507870964 04/24/2023
PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1 EPAS ID: PAT7918096
Stylesheet Version v1.2

SUBMISSION TYPE: NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT

CONVEYING PARTY DATA

Name Execution Date

SAMEER SETH 04/17/2023
ANANDA KUMAR M R 04/24/2023
RECEIVING PARTY DATA
Name: JUNIPER NETWORKS, INC.
Street Address: 1133 INNOVATION WAY
City: SUNNYVALE
State/Country: CALIFORNIA
Postal Code: 94089
PROPERTY NUMBERS Total: 1

Property Type Number
Application Number: 17661698

CORRESPONDENCE DATA

Fax Number: (651)735-1102

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone: 6517351100
Email: pairdocketing@ssiplaw.com
Correspondent Name: SHUMAKER & SIEFFERT, P.A.
Address Line 1: 1625 RADIO DRIVE
Address Line 2: SUITE 100
Address Line 4: MINNEAPOLIS, MINNESOTA 55432
ATTORNEY DOCKET NUMBER: 2014-316US02
NAME OF SUBMITTER: JACLYN M. SKIBA
SIGNATURE: /Jaclyn M. Skiba/
DATE SIGNED: 04/24/2023

Total Attachments: 63

source=JNP3398-US-CON1_Assignment#page1 .tif
source=JNP3398-US-CON1_Assignment#page?2.tif
source=JNP3398-US-CON1_Assignment#page3.tif
source=JNP3398-US-CON1_Assignment#page4.tif

PATENT
507870964 REEL: 063425 FRAME: 0022



source=JNP3398-US-CON1_Assignment#pageb.tif

source=JNP3398-US-CON1_Assignment#page®.tif

source=JNP3398-US-CON1_Assignment#page? .tif

source=JNP3398-US-CON1_Assignment#page8.tif

source=JNP3398-US-CON1_Assignment#page9.tif

source=JNP3398-US-CON1_Assignment#page10.tif
source=JNP3398-US-CON1_Assignment#page11.tif
source=JNP3398-US-CON1_Assignment#page12.tif
source=JNP3398-US-CON1_Assignment#page1 3.tif
source=JNP3398-US-CON1_Assignment#page14.tif
source=JNP3398-US-CON1_Assignment#page15.tif
source=JNP3398-US-CON1_Assignment#page16.tif
source=JNP3398-US-CON1_Assignment#page17.tif
source=JNP3398-US-CON1_Assignment#page18.tif
source=JNP3398-US-CON1_Assignment#page19.tif
source=JNP3398-US-CON1_Assignment#page20.tif
source=JNP3398-US-CON1_Assignment#page21..tif
source=JNP3398-US-CON1_Assignment#page22.tif
source=JNP3398-US-CON1_Assignment#page23.tif
source=JNP3398-US-CON1_Assignment#page24.tif
source=JNP3398-US-CON1_Assignment#page25.tif
source=JNP3398-US-CON1_Assignment#page26.tif
source=JNP3398-US-CON1_Assignment#page27 .tif
source=JNP3398-US-CON1_Assignment#page28.tif
source=JNP3398-US-CON1_Assignment#page29.tif
source=JNP3398-US-CON1_Assignment#page30.tif
source=JNP3398-US-CON1_Assignment#paged1..tif
source=JNP3398-US-CON1_Assignment#page32.tif
source=JNP3398-US-CON1_Assignment#paged3.tif
source=JNP3398-US-CON1_Assignment#page34.tif
source=JNP3398-US-CON1_Assignment#page35.tif
source=JNP3398-US-CON1_Assignment#page36.tif
source=JNP3398-US-CON1_Assignment#paged7.tif
source=JNP3398-US-CON1_Assignment#page38.tif
source=JNP3398-US-CON1_Assignment#paged9.tif
source=JNP3398-US-CON1_Assignment#page40.tif
source=JNP3398-US-CON1_Assignment#page4 1 .tif
source=JNP3398-US-CON1_Assignment#page42.tif
source=JNP3398-US-CON1_Assignment#page43.tif
source=JNP3398-US-CON1_Assignment#page44.tif
source=JNP3398-US-CON1_Assignment#page45.tif
source=JNP3398-US-CON1_Assignment#page46.tif
source=JNP3398-US-CON1_Assignment#page47 tif
source=JNP3398-US-CON1_Assignment#page48.tif
source=JNP3398-US-CON1_Assignment#page49.tif
source=JNP3398-US-CON1_Assignment#page50.tif
source=JNP3398-US-CON1_Assignment#page51..tif
source=JNP3398-US-CON1_Assignment#page52.tif

