS | | 119. | CABOT MICROELECTRONICS
CORPORATION | 8,101,093 | CHEMICAL-MECHANICAL POLISHING COMPOSITION AND METHOD FOR USING THE SAME | | 120. | CABOT MICROELECTRONICS
CORPORATION | 8,138,091 | POLISHING COMPOSITION AND METHOD FOR HIGH
SILICON NITRIDE TO SILICON OXIDE REMOVAL
RATE RATIOS | | 121. | CABOT MICROELECTRONICS
CORPORATION | 8,157,876 | SLURRY COMPOSITION CONTAINING NON-IONIC POLYMER AND METHOD FOR USE | | 122. | CABOT MICROELECTRONICS
CORPORATION | 8,162,723 | METHOD OF POLISHING A TUNGSTEN CARBIDE SURFACE | | 123. | CABOT MICROELECTRONICS
CORPORATION | 8,226,841 | POLISHING COMPOSITION FOR NICKEL-
PHOSPHOROUS MEMORY DISKS | | 124. | CABOT MICROELECTRONICS
CORPORATION | 8,247,326 | METHOD OF POLISHING NICKEL-PHOSPHOROUS | | 125. | CABOT MICROELECTRONICS
CORPORATION | 8,247,327 | METHODS AND COMPOSITIONS FOR POLISHING SILICON-CONTAINING SUBSTRATES | | 126. | CABOT MICROELECTRONICS
CORPORATION | 8,247,328 | POLISHING SILICON CARBIDE | | 127. | CABOT MICROELECTRONICS
CORPORATION | 8,251,777 | POLISHING SLURRY FOR ALUMINUM AND ALUMINUM ALLOYS | | 128. | CABOT MICROELECTRONICS
CORPORATION | 8,252,687 | BARRIER SLURRY FOR LOW-K DIELECTRICS | | 129. | CABOT MICROELECTRONICS
CORPORATION | 8,273,142 | SILICON POLISHING COMPOSITIONS WITH HIGH
RATE AND LOW DEFECTIVITY | | 130. | CABOT MICROELECTRONICS
CORPORATION | 8,287,793 | METHODS FOR PRODUCING IN-SITU GROOVES IN
CHEMICAL MECHANICAL PLANARIZATION (CMP)
PADS, AND NOVEL CMP PAD DESIGNS | | 131. | CABOT MICROELECTRONICS
CORPORATION | 8,380,339 | CUSTOMIZED POLISH PADS FOR CHEMICAL MECHANICAL PLANARIZATION | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|---| | 132. | CABOT MICROELECTRONICS
CORPORATION | 8,383,003 | POLISHING SYSTEMS | | 133. | CABOT MICROELECTRONICS
CORPORATION | 8,425,797 | COMPOSITIONS FOR POLISHING
ALUMINUM/COPPER AND TITANIUM IN
DAMASCENE STRUCTURES | | 134. | CABOT MICROELECTRONICS
CORPORATION | 8,435,421 | METAL-PASSIVATING CMP COMPOSITIONS AND METHODS | | 135. | CABOT MICROELECTRONICS
CORPORATION | 8,439,994 | METHOD OF FABRICATING A POLISHING PAD WITH
AN END-POINT DETECTION REGION FOR EDDY
CURRENT END-POINT DETECTION | | 136. | CABOT MICROELECTRONICS
CORPORATION | 8,486,169 | METHOD OF POLISHING A SILICON-CONTAINING DIELECTRIC | | 137. | CABOT MICROELECTRONICS
CORPORATION | 8,497,209 | OXIDATION-STABILIZED CMP COMPOSITIONS AND METHODS | | 138. | CABOT MICROELECTRONICS
CORPORATION | 8,518,135 | POLISHING COMPOSITION CONTAINING HYBRID
ABRASIVE FOR NICKEL-PHOSPHOROUS COATED
MEMORY DISKS | | 139. | CABOT MICROELECTRONICS
CORPORATION | 8,529,680 | COMPOSITIONS FOR CMP OF SEMICONDUCTOR MATERIALS | | 140. | CABOT MICROELECTRONICS
CORPORATION | 8,541,310 | CMP COMPOSITIONS CONTAINING A SOLUBLE PEROXOMETALATE COMPLEX AND METHODS OF USE THEREOF | | 141. | CABOT MICROELECTRONICS
CORPORATION | 8,551,202 | IODATE-CONTAINING CHEMICAL-MECHANICAL POLISHING COMPOSITIONS AND METHODS | | 142. | CABOT MICROELECTRONICS
CORPORATION | 8,557,137 | POLISHING COMPOSITION FOR NICKEL-
PHOSPHOROUS MEMORY DISKS | | 143. | CABOT MICROELECTRONICS
CORPORATION | 8,591,763 | HALIDE ANIONS FOR METAL REMOVAL RATE
CONTROL | | 144. | CABOT MICROELECTRONICS
CORPORATION | 8,597,538 | COMPOSITION FOR IMPROVING DRYNESS DURING WIRE SAWING | | 145. | CABOT MICROELECTRONICS
CORPORATION | 8,597,540 | COMPOSITIONS FOR POLISHING SILICON-
CONTAINING SUBSTRATES | | 146. | CABOT MICROELECTRONICS
CORPORATION | 8,623,766 | COMPOSITION AND METHOD FOR POLISHING ALUMINUM SEMICONDUCTOR SUBSTRATES | | 147. | CABOT MICROELECTRONICS
CORPORATION | 8,623,767 | METHOD FOR POLISHING ALUMINUM/COPPER AND TITANIUM IN DAMASCENE STRUCTURES | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|---| | 148. | CABOT MICROELECTRONICS
CORPORATION | 8,628,384 | POLISHING PAD FOR EDDY CURRENT END-POINT DETECTION | | 149. | CABOT MICROELECTRONICS
CORPORATION | 8,637,404 | METAL CATIONS FOR INITIATING POLISHING | | 150. | CABOT MICROELECTRONICS
CORPORATION | 8,657,653 | HOMOGENEOUS POLISHING PAD FOR EDDY
CURRENT END-POINT DETECTION | | 151. | CABOT MICROELECTRONICS
CORPORATION | 8,691,695 | CMP COMPOSITIONS AND METHODS FOR SUPPRESSING POLYSILICON REMOVAL RATES | | 152. | CABOT MICROELECTRONICS
CORPORATION | 8,697,576 | COMPOSITION AND METHOD FOR POLISHING POLYSILICON | | 153. | CABOT MICROELECTRONICS
CORPORATION | 8,702,479 | POLISHING PAD WITH MULTI-MODAL
DISTRIBUTION OF PORE DIAMETERS | | 154. | CABOT MICROELECTRONICS
CORPORATION | 8,715,035 | CUSTOMIZED POLISHING PADS FOR CMP AND METHODS OF FABRICATION AND USE THEREOF | | 155. | CABOT MICROELECTRONICS
CORPORATION | 8,741,009 | POLISHING COMPOSITION CONTAINING POLYETHER AMINE | | 156. | CABOT MICROELECTRONICS
CORPORATION | 8,759,216 | COMPOSITIONS AND METHODS FOR POLISHING SILICON NITRIDE MATERIALS | | 157. | CABOT MICROELECTRONICS
CORPORATION | 8,778,211 | GST CMP SLURRIES | | 158. | CABOT MICROELECTRONICS
CORPORATION | 8,778,212 | CMP COMPOSITION CONTAINING ZIRCONIA
PARTICLES AND METHOD OF USE | | 159. | CABOT MICROELECTRONICS
CORPORATION | 8,808,573 | COMPOSITIONS AND METHODS FOR SELECTIVE POLISHING OF SILICON NITRIDE MATERIALS | | 160. | CABOT MICROELECTRONICS
CORPORATION | 8,815,110 | COMPOSITION AND METHOD FOR POLISHING
BULK SILICON | | 161. | CABOT MICROELECTRONICS
CORPORATION | 8,821,215 | POLYPYRROLIDONE POLISHING COMPOSITION
AND METHOD | | 162. | CABOT MICROELECTRONICS
CORPORATION | 8,864,859 | CUSTOMIZED POLISH PADS FOR CMP AND METHODS OF FABRICATION AND USE THEREOF | | 163. | CABOT MICROELECTRONICS
CORPORATION | 8,883,034 | COMPOSITION AND METHOD FOR POLISHING
BULK SILICON | | 164. | CABOT MICROELECTRONICS
CORPORATION | 8,906,252 | CMP COMPOSITIONS SELECTIVE FOR OXIDE AND NITRIDE WITH HIGH REMOVAL RATE AND LOW DEFECTIVITY | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|--| | 165. | CABOT MICROELECTRONICS
CORPORATION | 8,916,061 | CMP COMPOSITIONS SELECTIVE FOR OXIDE AND NITRIDE WITH HIGH REMOVAL RATE AND LOW DEFECTIVITY | | 166. | CABOT MICROELECTRONICS
CORPORATION | 8,920,219 | POLISHING PAD WITH ALIGNMENT APERTURE | | 167. | CABOT MICROELECTRONICS
CORPORATION | 8,920,667 | CHEMICAL-MECHANICAL POLISHING
COMPOSITION CONTAINING ZIRCONIA AND
METAL OXIDIZER | | 168. | CABOT MICROELECTRONICS