PATENT
REEL: 063425 FRAME: 0023




source=JNP3398-US-CON1_Assignment#page53.tif
source=JNP3398-US-CON1_Assignment#page54.tif
source=JNP3398-US-CON1_Assignment#page55.tif
source=JNP3398-US-CON1_Assignment#page56.tif
source=JNP3398-US-CON1_Assignment#page57.tif
source=JNP3398-US-CON1_Assignment#page58.tif
source=JNP3398-US-CON1_Assignment#page59.tif
source=JNP3398-US-CON1_Assignment#page60.tif
source=JNP3398-US-CON1_Assignment#page61.tif
source=JNP3398-US-CON1_Assignment#page62.tif
source=JNP3398-US-CON1_Assignment#page63.tif

PATENT
REEL: 063425 FRAME: 0024




CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to Juniper
Networks, Inc., having a place of business at 1133 Innovation Way, Sunnyvale, CA 94089-
1206, United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER™) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
US.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 U.S.C. § 371
(“APPLICATION™):

Application No. 17/661,698, entitled “ASYNCHRONOUS SOCKET
REPLICATION BETWEEN NODES OF A NETWORK™ filed on May
02, 2022 which is a continuation of U.S. Application No. 17/248,216, filed
January 14, 2021. (I hereby authorize the Assignee and its representative
to hereafter add herein such application number(s) and/or filing date(s)
when known.)

2. The entire worldwide right, title, and interest in and to:

{a) the APPLICATION; (b) all applications claiming priority from the APPLICATION;
(c) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (¢) above; and (e) all right of
priority in the APPLICATION and in any underlying provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawful
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,
assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not
hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,
titles, and interests herein conveyed.

Attorney Docket No:: 2074114 1 PATENT

REEL: 063425 FRAME: 0025



INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature Date of Signature

ot Apr17,2023
Sameer Seth
Name and Signature Date of Signature

PR Aengalaltouh
Apr 24,2023

Ananda Kumar M R
Attorney Docket No:: 30143188800 2 PATENT

REEL: 063425 FRAME: 0026



Application No.: 1%

APPENDIX

Attorney Docket No:: 2 3 PATENT

REEL: 063425 FRAME: 0027



Docket No.: 2014-31617502/ INP3398-U5-CON1

ASYNCHRONOUS SOCKET REPLICATION
BETWEEN NODES OF A NETWORK

RELATED APPLICATION
[0001] This application is a continuation of U.S. Application No. 17/248,216, filed January

14, 2021, the entire content of which is herein incorporated by reference.

TECHNICAL FIELD
[0002] This disclosure relates to computer networks and, more particularly, to network
devices, such as routers, that perform a switchover from a primary control unit to a secondary

control unit.

BACKGROUND

[0003] A computer network 1s a collection of interconnected computing devices that can
exchange data and share resources. Certain devices within the computer network, such as
routers, maintain routing information that describes routes through the network. Each route
defines a path between two locations on the network. From the routing information, the
routers may generate forwarding information, which is used by the routers to relay packet
flows through the network and, more particularly to relay the packet flows to a next hop. In
reference to forwarding a packet, the "next hop" from a network router typically refers to a
neighboring device along a given route. Upon receiving an incoming packet, the router
examines information within the packet to identify the destination for the packet. Based on
the destination, the router forwards the packet in accordance with the forwarding
information.

[0004] TLarge computer networks, such as the Internet, often include many routers that
exchange routing information according to a defined routing protocol, such as the Border
Gateway Protocol (BGP). When two routers initially connect, the routers exchange routing
information and generate forwarding information from the exchanged routing information.
Particularly, the two routers initiate a routing communication "session" by which they
exchange routing information according to the defined routing protocol. The routers

continue to communicate via the routing protocol to incrementally update the routing

PATENT
REEL: 063425 FRAME: 0028



Docket No.: 2014-31617502/ INP3398-U5-CON1

information and, in turn, update their forwarding information in accordance with changes to a
topology of the network indicated in the updated routing information. For example, the
routers may send update messages to advertise newly available routes or routes that are no
longer available.

[0005] In the event one of the routers of a routing session detects a failure of the session, 1.e.,
the session "goes down," the surviving router may select one or more alternative routes
through the network to avoid the failed router and continue forwarding packet flows. In
particular, the surviving router may update internal routing information to reflect the failure,
perform route resolution based on the updated routing information to select one or more
alternative routes, update its forwarding information based on the selected routes, and send
one or more update messages to inform peer routers of the routes that are no longer available.
In turn, the receiving routers update their routing and forwarding information, and send
update messages to their peers. This process continues and the update information
propagates outward until it reaches all of the routers within the network. Routing
information in large networks may take a long period of time to converge to a stable state
after a network fault due to temporary oscillations, i.e., changes that occur within the routing
information until it converges to reflect the current network topology. These oscillations
within the routing information are often referred to as "flaps," and can cause significant
problems, including intermittent loss of network connectivity and increased packet loss and
latency.

[0006] To reduce the impact of failures, some routers include a primary routing control unit
and a secondary routing control unit. In the event the primary routing control unit fails, for
example, the secondary routing control unit assumes the responsibility of forwarding packet
flows. During a switchover from the primary routing control unit to the secondary routing
control unit, a significant period of time may elapse before the secondary routing control unit
reaches a state in which it 1s able to process and forward packets. For example, the
secondary routing control unit may need to reestablish routing sessions, ¢.g., BGP sessions,
that were lost when the primary routing control unit failed. During this period, network

traffic may be queued or lost.

PATENT
REEL: 063425 FRAME: 0029



Docket No.: 2014-31617502/ INP3398-U5-CON1

SUMMARY

[0007] In general, this disclosure describes techniques for enabling non-stop routing and
graceful switchover between primary and backup nodes (e.g., control units) of a network
device by way of L4 (Transport Layer) connections with high availability. To maintain high
availability, socket replication is performed between primary and standby routing control
units. Data (e.g., routes) loss is prevented because the standby routing control unit stores a
backup copy of each inbound/outbound packet. Before data in an inbound/outbound packet
is processed by an appropriate application (e.g., a routing process) or a protocol stack for
transmission, the primary routing control unit sends that replicated data to the standby
routing control unit. In the primary routing control unit and/or the standby routing control
unit, a replication module hooks a protocol stack layer to intercept data flowing in either
direction to make sure the standby routing control unit has an up-to-date state of a backup
socket that is pre-established to resume a routing session of the primary routing control unit.
[0008] The systems and techniques described herein mitigate latencies in conventional
socket data replication by reducing/eliminating a wait time for an explicit acknowledgment
from the standby routing control unit in response to the replicated data. Some systems and
techniques rely on a L4 (Transport Layer) socket acknowledgment to assume the standby
routing control unit successfully received the replicated data and/or updated a backup routing
information base (RIB). In the event of a failure at the primary routing control unit, the
standby routing unit takes control of routing and forwarding decisions with little or no
interruption.