CORPORATION | 8,932,116 | METHODS FOR PRODUCING IN-SITU GROOVES IN
CHEMICAL MECHANICAL PLANARIZATION (CMP)
PADS, AND NOVEL CMP PAD DESIGNS
 | 169. | CABOT MICROELECTRONICS
CORPORATION | 8,960,177 | WIRESAW CUTTING METHOD | | 170. | CABOT MICROELECTRONICS
CORPORATION | 8,961,807 | CMP COMPOSITIONS WITH LOW SOLIDS CONTENT
AND METHODS RELATED THERETO | | 171. | CABOT MICROELECTRONICS
CORPORATION | 8,968,058 | POLISHING PAD WITH ALIGNMENT FEATURE | | 172. | CABOT MICROELECTRONICS
CORPORATION | 9,017,140 | CMP PAD WITH LOCAL AREA TRANSPARENCY | | 173. | CABOT MICROELECTRONICS
CORPORATION | 9,028,302 | POLISHING PAD FOR EDDY CURRENT END-POINT DETECTION | | 174. | CABOT MICROELECTRONICS
CORPORATION | 9,028,572 | POLISHING COMPOSITION AND METHOD
UTILIZING ABRASIVE PARTICLES TREATED WITH
AN AMINOSILANE | | 175. | CABOT MICROELECTRONICS
CORPORATION | 9,039,914 | POLISHING COMPOSITION FOR NICKEL-
PHOSPHOROUS-COATED MEMORY DISKS | | 176. | CABOT MICROELECTRONICS
CORPORATION | 9,067,297 | POLISHING PAD WITH FOUNDATION LAYER AND POLISHING SURFACE LAYER | | 177. | CABOT MICROELECTRONICS
CORPORATION | 9,067,298 | POLISHING PAD WITH GROOVED FOUNDATION LAYER AND POLISHING SURFACE LAYER | | 178. | CABOT MICROELECTRONICS
CORPORATION | 9,074,118 B2 | CMP METHOD FOR METAL-CONTAINING SUBSTRATES | | 179. | CABOT MICROELECTRONICS
CORPORATION | 9,127,187 | MIXED ABRASIVE TUNGSTEN CMP COMPOSITION | | 180. | CABOT MICROELECTRONICS
CORPORATION | 9,129,907 | ONIUM-CONTAINING CMP COMPOSITIONS AND METHODS OF USE THEREOF | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|--| | 181. | CABOT MICROELECTRONICS
CORPORATION | 9,156,124 | SOFT POLISHING PAD FOR POLISHING A
SEMICONDUCTOR SUBSTRATE | | 182. | CABOT MICROELECTRONICS
CORPORATION | 9,156,125 | POLISHING PAD WITH LIGHT-STABLE LIGHT-
TRANSMITTING REGION | | 183. | CABOT MICROELECTRONICS
CORPORATION | 9,165,489 | CMP COMPOSITIONS SELECTIVE FOR OXIDE OVER POLYSILICON AND NITRIDE WITH HIGH REMOVAL RATE AND LOW DEFECTIVITY | | 184. | CABOT MICROELECTRONICS
CORPORATION | 9,180,570 | GROOVED CMP PAD | | 185. | CABOT MICROELECTRONICS
CORPORATION | 9,211,628 | POLISHING PAD WITH CONCENTRIC OR
APPROXIMATELY CONCENTRIC POLYGON
GROOVE PATTERN | | 186. | CABOT MICROELECTRONICS
CORPORATION | 9,238,294 | POLISHING PAD HAVING POROGENS WITH LIQUID FILLER | | 187. | CABOT MICROELECTRONICS
CORPORATION | 9,238,753 | CMP COMPOSITIONS SELECTIVE FOR OXIDE AND NITRIDE WITH HIGH REMOVAL RATE AND LOW DEFECTIVITY | | 188. | CABOT MICROELECTRONICS
CORPORATION | 9,238,754 | COMPOSITION FOR TUNGSTEN CMP | | 189. | CABOT MICROELECTRONICS
CORPORATION | 9,249,273 | POLISHING PAD WITH ALIGNMENT FEATURE | | 190. | CABOT MICROELECTRONICS
CORPORATION | 9,272,388 | POLISHING SYSTEMS | | 191. | CABOT MICROELECTRONICS
CORPORATION | 9,278,424 | CUSTOMIZED POLISHING PADS FOR CMP AND METHODS OF FABRICATION AND USE THEREOF | | 192. | CABOT MICROELECTRONICS
CORPORATION | 9,279,067 | WET-PROCESS CERIA COMPOSITIONS FOR
SELECTIVELY POLISHING SUBSTRATES, AND
METHODS RELATED THERETO | | 193. | CABOT MICROELECTRONICS
CORPORATION | 9,281,210 | WET-PROCESS CERIA COMPOSITIONS FOR
POLISHING SUBSTRATES, AND METHODS RELATED
THERETO | | 194. | CABOT MICROELECTRONICS
CORPORATION | 9,296,085 | POLISHING PAD WITH HOMOGENEOUS BODY HAVING DISCRETE PROTRUSIONS THEREON | | 195. | CABOT MICROELECTRONICS
CORPORATION | 9,303,187 | COMPOSITIONS AND METHODS FOR CMP OF
SILICON OXIDE, SILICON NITRIDE, AND
POLYSILICON MATERIALS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|--| | 196. | CABOT MICROELECTRONICS
CORPORATION | 9,303,188 | COMPOSITION FOR TUNGSTEN CMP | | 197. | CABOT MICROELECTRONICS
CORPORATION | 9,303,189 | COMPOSITION FOR TUNGSTEN CMP | | 198. | CABOT MICROELECTRONICS
CORPORATION | 9,303,190 | MIXED ABRASIVE TUNGSTEN CMP COMPOSITION | | 199. | CABOT MICROELECTRONICS
CORPORATION | 9,309,442 | COMPOSITION FOR TUNGSTEN BUFFING | | 200. | CABOT MICROELECTRONICS
CORPORATION | 9,330,703 | POLISHING COMPOSITION FOR NICKEL-
PHOSPHOROUS MEMORY DISKS | | 201. | CABOT MICROELECTRONICS
CORPORATION | 9,340,706 | MIXED ABRASIVE POLISHING COMPOSITIONS | | 202. | CABOT MICROELECTRONICS
CORPORATION | 9,343,330 | COMPOSITIONS FOR POLISHING
ALUMINUM/COPPER AND TITANIUM IN
DAMASCENE STRUCTURES | | 203. | CABOT MICROELECTRONICS
CORPORATION | 9,358,659 | COMPOSITION AND METHOD FOR POLISHING GLASS | | 204. | CABOT MICROELECTRONICS
CORPORATION | 9,375,823 | GROOVED CMP PADS | | 205. | CABOT MICROELECTRONICS
CORPORATION | 9,401,104 | POLISHING COMPOSITION FOR EDGE ROLL-OFF IMPROVEMENT | | 206. | CABOT MICROELECTRONICS
CORPORATION | 9,409,276 | CMP POLISHING PAD HAVING EDGE EXCLUSION
REGION OF OFFSET CONCENTRIC GROOVE
PATTERN | | 207. | CABOT MICROELECTRONICS
CORPORATION | 9,422,455 | CMP COMPOSITIONS EXHIBITING REDUCED DISHING IN STI WAFER POLISHING | | 208. | CABOT MICROELECTRONICS
CORPORATION | 9,422,456 | COLLOIDAL SILICA CHEMICAL MECHANICAL POLISHING COMPOSITION | | 209. | CABOT MICROELECTRONICS
CORPORATION | 9,422,457 | COLLOIDAL SILICA CHEMICAL-MECHANICAL POLISHING CONCENTRATE | | 210. | CABOT MICROELECTRONICS
CORPORATION | 9,425,037 | SILICON POLISHING COMPOSITIONS WITH IMPROVED PSD PERFORMANCE | | 211. | CABOT MICROELECTRONICS
CORPORATION | 9,434,859 | CHEMICAL-MECHANICAL PLANARIZATION OF POLYMER FILMS | | 212. | CABOT MICROELECTRONICS
CORPORATION | 9,463,551 | POLISHING PAD WITH POROUS INTERFACE AND SOLID CORE, AND RELATED APPARATUS AND METHODS | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|---| | 213. | CABOT MICROELECTRONICS
CORPORATION | 9,469,787 | NICKEL PHOSPHOROUS CMP COMPOSITIONS AND METHODS | | 214. | CABOT MICROELECTRONICS
CORPORATION | 9,481,811 | COMPOSITION AND METHOD FOR POLISHING
MEMORY HARD DISKS EXHIBITING REDUCED
EDGE ROLL-OFF | | 215. | CABOT MICROELECTRONICS
CORPORATION | 9,499,721 | COLLOIDAL SILICA CHEMICAL-MECHANICAL POLISHING COMPOSITION | | 216. | CABOT MICROELECTRONICS
CORPORATION | 9,505,952 | POLISHING COMPOSITION CONTAINING CERIA
ABRASIVE | | 217. | CABOT MICROELECTRONICS
CORPORATION | 9,528,030 | COBALT INHIBITOR COMBINATION FOR IMPROVED DISHING | | 218. | CABOT MICROELECTRONICS
CORPORATION | 9,534,147 | POLISHING COMPOSITION AND METHOD FOR NICKEL-PHOSPHOROUS COATED MEMORY DISKS | | 219. | CABOT MICROELECTRONICS
CORPORATION | 9,548,211 | METHOD TO SELECTIVELY POLISH SILICON
CARBIDE FILMS | | 220. | CABOT MICROELECTRONICS
CORPORATION | 9,555,518 | POLISHING PAD WITH MULTI-MODAL
DISTRIBUTION OF PORE DIAMETERS | | 221. | CABOT MICROELECTRONICS
CORPORATION | 9,556,363 | COPPER BARRIER CHEMICAL-MECHANICAL POLISHING COMPOSITION | | 222. | CABOT MICROELECTRONICS
CORPORATION | 9,566,686 | COMPOSITION FOR TUNGSTEN CMP | | 223. | CABOT MICROELECTRONICS
CORPORATION | 9,567,491 | TUNGSTEN CHEMICAL-MECHANICAL POLISHING COMPOSITION | | 224. | CABOT MICROELECTRONICS
CORPORATION | 9,597,768 | SELECTIVE NITRIDE SLURRIES WITH IMPROVED STABILITY AND IMPROVED POLISHING CHARACTERISTICS | | 225. | CABOT MICROELECTRONICS
CORPORATION | 9,597,769 | POLISHING PAD WITH POLISHING SURFACE
LAYER HAVING AN APERTURE OR OPENING
ABOVE A TRANSPARENT FOUNDATION LAYER | | 226. | CABOT MICROELECTRONICS
CORPORATION | 9,597,770 | POLISHING PAD WITH APERTURE | | 227. | CABOT MICROELECTRONICS
CORPORATION | 9,597,777 | HOMOGENEOUS POLISHING PAD FOR EDDY
CURRENT END-POINT DETECTION | | 228. | CABOT MICROELECTRONICS
CORPORATION | 9,617,450 | POLISHING COMPOSITION AND METHOD UTILIZING ABRASIVE PARTICLES TREATED WITH AN AMINOSILANE | | | | | AMINOSILAND | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---------------------------------------|------------------------|--| | 229. | CABOT MICROELECTRONICS
CORPORATION | 9,631,122 | TUNGSTEN-PROCESSING SLURRY WITH CATIONIC SURFACTANT | | 230. | CABOT MICROELECTRONICS
CORPORATION | 9,633,863 | COMPOSITIONS AND METHODS FOR SELECTIVE POLISHING OF SILICON NITRIDE MATERIALS | | 231. | CABOT MICROELECTRONICS
CORPORATION | 9,649,742 | POLISHING PAD HAVING POLISHING SURFACE
WITH CONTINUOUS PROTRUSIONS | | 232. | CABOT MICROELECTRONICS
CORPORATION | 9,687,956 | POLISHING PAD WITH OFFSET CONCENTRIC
GROOVING PATTERN AND METHOD FOR
POLISHING A SUBSTRATE THEREWITH | | 233. | CABOT MICROELECTRONICS
CORPORATION | 9,688,885 | COBALT POLISHING ACCELERATORS | | 234. | CABOT MICROELECTRONICS
CORPORATION | 9,701,871 | COMPOSITION AND METHOD FOR POLISHING
BULK SILICON | | 235. | CABOT MICROELECTRONICS
CORPORATION | 9,752,057 | CMP METHOD FOR SUPPRESSION OF TITANIUM NITRIDE AND TITANIUM/TITANIUM NITRIDE REMOVAL | | 236. | CABOT MICROELECTRONICS
CORPORATION | 9,758,697 | POLISHING COMPOSITION CONTAINING CATIONIC POLYMER ADDITIVE | | 237. | CABOT MICROELECTRONICS
CORPORATION | 9,771,496 | TUNGSTEN-PROCESSING SLURRY WITH CATIONIC SURFACTANT AND CYCLODEXTRIN | | 238. | CABOT MICROELECTRONICS
CORPORATION | 9,796,882 | CMP PROCESSING COMPOSITION COMPRISING ALKYLAMINE AND CYCLODEXTRIN | | 239. | CABOT MICROELECTRONICS
CORPORATION | 9,803,106 | METHODS FOR FABRICATING A CHEMICAL-
MECHANICAL POLISHING COMPOSITION | | 240. | CABOT MICROELECTRONICS
CORPORATION | 9,803,109 | CMP COMPOSIITION FOR SILICON NITRIDE REMOVAL | | 241. | CABOT MICROELECTRONICS
CORPORATION | 9,818,618 | MULTI-LAYER POLISHING PAD FOR CMP | | 242. | CABOT
MICROELECTRONICS
CORPORATION | 9,828,528 | POLISHING COMPOSITION CONTAINING CERIA
ABRASIVE | | 243. | CABOT MICROELECTRONICS
CORPORATION | 9,828,574 | CLEANING COMPOSITION AND METHOD FOR CLEANING SEMICONDUCTOR WAFERS AFTER CMP | | 244. | CABOT MICROELECTRONICS
CORPORATION | 9,834,704 | COBALT DISHING CONTROL AGENTS | | 245. | CABOT MICROELECTRONICS
CORPORATION | 9,850,402 | CMP COMPOSITIONS AND METHODS FOR SELECTIVE REMOVAL OF SILICON NITRIDE | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---|------------------------|--| | 246. | CABOT MICROELECTRONICS
CORPORATION | 9,850,403 | COBALT POLISHING ACCELERATORS | | 247. | CABOT MICROELECTRONICS
CORPORATION | 9,868,185 | POLISHING PAD WITH FOUNDATION LAYER AND WINDOW ATTACHED THERETO | | 248. | CABOT MICROELECTRONICS
CORPORATION | 9,931,728 | POLISHING PAD WITH FOUNDATION LAYER AND POLISHING SURFACE LAYER | | 249. | CABOT MICROELECTRONICS
CORPORATION | 9,931,729 | POLISHING PAD WITH GROOVED FOUNDATION LAYER AND POLISHING SURFACE LAYER | | 250. | CABOT MICROELECTRONICS
CORPORATION | 9,944,828 | SLURRY FOR CHEMICAL MECHANICAL POLISHING OF COBALT | | 251. | CABOT MICROELECTRONICS
CORPORATION | 9,951,054 | CMP POROUS PAD WITH PARTICLES IN A POLYMERIC MATRIX | | 252. | CABOT MICROELECTRONICS
CORPORATION | 9.909,032 | COMPOSITION AND METHOD FOR POLISHING MEMORY HARD DISKS | | 253. | CABOT MICROELECTRONICS
CORPORATION | D640057 | POLISHING PAD CARRIER | | 254. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 5,951,369 | SYSTEM FOR MAGNETORHEOLOGICAL FINISHING OF SUBSTRATES | | 255. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,506,102 | APPARATUS AND METHOD FOR ABRASIVE JET-
FINISHING OF DEEPLY CONCAVE SURFACES USING
MAGNETORHEOLOGICAL FLUID | | 256. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,561,874 | UNIFORM THIN FILMS PRODUCED BY
MAGNETORHEOLOGICAL FINISHING | | 257. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,746,310 | METHOD AND APPARATUS FOR MEASURING AND CONTROLLING SOLIDS COMPOSITION OF A MAGNETORHEOLOGICAL FLUID | | 258. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,893,322 | DELIVERY SYSTEM FOR MAGNETORHEOLOGICAL FLUID | | 259. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,955,589 | METHOD FOR SELF-CALIBRATED SUB-APERTURE STITCHING FOR SURFACE FIGURE MEASUREMENT | | 260. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 6,956,657 | METHOD AND APPARATUS FOR FORMING A
DYNAMIC MAGNETIC SEAL USING
MAGNETORHEOLOGICAL FLUID | | 261. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 7,156,724 | METHOD FOR CALIBRATING THE GEOMETRY OF A MULTI-AXIS METROLOGY SYSTEM | | 262. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 7,173,691 | METHOD FOR ACCURATE HIGH-RESOLUTION
MEASUREMENTS OF ASPHERIC SURFACES | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|---|------------------------|--| | 263. | QED TECHNOLOGIES INTERNATIONAL, INC. | 7,433,057 | METHOD AND APPARATUS FOR MEASUREMENT OF MAGNETIC PERMEABILITY OF A MATERIAL | | 264. | QED TECHNOLOGIES INTERNATIONAL, INC. | 7,557,566 | METHOD AND APPARATUS FOR MEASUREMENT OF MAGNETIC PERMEABILITY OF A MATERIAL | | 265. | QED TECHNOLOGIES INTERNATIONAL, INC. | 7,888,929 | STITCHING OF NEAR-NULLED SUBAPERTURE MEASUREMENTS | | 266. | QED TECHNOLOGIES INTERNATIONAL, INC. | 8,203,719 | SYSTEM FOR MAGNETORHEOLOGICAL FINISHING OF SUBSTRATES | | 267. | QED TECHNOLOGIES INTERNATIONAL, INC. | 8,613,640 | METHOD AND APPARATUS FOR MEASUREMENT