[0009] Some socket data replication techniques rely on a Transmission Control Protocol
(TCP) socket of an operating system to return a TCP socket acknowledgement (e.g., TCP
ACK) in response to a socket message in accordance with TCP. This is because the operating
system (e.g., automatically) returns the TCP socket acknowledgement to acknowledge receipt
of the socket message whereas the standby routing control unit returns the explicit
acknowledgment only after that the replicated data has been read by an application and used
to update the RIB. As such, non-stop routing and graceful switchover may be enabled.
[0010] In one example, a method includes generating, by a replication module of a standby
node for a primary node in a network, a backup socket using information corresponding to a

connected socket at the primary node of the network, wherein the information comprises a

3

PATENT
REEL: 063425 FRAME: 0030



Docket No.: 2014-31617502/ INP3398-U5-CON1

transport layer state of the connected socket, wherein the connected socket at the primary
node provides network communication connectivity between the primary node and a peer
network device in accordance with a transport layer protocol, wherein the backup socket of
the standby node is configured to provide network communication connectivity between the
standby node and the peer network device after a switchover from the primary node; and in
response to the switchover, retrieving, by the replication module, a portion of a send buffer of
the backup socket in accordance with the transport layer state of the connected socket,
wherein the send buffer comprises a sequence of data blocks written to the connected socket
by the primary node, wherein the transport layer state of the connected socket comprises
information identifying the portion of the send buffer comprising at least one next data block
to be transmitted to the peer network device from the primary node at a time of the
switchover, and sending, by the replication module, the at least one next data block to the
peer network device via the backup socket.

[0011] In another example, a network device includes a primary node and a standby node.
The primary node includes one or more processors implemented in circuitry and configured
to execute an operating system providing an application space and a kernel space, execute a
replication application in the application space to receive a data write operation including
data to be written to a socket of the operating system or to receive a data read operation
requesting data to be read by a routing process.

[0012] In another example, a network comprising at least one network device, the network
comprising: a standby node configured on a network device to resume a routing session of a
primary node in event of a switchover, wherein the primary node and the standby node are
configured on same network device or different network devices of the network, wherein
standby node comprises one or more processors implemented in circuitry and configured to:
execute a replication module to: generate a backup socket using information corresponding to
a connected socket at the primary node of the network, wherein the information comprises a
transport layer state of the connected socket, wherein the connected socket at the primary
node provides network communication connectivity between the primary node and a peer
network device in accordance with a transport layer protocol, wherein the backup socket of
the standby node is configured to provide network communication connectivity between the

standby node and the peer network device after the switchover from the primary node; and in

PATENT
REEL: 063425 FRAME: 0031



Docket No.: 2014-31617502/ INP3398-U5-CON1

response to the switchover, retrieve a portion of a send buffer of the backup socket in
accordance with the transport layer state of the connected socket, wherein the send buffer
comprises a sequence of data blocks written to the connected socket by the primary node,
wherein the transport layer state of the connected socket comprises information identifying
the portion of the send buffer comprising at least one next data block to be transmitted to the
peer network device from the primary node at a time of the switchover, and send the at least
one next data block to the peer network device via the backup socket.

[0013] In another example, a computer-readable storage medium having stored thercon
instructions that, when executed, cause one or more processors of a primary node of a
network device to: execute an operating system to provide an application space and a kernel
space; execute logic in the kernel space, the logic operative to: generate a backup socket
using information corresponding to a connected socket at a primary node of the network,
wherein the information comprises a transport layer state of the connected socket, wherein
the connected socket at the primary node provides network communication connectivity
between the primary node and a peer network device in accordance with a transport protocol,
wherein the standby node is configured to provide control for the network device after a
failure of the primary node, wherein the backup socket provides network communication
connectivity between the standby node and the peer network device after the failure of the
primary node; and in response to the failure, retrieve a portion of a send buffer of the backup
socket in accordance with the transport layer state of the connected socket, wherein the send
buffer comprises a sequence of data blocks written to the connected socket by the primary
node, wherein the transport layer state of the connected socket comprises information
identifying the portion of the send buffer comprising at least one next data block to be
transmitted to the peer network device from the primary node at a time of the failure, and
send the at least one next data block to the peer network device via the backup socket.
[0014] The details of one or more examples are set forth in the accompanying drawings and
the description below. Other features, objects, and advantages will be apparent from the

description and drawings, and from the claims.

PATENT
REEL: 063425 FRAME: 0032



Docket No.: 2014-31617502/ INP3398-U5-CON1

BRIEF DESCRIPTION OF DRAWINGS

[0015] FIG. 1 illustrates an example computing network formed by autonomous systems
interconnected by communication links.