AND CONTROL OF MAGNETIC PARTICLE
CONCENTRATION IN A MAGNETORHEOLOGICAL
FLUID | | 268. | QED TECHNOLOGIES INTERNATIONAL, INC. | 8,896,293 | SYSTEM FOR MAGNETORHEOLOGICAL FINISHING OF A SUBSTRATE | | 269. | QED TECHNOLOGIES INTERNATIONAL, INC. | 8,944,883 | INTEGRATED WAVEFRONT SENSOR AND PROFILOMETER | | 270. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 9,097,612 B2 | MAGNETORHEOLOGICAL FLUID FOR
ULTRASMOOTH POLISHING | | 271. | QED TECHNOLOGIES
INTERNATIONAL, INC. | 9,157,010 | COBALT INHIBITOR COMBINATION FOR IMPROVED DISHING | | 272. | Flowchem, Ltd. (n/k/a Flowchem, LLC) | 8,669,304 | DRAG REDUCING COMPOSITIONS AND METHODS OF MANUFACTURE AND USE | | 273. | Flowchem, Ltd. (n/k/a Flowchem, LLC) | 8,933,149 | Drag Reducing Compositions and Methods of Manufacture and Use | | 274. | Flowchem, Ltd. (n/k/a Flowchem, LLC) | 9,416,331 | Drag Reducing Compositions and Methods of Manufacture and Use | | 275. | Flowchem, Ltd. (n/k/a Flowchem, LLC) | 9,267,094 | Drag Reducing Compositions and Methods of Manufacture and Use | | 276. | KMG Electronic Chemicals, Inc. | 6,125,871 | VALVE ASSEMBLY WITH FLUSH AND SAMPLE
CAPABILITY | | 277. | KMG Electronic Chemicals, Inc. | 6,162,370 | COMPOSITION AND METHOD FOR SELECTIVELY ETCHING A SILICON NITRIDE FILM | | 278. | KMG Electronic Chemicals, Inc. | 6,303,514 | Composition and method for selectively etching a silicon nitride film | | | OWNER | REGISTRATION
NUMBER | DESCRIPTION | |------|--------------------------------|------------------------|--| | 279. | KMG Electronic Chemicals, Inc. | 6,358,899 | Cleaning compositions and use thereof containing ammonium hydroxide and fluorosurfactant | | 280. | MPower Specialty Chemicals LLC | 5,869,570
(Expired) | COMPOSITION OF AND PROCESS FOR FORMING POLYALPHAOLEFIN DRAG REDUCING AGENTS | | 281. | MPower Specialty Chemicals LLC | 5,951,946
(Expired) | COMPOSITION AND METHOD OF REMOVING ODORS | | 282. | MPower Specialty Chemicals LLC | 6,015,779 | METHODS FOR FORMING AMORPHOUS ULTRA-
HIGH MOLECULAR WEIGHT POLYALPHAOLEFIN
DRAG REDUCING AGENTS | | 283. | MPower Specialty Chemicals LLC | 6,162,773 | METHODS FOR FORMING AMORPHOUS ULTRA-
HIGH MOLECULAR WEIGHT POLYALPHAOLEFIN
DRAG REDUCING AGENTS USING A
HALOHYDROCARBON | | 284. | MPower Specialty Chemicals LLC | 6,242,395 | METHODS FOR FORMING AMORPHOUS ULTRA-
HIGH MOLECULAR WEIGHT POLYALPHAOLEFIN
DRAG REDUCING AGENTS USING NON-
METALLOCENE CATALYSTS AND
ALKYLALUMINOXANE | | 285. | MPower Specialty Chemicals LLC | 6,730,750 | METHODS FOR FORMING AMORPHOUS ULTRA-
HIGH MOLECULAR WEIGHT POLYOLEFINS FOR
USE AS DRAG REDUCING AGENTS | | 286. | MPower Specialty Chemicals LLC | 6,730,752 | METHODS FOR FORMING AMORPHOUS ULTRA-
HIGH MOLECULAR WEIGHT POLYOLEFINS AND
DRAG REDUCING COMPOSITIONS COMPRISING
AMORPHOUS ULTRA-HIGH MOLECULAR WEIGHT
POLYOLEFINS | | 287. | MPower Specialty Chemicals LLC | 6,815,011 | ALPHA OLEFIN MONOMER PARTITIONING AGENTS
FOR DRAG REDUCING AGENTS AND METHODS OF
FORMING DRAG REDUCING AGENTS USING ALPHA
OLEFIN MONOMER PARTITIONING AGENTS | | 288. | MPower Specialty Chemicals LLC | 6,989,357 | ALCOHOL ABSORBED POLYALPHAOLEFIN DRAG
REDUCING AGENTS | | 289. | MPower Specialty Chemicals LLC | 7,012,046 | DRAG REDUCING AGENT SLURRIES HAVING ALFOL ALCOHOLS AND PROCESSES FOR FORMING DRAG REDUCING AGENT SLURRIES HAVING ALFOL ALCOHOLS | | 290. | MPower Specialty Chemicals LLC | 7,534,403 | BULK POLYMERIZATION REACTORS | | 291. | MPower Specialty Chemicals LLC | 7,582,708 | BULK POLYMERIZATION REACTOR METHODS | | 292. | MPower Specialty Chemicals LLC | 8,105,547 | BULK POLYMERIZATION REACTORS | | | OWNER | REGISTRATION NUMBER | DESCRIPTION | |------|--------------------------------|---------------------|---| | 293. | MPower Specialty Chemicals LLC | 8,106,114 | DRAG REDUCING AGENT AND METHOD OF USE | | 294. | MPower Specialty Chemicals LLC | 8,110,150 | BULK POLYMERIZATION REACTORS FOR PRODUCING DRAG REDUCER | # U.S. Patent Applications: | | OWNER | APPLICATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|-----------------------|---| | 1. | CABOT MICROELECTRONICS CORPORATION | 12/673,057 | POLISHING PAD | | 2. | CABOT MICROELECTRONICS
CORPORATION | 13/829,990 | POLISHING PAD HAVING POLISHING
SURFACE WITH CONTINUOUS PROTRUSIONS
HAVING TAPERED SIDEWALLS | | 3. | CABOT MICROELECTRONICS CORPORATION | 13/955,398 | LOW DENSITY POLISHING PAD | | 4. | CABOT MICROELECTRONICS
CORPORATION | 14/094,921 | CMP COMPOSITIONS AND METHODS FOR POLISHING NICKEL-PHOSPHOROUS SURFACES | | 5. | CABOT MICROELECTRONICS CORPORATION | 14/209,110 | COMPOSITION AND METHOD FOR POLISHING POLYSILICON | | 6. | CABOT MICROELECTRONICS
CORPORATION | 14/562,589 | METHODS FOR PRODUCING IN-SITU
GROOVES IN CHEMICAL MECHANICAL
PLANARIZATION (CMP) PADS, AND NOVEL
CMP PAD DESIGNS | | 7. | CABOT MICROELECTRONICS CORPORATION | 14/611,064 | LOW DENSITY POLISHING PAD | | 8. | CABOT MICROELECTRONICS
CORPORATION | 14/639,434 | COMPOSITIONS AND METHODS FOR CMP OF TUNGSTEN MATERIALS | | 9. | CABOT MICROELECTRONICS CORPORATION | 14/686,988 | COMPOSITION AND METHOD FOR POLISHING MOLYBDENUM | | 10. | CABOT MICROELECTRONICS CORPORATION | 14/743,583 | CMP SLURRY COMPOSITIONS AND METHODS
FOR ALUMINUM POLISHING | | 11. | CABOT MICROELECTRONICS CORPORATION | 14/823,956 | SOFT POLISHING PAD FOR POLISHING A SEMICONDUCTOR SUBSTRATE | | 12. | CABOT MICROELECTRONICS CORPORATION | 14/838,460 | COMPOSITION AND METHOD FOR POLISHING A SAPPHIRE SURFACE | | 13. | CABOT MICROELECTRONICS
CORPORATION | 14/875,513 | POLISHING PAD WITH CONCENTRIC OR
APPROXIMATELY CONCENTRIC POLYGON
GROOVE PATTERN | | 14. | CABOT MICROELECTRONICS
CORPORATION | 14/919,404 | CORROSION INHIBITORS AND RELATED COMPOSITIONS AND METHODS | | 15. | CABOT MICROELECTRONICS
CORPORATION | 15/042,777 | CUSTOMIZED POLISH PADS
FOR CMP AND METHODS OF FABRICATION AND USE THEREOF | | 16. | CABOT MICROELECTRONICS
CORPORATION | 15/056,198 | POLISHING COMPOSITION CONTAINING
CERIA PARTICLES AND METHOD OF USE | | 17. | CABOT MICROELECTRONICS CORPORATION | 15/091,275 | CMP COMPOSITION AND METHOD FOR POLISHING RIGID DISKS | | | OWNER | APPLICATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|-----------------------|--| | 18. | CABOT MICROELECTRONICS
CORPORATION | 15/252,567 | METHODS AND COMPOSITIONS FOR PROCESSING DIELECTRIC SUBSTRATE | | 19. | CABOT MICROELECTRONICS
CORPORATION | 15/273,855 | POLYURETHANE CMP PADS HAVING A HIGH
MODULUS RATIO | | 20. | CABOT MICROELECTRONICS
CORPORATION | 15/303,696 | CMP POLISHING PAD WITH COLUMNAR
STRUCTURE AND METHODS RELATED
THERETO | | 21. | CABOT MICROELECTRONICS
CORPORATION | 15/346,835 | POLISHING COMPOSITION AND METHOD UTILIZING ABRASIVE PARTICLES TREATED WITH AN AMINOSILANE | | 22. | CABOT MICROELECTRONICS
CORPORATION | 15/398,933 | COMPOSITION AND METHOD FOR POLISHING SILICON CARBIDE | | 23. | CABOT MICROELECTRONICS
CORPORATION | 15/399,810 | METHOD OF POLISHING A LOW-K
SUBSTRATE | | 24. | CABOT MICROELECTRONICS
CORPORATION | 15/414,786 | POLISHING COMPOSITION COMPRISING CATIONIC POLYMER ADDITIVE | | 25. | CABOT MICROELECTRONICS
CORPORATION | 15/433,068 | METHOD OF POLISHING GROUP III-V MATERIALS | | 26. | CABOT MICROELECTRONICS
CORPORATION | 15/479,779 | POLISHING PAD HAVING POLISHING
SURFACE WITH CONTINUOUS PROTRUSIONS | | 27. | CABOT MICROELECTRONICS
CORPORATION | 15/564,605 | DIAMOND-BASED SLURRIES WITH
IMPROVED SAPPHIRE REMOVAL RATE AND
SURFACE ROUGHNESS | | 28. | CABOT MICROELECTRONICS
CORPORATION | 15/615,591 | CHEMICAL-MECHANICAL PROCESSING SLURRY AND METHODS FOR PROCESSING A NICKEL SUBSTRATE SURFACE | | 29. | CABOT MICROELECTRONICS
CORPORATION | 15/629,487 | POLISHING COMPOSITION COMPRISING AN AMINE-CONTAINING SURFACTANT | | 30. | CABOT MICROELECTRONICS
CORPORATION | 15/649,378 | ALTERNATIVE OXIDIZING AGENTS FOR COBALT CMP | | 31. | CABOT MICROELECTRONICS
CORPORATION | 15/684,470 | SYSTEMS FOR MIXING A LIQUID AND RELATED METHODS | | 32. | CABOT MICROELECTRONICS
CORPORATION | 15/706,192 | NITRIDE INHIBITORS FOR HIGH SELECTIVITY OF TIN-SIN CMP APPLICATIONS | | 33. | CABOT MICROELECTRONICS
CORPORATION | 15/723,886 | SURFACE TREATED ABRASIVE PARTICLES
FOR TUNGSTEN BUFF APPLICATIONS | | 34. | CABOT MICROELECTRONICS
CORPORATION | 15/784,949 | CMP COMPOSITIONS SELECTIVE FOR OXIDE
AND NITRIDE WITH IMPROVED DISHING AND
PATTERN SELECTIVITY | | 35. | CABOT MICROELECTRONICS
CORPORATION | 15/817,959 | COMPOSITION AND METHOD FOR POLISHING
MEMORY HARD DISKS EXHIBITING
REDUCED SURFACE SCRATCHING | | 36. | CABOT MICROELECTRONICS
CORPORATION | 15/825,305 | COMPOSITION AND METHOD FOR
REMOVING RESIDUE FROM CHEMICAL-
MECHANICAL PLANARIZATION SUBSTRATE | | 37. | CABOT MICROELECTRONICS CORPORATION | 15/864,720 | TUNGSTEN BUFF POLISHING COMPOSITIONS WITH IMPROVED TOPOGRAPHY | | 38. | CABOT MICROELECTRONICS CORPORATION | 15/866,008 | TUNGSTEN BULK POLISHING METHOD WITH IMPROVED TOPOGRAPHY | | 39. | CABOT MICROELECTRONICS CORPORATION | 15/875,773 | COATED COMPRESSIVE SUBPAD FOR
CHEMICAL MECHANICAL POLISHING | | | OWNER | APPLICATION
NUMBER | DESCRIPTION | |-----|---------------------------------------|-----------------------|--| | 40. | CABOT MICROELECTRONICS
CORPORATION | 15/920,813 | CMP COMPOSITIONS CONTAINING POLYMER
COMPLEXES AND AGENTS FOR STI
APPLICATIONS | | 41. | CABOT MICROELECTRONICS
CORPORATION | 15/934,219 | SELF-STOPPING POLISHING COMPOSITION
AND METHOD FOR BULK OXIDE
PLANARIZATION | | 42. | CABOT MICROELECTRONICS CORPORATION | 15/951,358 | CHEMICAL-MECHANICAL PROCESSING SLURRY AND METHODS | | 43. | CABOT MICROELECTRONICS
CORPORATION | 15/951,598 | CHEMICAL-MECHANICAL PROCESSING
SLURRY AND METHODS FOR PROCESSING A
NICKEL SUBSTRATE SURFACE | | 44. | CABOT MICROELECTRONICS
CORPORATION | 16/000,062 | COMPOSITION AND METHOD FOR POLISHING
MEMORY HARD DISKS EXHIBITING
REDUCED EDGE ROLL OFF | | 45. | CABOT MICROELECTRONICS CORPORATION | 16/018,281 | METHODS AND COMPOSITIONS FOR PROCESSING DIELECTRIC SUBSTRATE | | 46. | CABOT MICROELECTRONICS
CORPORATION | 16/131,180 | COMPOSITION FOR TUNGSTEN CMP | | 47. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2016/053283 | POLYURETHANE CMP PADS HAVING A HIGH
MODULUS RATIO | | 48. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2016/058042 | TUNGSTEN-PROCESSING SLURRY WITH
CATIONIC SURFACTANT | | 49. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2017/036203 | CHEMICAL-MECHANICAL PROCESSING
SLURRY AND METHODS FOR PROCESSING A
NICKEL SUBSTRATE SURFACE | | 50. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2017/038584 | POLISHING COMPOSITION COMPRISING AN AMINE-CONTAINING SURFACTANT | | 51. | CABOT MICROELECTRONICS CORPORATION | PCT/US2017/041988 | ALTERNATIVE OXIDIZING AGENTS FOR COBALT CMP | | 52. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2017/056809 | CMP COMPOSITIONS SELECTIVE FOR OXIDE
AND NITRIDE WITH IMPROVED DISHING AND
PATTERN SELECTIVITY | | 53. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2017/063586 | COMPOSITION AND METHOD FOR
REMOVING RESIDUE FROM CHEMICAL-
MECHANICAL PLANARIZATION SUBSTRATE | | 54. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2017/067947 | COMPOSITION AND METHOD FOR POLISHING SILICON CARBIDE | | 55. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2018/051012 | COMPOSITION FOR TUNGSTEN CMP | | 56. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2018/054079 | SURFACE TREATED ABRASIVE PARTICLES
FOR TUNGSTEN BUFF APPLICATIONS | | 57. | CABOT MICROELECTRONICS
CORPORATION | PCT/US2018/057478 | COMPOSITION AND METHOD FOR POLISHING MEMORY HARD DISKS EXHIBITING REDUCED SURFACE SCRATCHING | | 58. | CABOT MICROELECTRONICS
CORPORATION | PCTUS1824067 | SELF-STOPPING POLISHING COMPOSITION
AND METHOD FOR BULK OXIDE
PLANARIZATION | | 59. | CABOT MICROELECTRONICS
CORPORATION | PCTUS1827234 | CHEMICAL-MECHANICAL PROCESSING
SLURRY AND METHODS | | 60. | CABOT MICROELECTRONICS
CORPORATION | PCTUS1827281 | CHEMICAL-MECHANICAL PROCESSING
SLURRY AND METHODS FOR PROCESSING A