[0016] FIG. 2 is a block diagram illustrating an example router capable of performing a
switchover from a primary routing engine to a secondary routing engine using the techniques
of this disclosure.

[0017] FIG. 3 is a flow diagram illustrating an example process for performing data
replication according to the techniques of this disclosure.

[0018] FIG. 4 is a flow diagram illustrating an example process for non-stop routing after a
graceful switchover according to the techniques of this disclosure.

[0019] FIG. 5 is a block diagram illustrating an example network capable of non-stop routing
from either a primary router or a secondary router using the techniques of this disclosure.
[0020] FIG. 6 is a flowchart illustrating an example method for replicating outbound data
received from a local application to be written to a socket for communication from a primary
routing engine to a peer network device according to the techniques of this disclosure.

[0021] FIG. 7 is a flowchart illustrating an example method for replicating inbound data
received from a peer network device via a socket associated with primary routine engine
according to the techniques of this disclosure.

[0022] FIG. 8 is a conceptual diagram illustrating messaging-free socket replication
according to the techniques of this disclosure.

[0023] FIG. 9 is a conceptual diagram illustrating an example process for updating a pre-
connected socket according to the techniques of this disclosure.

[0024] FIG. 10 is a conceptual diagram illustrating an example process for updating a state
of a socket at a secondary routing engine according to the techniques of this disclosure.
[0025] FIG. 11 is a conceptual diagram illustrating an example switchover from a primary
routing engine to a secondary routing engine according to the techniques of this disclosure.
[0026] FIG. 12 is a flowchart illustrating an example method for non-stop routing after an
example switchover from a primary routing engine to a secondary routing engine according

to the techniques of this disclosure.

PATENT
REEL: 063425 FRAME: 0033



Docket No.: 2014-31617502/ INP3398-U5-CON1

DETAILED DESCRIPTION

[0027] FIG. 1 illustrates an example computing network 2 formed by autonomous systems
4A-4C (herein autonomous systems 4) interconnected by communication links 8. Each of
autonomous systems 4 represents an independent administrative domain having a variety of
networked resources capable of packet-based communication. For example, autonomous
systems 4 may include internal networks having servers, workstations, network printers and
faxes, gateways, routers, and the like. In this example, autonomous systems 4 include
autonomous system border routers (ASBRs) 6 for sharing routing information and
forwarding packets via communication links 8. That is, routers 6 maintain peer routing
sessions and exchange messages conveying routing information in accordance with a routing
protocol, such as the Border Gateway Protocol (BGP). The messages communicated over
the routing sessions typically advertise and withdraw routes for reaching destinations within
network 2. In the event of a network topology change, such as link failure or failure of one
of routers 6, any of the routers detecting the change issue routing messages (e.g., route
advertisements) informing the other routers of the affected routes. In response, routers 6
select new routes for reaching the destinations within network 2.

[0028] In order to mitigate the effects on node failure, one or more of routers 6 incorporate a
primary routing engine and one or more secondary routing engines to assume routing
responsibilities in the event the primary routing engine fails. Moreover, as described herein,
one or more of routers 6 provide non-stop routing after graceful switchover from the primary
routing engine to one of the secondary routing engines using replication of routing sessions.
That is, data for sockets associated with the routing sessions on the primary routing engine is
transparently replicated to the secondary routing engine in real-time (i.e., while the primary
routing engine exchanges routing messages) prior to any switchover event. The secondary
routing engine constructs and maintains backup sockets so as to mimic the (connected)
sockets currently used by the primary routing engine when communicating with the other
routers 6.