NICKEL SUBSTRATE SURFACE | | | | APPLICATION | | |-----|------------------------|--------------|---| | | OWNER | NUMBER | DESCRIPTION | | 61. | CABOT MICROELECTRONICS | PCTUS1846429 | NITRIDE INHIBITORS FOR HIGH SELECTIVITY | | | CORPORATION | | OF TIN-SIN CMP APPLICATIONS | # Release of Notice of Grant of Security Interest in Patents recorded April 30, 2021 at Reel/Frame 056104/0979 U.S. Federally Issued or Applied for Patents Owned by New Subsidiary | Title | Country | Serial Number | Patent Number | Status | |--|-----------|-------------------------|-------------------------|-------------------------| | | | Filing Date | Issue Date | Deadlines | | Cleaning System, | US | 09/624,750 | 6,777,966 | Issued. | | Device and Method | | 7/24/2000 | 8/17/2004 | | | | | | | Claims cover basic | | | | | | cleaning material | | | | | | F : 7/24/2020 PEA | | | | | | Expires 7/24/2020 + PTA | | C1 : C : | HG COM | 10/025 710 | 7.002.602 | Expired 2/17/2021 | | Cleaning System, Device and Method | US- CON | 10/825,718
4/16/2004 | 7,202,683
4/10/2007 | Issued. | | Device and Method | | 4/10/2004 | 4/10/2007 | Claims cover basic | | | | | | cleaning material | | | | | | Cleaning material | | | | | | Expires 7/24/2020+ PTA | | | | | | Expired 7/24/2020 | | Working Surface | US- CIP | 13/961,127 | 9,833,818 | Issued. | | Cleaning System and | 35 01 | 8/7/2013 | 12/5/2017 | Issued. | | Method | | 0/7/2013 | 12/3/2017 | | | | TIC CON | 15/010 207 | 10.220.000 | I1 | | Working Surface | US CON | 15/818,386 | 10,239,099 | Issued. | | Cleaning System and | | 11/20/2017 | 3/26/2019 | | | Method
Washing Starfage | US CON | 16/290,789 | 10.406.569 | Issued. | | Working Surface
Cleaning System and | USCON | 3/1/2019 | 10,406,568
9/10/2019 | issued. | | Method | | 3/1/2019 | 9/10/2019 | | | Working Surface | US CON | 16/438,162 | N/A | Pending. | | Cleaning System and | USCON | 6/11/2019 | N/A
N/A | rending. | | Method | | 0/11/2017 | 1471 | | | Apparatus, Device and | US | 12/630,714 | 8,371,316 | Issued. | | Methods for Cleaning | | 12/3/2009 | 2/12/2013 | | | Tester Interface | | | | | | Contact Elements and | | | | | | Support Hardware | | | | | | Apparatus, Device and | US – DIV1 | 13/290,015 | 8,801,869 | Issued. | | Methods for Cleaning | | 11/4/2011 | 8/12/2014 | | | Tester Interface | | | | | | Contact Elements and | | | | | | Support Hardware | | | | | | Apparatus, Device and | US – DIV2 | 13/290,017 | 8,790,466 | Issued. | | Methods for Cleaning | | 11/4/2011 | 7/29/2014 | | | Tester Interface | | | | | | Contact Elements and | | | | | | Support Hardware | HG CON | 14/445 002 | 10 105 (40 | T 1 | | Apparatus, Device and | US – CON | 14/445,003 | 10,195,648
2/5/2019 | Issued. | | Methods for Cleaning
Tester Interface | | 7/28/2014 | 2/3/2019 | | | Contact Elements and | | | | | | Support Hardware | | | | | | Apparatus, Device and | US – CON | 16/228,664 | N/A | Pending. | | Methods for Cleaning | OB CON | 12/20/2018 | N/A | 1 chaing. | | Tester Interface | | 12,20,2010 | 1 1/1 1 | | | Contact Elements and | | | | | | Support Hardware | | | | | | ppott time mate | 1 | | | | | Title | Country | Serial Number
Filing Date | Patent Number
Issue Date | Status
Deadlines | |--|----------|------------------------------
--------------------------------|--| | Semiconductor Wire
Bonding Machine
Cleaning Device and
Method | US | 15/495,873
4/23/2017 | 9,825,000
11/21/2017 | Issued. | | Semiconductor Wire
Bonding Machine
Cleaning Device and
Method | US – CON | 15/723,151
10/2/2017 | 10,361,169
7/23/2019 | Issued. | | Novel Material and
Hardware to
Automatically Clean
Flexible Electronics
Web Rolls | US | 16/283,592
2/22/2019 | 10,843,885
11-24/2020 | Issued. | | Novel Material and
Hardware to
Automatically Clean
Flexible Electronics
Web Rolls | US | 16/283,603
2/22/2019 | N/A
N/A | Pending. | | Novel Material and
Hardware to
Automatically Clean
Flexible Electronics
Web Rolls | US | 16/283,607
2/22/2019 | 10,717,618
7/21/2020 | Issued. | | Novel Material and
Hardware to
Automatically Clean
Flexible Electronics
Web Rolls | US | 16/283,613
2/22/2019 | N/A
N/A | Pending. | | Pick and Place
Machine Cleaning
System and Method | US | 16/460,877
7/2/2019 | N/A
N/A | Pending. | | Pick and Place
Machine Cleaning
System and Method | US | 16/460,918
7/2/2019 | N/A
N/A | Pending. | | Pick and Place
Machine Cleaning
System and Method | US | 16/460,929
7/2/2019 | N/A
N/A | Pending. | | Pick and Place
Machine Cleaning
System and Method | US | 16/460,935
7/2/2019 | 10,792,713
10-6-2020 | Issued | | Pick and Place
Machine Cleaning
System and Method | US DIV | 16/794,068
2/18/2020 | N/A
N/A | Pending. | | System and Method
for Cleaning Contact
Elements and Support
Hardware Using
Functionalized Surface
Microfeatures | US | 16/684,453
11/14/2019 | N/A
N/A | Pending. | | Functionalized Surface
Microfeatures for Wire
Bonders | US CIP | 16/855,841
4/22/2020 | N/A
N/A | Pending. | | Heat Conductive
Wafer | US | 16/872,292
5-11-2020 | N/A
N/A | Allowed. | | Wafer Manufacturing
Cleaning Apparatus,
Process and Method of
Use | US | 13/725,827
12/21/2012 | Granted 10,002,776 (6/19/2018) | Granted. Expires (10/7/2030); Assignment to be recorded with USPTO | | Title | Country | Serial Number
Filing Date | Patent Number
Issue Date | Status
Deadlines | |--|---------|------------------------------|------------------------------------|---| | | | | | Assignment recorded 3/4/21 at Reel 055500 Frame 0329 | | Wafer Manufacturing
Cleaning Apparatus,
Process and Method of
Use | US | 13/971,619
8/20/2013 | Granted 9,595,456
(3/14/2017) | Granted. Expires (4/14/2030); Assignment to be recorded with USPTO Assignment recorded 3/4/21 at Reel 055500 Frame 0329 | | Wafer Manufacturing
Cleaning Apparatus,
Process and Method of
Use | US | 15/419,840
1/30/2017 | Granted 10,109,504
(10/23/2018) | Granted. Expires (4/14/2030); Assignment to be recorded with USPTO Assignment recorded 3/4/21 at Reel 055500 Frame 0329 | | Wafer Manufacturing
Cleaning Apparatus,
Process and Method of
Use | US | 16/136,965
9/20/2018 | Granted 10,741,420 (8/11/2020) | Granted. Expires (4/14/2030); Assignment to be recorded with USPTO Assignment recorded 3/4/21 at Reel 055500 Frame 0329 | | Wafer Manufacturing
Cleaning Apparatus,
Process and Method of
Use | US | 16/895,106
6/8/2020 | Granted 10,896,828 (1/19/2021) | Granted. Expires (4/14/2030); Assignment to be recorded with USPTO Assignment recorded 3/4/21 at Reel 055500 Frame 0329 | # Release of Notice of Grant of Security Interest in Patents recorded July 2, 2021 at Reel/Frame 056752/0645 # **U.S.** Patents and Applications: | | Owner | Patent Title | Appl. No.
Filing Date | Patent No. Issue Date | |-----|-------------------------|--|--------------------------|-----------------------| | 1. | CMC Materials, Inc. | Polishing Composition And Method Utilizing Abrasive | 16664235 | 11034862 | | | , | Particles Treated With An Aminosilane | 10/25/2019 | 06/15/2021 | | 2. | CMC Materials, Inc. | Polishing Composition And Method With High Selectivity For | 17076989 | N/A | | | | Silicon Nitride And Polysilicon Over Silicon Oxide | 10/22/2020 | | | 3. | CMC Materials, Inc. | Composition And Method For Dielectric CMP | 17077070 | N/A | | ٠. | | composition that inclined for Dictional Cities | 10/22/2020 | 1 1111 | | 4. | CMC Materials, Inc. | Composition And Method For Dielectric CMP | 17077155 | N/A | | •• | Civic Materials, Inc. | Composition 7 that intention for Diciocate Civil | 10/22/2020 | 1 1/21 | | 5. | CMC Materials, Inc. | Composition And Method For Silicon Oxide And Carbon | 17077295 | N/A | | ٥. | Civic iviatoriais, inc. | Doped Silicon Oxide CMP | 10/22/2020 | 13/21 | | 6. | CMC Materials, Inc. | Self-Stopping Polishing Composition And Method | 17077414 | N/A | | 0. | Civic iviaterials, inc. | Sen-Stopping Fonsining Composition And Method | 10/22/2020 | IVA | | 7. | CMC Materials, Inc. | Composition And Method For Selective Oxide CMP | 17077485 | N/A | | /. | CWIC Materials, Inc. | Composition And Method For Selective Oxide CMF | 10/22/2020 | IN/A | | 8. | CMC Materials, Inc. | Composition And Method For Polysilicon CMP | 17009961 | N/A | | ο. | CMC Materials, Inc. | Composition And Method For Polyshicon CMP | | IN/A | | | CMCM | Malama Di El Dan Da I Dil | 09/02/2020 | NT/A | | 9. | CMC Materials, Inc. | Method To Increase Barrier Film Removal Rate In Bulk | 16513404 | N/A | | | | Tungsten Slurry | 07/16/2019 | | | 10. | CMC Materials, Inc. | Polishing Pad Employing Polyamine And | 16923688 | N/A | | | | Cyclohexanedimethanol Curatives | 07/08/2020 | | | 11. | CMC Materials, Inc. | Chemical Mechanical Planarization Pads With Constant | 16868755 | N/A | | | | Groove Volume | 05/07/2020 | | | 12. | CMC Materials, Inc. | Chemical Mechanical Planarization Pads Via Vat-Based | 16868965 | N/A | | | | Production | 05/07/2020 | | | 13. | CMC Materials, Inc. | Surface Coated Abrasive Particles For Tungsten Buff | 16849021 | N/A | | | | Applications | 04/15/2020 | | | 14. | CMC Materials, Inc. | Additives To Improve Particle Dispersion For CMP Slurry | 16826409 | N/A | | | | | 03/23/2020 | | | 15. | CMC Materials, Inc. | Dual Additive Composition For Polishing Memory Hard Disks | 16729905 | N/A | | | , | Exhibiting Edge Roll Off | 12/30/2019 | | | 16. | CMC Materials, Inc. | Oxidizer Free Slurry For Ruthenium CMP | 16706991 | N/A | | | | ,, | 12/09/2019 | | | 17. | CMC Materials, Inc. | Composition And Method For Silicon Nitride CMP | 16208779 | N/A | | | | Composition into interest of part of interest inter | 12/04/2018 | 1 "11 | | 18. | CMC Materials, Inc. | Composition And Method For Cobalt CMP | 16208703 | N/A | | 10. | Civic Materials, Inc. | Composition 7 that Method 1 of Coodit CM1 | 12/04/2018 | 1371 | | 19. | CMC Materials, Inc. | Composition And Method For Polishing Silicon Carbide | 16389097 | N/A | | 17. | CWC Waterials, Inc. | Composition And Method For Fonsining Stricon Carolice | 04/19/2019 | IN/A | | 20 | CMC Matarials Inc | Composition And Mathod For Compan Domica CMD | | 10000625 | | 20. | CMC Materials, Inc. | Composition And Method For Copper Barrier CMP | 16208797 | 10988635 04/27/2021 | | 21 | CMC Motorials Iss | COMPOCITION AND METHOD FOR METAL CMP | 12/04/2018 | | | 21. | CMC Materials, Inc. | COMPOSITION AND METHOD FOR METAL CMP | 16208742 | 10968366 | | 22 | CMCM | 0.100, 1. D.111. 0 | 12/04/2018 | 04/06/2021 | | 22. | CMC Materials, Inc. | Self-Stopping Polishing Composition And Method For Bulk | 16797438 | 10920107 | | | | Oxide Planarization | 02/21/2020 | 02/16/2021 | | 23. | CMC Materials, Inc. | Self-Stopping Polishing Composition And Method For Bulk | 16271508 | 10619076 | | | | Oxide
Planarization | 02/08/2019 | 04/14/2020 | | | Owner | Patent Title | Appl. No.
Filing Date | Patent No.
Issue Date | |-----|---------------------|-------------------------------------|--------------------------|--------------------------| | 24. | CMC Materials, Inc. | Composition For Tungsten CMP | 16236962 | 10676647 | | | | | 12/31/2018 | 06/09/2020 | | 25. | CMC Materials, Inc. | Safety Closures And Pumping Systems | 14577453 | 10184469 | | | | | 12/19/2014 | 01/22/2019 | # **SCHEDULE II** Release of Notice of Grant of Security Interest in Trademarks recorded November 16, 2018 at Reel/Frame 6483/0177 ### **Trademarks** ### **UNITED STATES TRADEMARKS:** ### U.S. Trademark Registrations: | | OWNER | REGISTRATION
NUMBER | TRADEMARK | |-----|--------------------------------------|------------------------|------------------| | 1. | Cabot Microelectronics Corporation | 4,372,801 | ELEMENT | | 2. | Cabot Microelectronics Corporation | 2,363,181 | EPIC | | 3. | Cabot Microelectronics Corporation | 2,517,587 | ICUE | | 4. | Cabot Microelectronics Corporation | 4,613,239 | IDIEL | | 5. | Cabot Microelectronics Corporation | 2,632,288 | LUSTRA | | 6. | Cabot Microelectronics Corporation | 5,354,755 | MEDEA | | 7. | Cabot Microelectronics Corporation | 3,702,810 | NEXPLANAR | | 8. | Cabot Microelectronics Corporation | 1,704,025 | SEMI-SPERSE | | 9. | Cabot Microelectronics Corporation | 1,917,115 | SEMI-SPERSE | | 10. | Cabot Microelectronics Corporation | 3,103,184 | SILECT | | 11. | Cabot Microelectronics Corporation | 3,623,364 | TRANSELE | | 12. | Cabot Microelectronics Corporation | 3,456,932 | WIN | | 13. | Epoch Material Co., Ltd. | 3,451,884 | EPOCH | | 14. | Epoch Material Co., Ltd. | 2,499,905 | ETERPOL | | 15. | QED Technologies International, Inc. | 3,737,365 | ASI | | 16. | QED Technologies International, Inc. | 2,827,173 | MRF | | 17. | QED Technologies International, Inc. | 4,303,897 | QED OPTICS | | 18. | QED Technologies International, Inc. | 2,777,617 | QED TECHNOLOGIES | | 19. | QED Technologies International, Inc. | 4,270,737 | Q-FLEX | | 20. | Flowchem, Ltd. (n/k/a Flowchem, LLC) | 2971771 | TURBOFLO | | 21. | KMG Electronic Chemicals, Inc. | 1851237 | CLEANROOM | | 22. | KMG Electronic Chemicals, Inc. | 1705722 | GIGABIT | | 23. | KMG Electronic Chemicals, Inc. | 3949164 | NANO-STRIP | | 24. | KMG Electronic Chemicals, Inc. | 3306579 | NANO-STRIP | | 25. | KMG Electronic Chemicals, Inc. | 1533823 | PARTICU-LO | | 26. | KMG Electronic Chemicals, Inc. | 2189410 | PARTICU-LO LTM | | 27. | KMG Electronic Chemicals, Inc. | 1870262 | TERABIT | | 28. | KMG Electronic Chemicals, Inc. | 1907795 | ULTRA-ETCH | | 29. | KMG-Bernuth, Inc. | 0821851 | BUENO | | 30. | KMG Ultra Pure Chemicals Limited | 4697731 (66A) | OMNI | | 31. | KMG Ultra Pure Chemicals Limited | 4177579 (66A) | OMNICU | | | OWNER | REGISTRATION
NUMBER | TRADEMARK | |-----|--------------------------------|------------------------|--------------------| | 32. | KMG-Bernuth, Inc. | 0821805 | DACONATE | | 33. | MPower Specialty Chemicals LLC | 2994247 | HIPR | | 34. | MPower Specialty Chemicals LLC | 2243649 | X-PAND | | 35. | Sealweld (USA), Inc. | 2142260 | SEALWELD | | 36. | Sealweld (USA), Inc. | 5514442 | FLOW WOLF | | 37. | Sealweld (USA), Inc. | 5514443 | CHAMELEON SEAL | | 38. | Sealweld (USA), Inc. | 5520231 | ACTIV-8 | | 39. | Sealweld (USA), Inc. | 5498636 | VALVE CLEANER PLUS | | 40. | Valves Incorporated of Texas | 4053560 | VIPER | U.S. Trademark Applications: None. # Release of Notice of Grant of Security Interest in Trademarks recorded April 30, 2021 at Reel/Frame 7276/0107 U.S. Federally Registered or Applied for Trademarks Owned by New Subsidiary | Mark | Image | Country | Application
Date | Application
Number | Registration
Date | Registration
Number | Goods and Services | Status | |-------------------------------|----------------|---------|----------------------------|-----------------------|----------------------------|------------------------|---|----------------------------| | PROBE
REFRESH ¹ | Probe Refresh | OTPSU | App 13-
SEP-2017 | App 87606969 | Reg 31-
DEC-2019 | Reg 5947138 | INT. CL. 3 CLEANING MATERIALS BEING ABRASIVE SHEETS | Registered | | | | | | | | | OF POLYMER FILM EMBEDDED WITH ABRASIVES FOR | | | | | | | | | | CLEANING OF | | | | | | | | | | ELECTRONIC COMPONENT AND | | | | | | | | | | CIRCUIT | | | PRORE | | OLdSII | Ann 13- | Ann 87606989 | Reg 31_ | Reg 5947139 | MATERIALS | Registered | | VERTICAL | Probe Vertical | | SEP-2017 | ; | DEC-2019 | (| CLEANING | (| | | | | | | | | MATERIALS BEING
ABRASIVE SHEETS | | | | | | | | | | OF POLYMER FILM | | | | | | | | | | EMBEDDED WITH | | | | | | | | | | ABRASIVES FOR | | | | | | | | | | ELECTRONIC | | | | | | | | | | COMPONENT AND | | | | | | | | | | MATERIALS | | | ETCH CLEAN | ETCH CLEAN | USPTO | App 27-
SEP-2013 | App 86077492 | Reg 04-
FEB-2014 | Reg 4479239 | INT. CL. 3 CLEANER FOR USE ON | Registered
Supplemental | | | | | | | | | INTEGRATED | Register | | | | | | | | | CIRCUITS TO | | | | | | | | | | COLLECT AND | | | | | | | | | | REMOVE DEBRIS | | | | | | | | | | GENERATED
DURING | | | | | | | | | | DOMINO | | ¹ Record ownership for all trademarks and trademark applications are in prior name of International Test Solutions, Inc. Company will be filing assignment to update record ownership to International Test Solutions, LLC | SCD | CCW | STAGE CLEAN ² | Mark | |--|--|---|---| | SCD | CCW | STAGE CLEAN | Image | | USPTO | OLASO | OLASN | Country | | App 08-
MAY-2009 | App 08-
MAY-2009 | App 13-
AUG-2013 | Application
Date | | Арр 77733038 | Арр 77733035 | App 86037041 | Application
Number | | Reg 15-
DEC-2009 | Reg 15-
DEC-2009 | Reg 22-
APR-2014 | Registration
Date | | Reg 3725049 | Reg 3725048 | Reg 4517513 | Registration
Number | | INT. CL. 3 CLEANING PREPARATIONS FOR COLLECTING AND/OR REMOVING DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING PREPARATIONS FOR COLLECTING AND/OR REMOVING DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANER FOR USE ON INTEGRATED CIRCUITS TO COLLECT AND REMOVE DEBRIS GENERATED DURING MANUFACTURING; CLEANING AGENTS AND PREPARATIONS | Goods and Services MANUFACTURING; CLEANING AGENTS AND PREPARATIONS | | Renewed
(Registered) | Renewed
(Registered) | Registered | Status | ² Record ownership for all trademarks and trademark applications are in prior name of International Test Solutions, Inc. Company to file assignment to update record ownership to International Test Solutions, LLC | PROBE POLISH | TCC | Mark | |---|--|------------------------| | PROBE POLISH | TCC | Image | | USPTO | USPTO | Country | | App 18-
DEC-2008 | App 08-
MAY-2009 | Application Date | | App 77636417 | App 77733039 | Application
Number | | Reg 28-
JUL-2009 | Reg 20-
JUL-2010 | Registration
Date | | Reg 3660513 | Reg 3820328 | Registration
Number | | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING PREPARATIONS FOR COLLECTING PREPARATIONS FOR COLLECTING AND/OR REMOVING DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS FOR USE BY INDIVIDUAL DEVICE MANUFACTURERS SUCH AS CONSTRUCTORS, FABRICATORS OR ASSEMBLERS OF END-PRODUCT ELECTRONIC DEVICES IN ORDER TO PREPARE FOR THE TESTING OF THE TESTING OF THE COMPONENT INTEGRATED CIRCUITS FOR THEIR PRODUCTS | Goods and Services | | Renewed
(Registered)Section
2(F) | Renewed
(Registered) | Status | | | PROBE LAP | PROBE CLEAN PROBE CLEAN | PROBE SCRUB | Mark Image | |--|---|---|---|------------------------| | USPTO | USPTO | USPTO | USPTO | Country | | Арр 23-
JUL-2001 | App 09-
AUG-2006 | App 15-
DEC-2008 | App 18-
DEC-2008 | Application
Date | | App 76289852 | App 78948800 | App 77633420 | App 77636420 | Application
Number | | Reg 29-
OCT-2002 | Reg 12-
JUN-2007 | Reg 28-
JUL-2009 | Reg 28-
JUL-2009 | Registration
Date | | Reg 2642325 | Reg 3251735 | Reg 3660499 | Reg 3660514 | Registration
Number | | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE | INT. CL. 3 CLEANING PREPARATIONS FOR CLEANING AND REMOVING DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING MATERIAL USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED
DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING MATERIAL USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | Goods and Services | | Renewed
(Registered) | Renewed
(Registered) | Renewed
(Registered)
Section 2(F) | Renewed
(Registered)
Section 2(F) | Status | ³ Record ownership for all trademarks and trademark applications are in prior name of International Test Solutions, Inc. Company will be filing assignment to update record ownership to International Test Solutions, LLC | PROBE SCRUB | PROBE CLEAN | INTERNATIONAL
TEST SOLUTIONS | PROBE POLISH | Mark | |---|---|---|---|------------------------| | | | The Saumons | | Image | | USPTO | USPTO | USPTO | USPTO | Country | | App 23-
JUL-2001 | App 23-
JUL-2001 | App 23-
JUL-2001 | App 23-
JUL-2001 | Application
Date | | App 76289917 | App 76289916 | App 76289860 | App 76289858 | Application
Number | | Reg 23-
JUL-2002 | Reg 23-
JUL-2002 | Reg 19-
NOV-2002 | Reg 20-
AUG-2002 | Registration
Date | | Reg 2599808 | Reg 2599807 | Reg 2651534 | Reg 2610970 | Registration
Number | | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | INT. CL. 3 CLEANING MATERIAL COMPRISED OF POLYMER CHAINS USED TO COLLECT AND/OR REMOVE DEBRIS GENERATED DURING TESTING OF INTEGRATED CIRCUITS | Goods and Services | | Renewed
(Registered)
Supplemental
Register | Renewed
(Registered)
Supplemental
Register | Renewed
(Registered)
Partial Section 2(F) | Renewed
(Registered)
Supplemental
Register | Status | | | | Mark | |----------|------------|--| | | | | | | | ** | Image | | | | - 5 | | | | 99 | S | | | | [∭ | ₽ | | | | | | | | | | | | F ₩ | 7 2 | | | | - E | | | | | | | | | | | | - | | | | | | | | • | | | | _ £ | | | | egistr
Dat | | | | egistrat
Date | | | | egistratio
Date | | | | egistration
Date | | | | egistration
Date | | | | egistration R
Date | | | | egistration Reg
Date N | | | | egistration Regis Date Nur | | | | egistration Registra Bate Numb | | | | egistration Registrati Date Number | | | | egistration Registration Date Number | | | | Country Application Application Registration Registration Date Number Date Number | | | | egistration Registration Date Number | | | | | | CK | | | | CIRC | NTEC | | | CIRCUI | INTEGR | | | CIRCUITS | INTEGRA | | | CIRCUITS | INTEGRATI | | | CIRCUITS | INTEGRATED | egistration Registration Goods and Services Date Number | | CIRCUITS | INTEGRATED | | | CIRCUITS | INTEGRATED | | | CIRCOITS | INTEGRATED | | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCOITS | INTEGRATED | | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCUITS | INTEGRATED | Goods and Services | | CIRCUITS | INTEGRATED | Goods and Services | # Release of Notice of Grant of Security Interest in Trademarks recorded July 2, 2021 at Reel/Frame 7345/0418 # U.S. Trademarks and Applications: **RECORDED: 07/06/2022** | | Owner | Trademark | Appl. No.
Filing Date | Reg. No.
Reg. Date | |-----|---------------------|------------------|--------------------------|-----------------------| | 1. | CMC Materials, Inc. | SEALVALVE | 87978962 | 6010732 | | | | | 09/30/2016 | 03/17/2020 | | 2. | CMC Materials, Inc. | EQUA-LUBE EIGHTY | 87219669 | 5944473 | | | | | 10/28/2016 | 12/24/2019 | | 3. | CMC Materials, Inc. | TOTAL-LUBE #911 | 87219660 | 5638495 | | | | | 10/28/2016 | 12/25/2018 | | 4. | CMC Materials, Inc. | SEALVALVE | 87189937 | 5969362 | | | | | 09/30/2016 | 01/21/2020 | | 5. | CMC Materials, Inc. | SEALWELD | 87189442 | 6085978 | | | | | 09/30/2016 | 06/23/2020 | | 6. | CMC Materials, Inc. | GRIZZLY SEAL | 87189421 | 5807265 | | | | | 09/30/2016 | 07/16/2019 | | 7. | CMC Materials, Inc. | VALVEPRO | 87189409 | 5938369 | | | | | 09/30/2016 | 12/17/2019 | | 8. | CMC Materials, Inc. | SUPERGUN | 87189379 | 5938368 | | | | | 09/30/2016 | 12/17/2019 | | 9. | CMC Materials, Inc. | UNI-SEAL | 87189370 | 5633402 | | | | | 09/30/2016 | 12/18/2018 | | 10. | CMC Materials, Inc. | AUSCILLATER | 87189352 | 5788180 | | | | | 09/30/2016 | 06/25/2019 |