[0029] During a switchover from the primary routing engine to the secondary routing engine,
the pre-established (e.g., pre-connected) backup sockets on the secondary routing engine
contain all the information needed to preserve the connections with the routing peers; these

sockets enable the routing communications sessions to continue uninterrupted such that these

7

PATENT
REEL: 063425 FRAME: 0034



Docket No.: 2014-31617502/ INP3398-U5-CON1

connections need not be reestablished. This information may include any outbound/inbound
data queued in the connected socket buffer and information describing a state (e.g., a
transport layer state) of that socket. The state of the connected socket at the primary routing
engine identifies which outbound data blocks (e.g., bytes) have been written to the connected
socket and then, replicated to the backup socket and communicated to a peer network device
but have not been acknowledged by that peer network device (i.e., unacknowledged data
blocks). Based on the unacknowledged data block(s), the state of the connected socket
identifies which data blocks are next to be sent to the peer network device (i.e., send next
data blocks). When (due to the switchover) the secondary routing engine assume control
over the routing sessions from the primary routing engine, the secondary routing engine (in
accordance with the state of the connected socket) communicates one or more send next data
blocks in continuance of the routing sessions without lagging behind the primary routing
engine. Because of the secondary routing engine maintains an up-to-date state of the
connected socket, the secondary routing engine avoids communicating data that the primary
routing already transmitted prior to the switchover; the secondary routing engine starts
transmitting data where the primary routing engine left off with respect to transmitting data
for the routing sessions. Hence, the switchover to the secondary routing engine is seamless,
and to the peer network device, there isn’t a substantial delay between the primary routing
engine’s last transmission and the secondary routing engine’s first transmisgsion.

[0030] As described herein, these techniques provide non-stop routing from multiple
network devices in a network or a single network device in that network and enable a
graceful switchover that seamlessly transfers control over a routing session from the primary
routing engine to the secondary routing engine. As further described herein, these techniques
facilitate messaging-free socket replication by replicating data via a first transport layer
connection (e.g., a replication socket) between the primary routing engine and the secondary
routing engine and then, automatically pushing data onto a protocol stack—which prepares
and schedules the data for communication to the peer network device via a second transport
layer connection (e.g., the connected socket)—as a response to receiving a socket
acknowledgment. Instead of an explicit acknowledgement, these techniques rely on the
socket acknowledgement to function as a provisional confirmation that the replicated data

has been stored in a memory bufter of a third transport layer connection (e.g., the pre-

PATENT
REEL: 063425 FRAME: 0035



Docket No.: 2014-31617502/ INP3398-U5-CON1

connected or backup socket). The socket acknowledgement is an example acknowledgement
message that has been assembled in accordance with a transport layer protocol and represents
the third transport layer connection acknowledgement that the replicated data arrived at the
secondary routing engine. An example transport layer protocol is Transmission Control
Protocol (TCP) but the present disclosure is applicable to any suitable protocol that ensuring
delivery of communicated data, for example, by mapping a sequence of data blocks to an
address space (e.g., sequence numbers).

[0031] Conventional socket replication techniques are limited to synchronous socket
replication and for that reason, require that the primary routing engine halt the
communication to the peer network device and wait for the explicit acknowledgement from
the secondary routing engine before pushing any replicated data onto the protocol stack.
Waiting for the explicit acknowledgement may result in significant latencies in the routing
sessions. Some of the techniques described herein decouple the routing sessions and the
socket replication tasks at the primary routing engine improves overall performance of that
primary routing engine. To provide asynchronous socket replication without affecting the
graceful switchover to and the non-stop routing from the secondary routing engine, some of
the techniques described herein leverage the information describing the state (e.g., a TCP
state) of the pre-connected socket of the third transport layer connection.

[0032] As described herein, some techniques may be implemented without requiring changes
to networking protocols. In this manner, the techniques provide for asynchronous and peer-
agnostic socket replication.

[0033] It should be noted that the present disclosure may refer to an example secondary
routing engine as a backup or standby node and an example primary routing engine as a
primary or primary node within a network. Depending on context regarding the network, a
node may refer to a routing engine that shares a network device with another routing engine
or a network device that operates as a single routing engine.

[0034] For purposes of example, the techniques of this disclosure are described with
reference to router 6A and, in some instances, router 6B. However, router 6C may operate in
accordance with the techniques described herein. In this example, router 6 A and/or router 6B
provides non-stop routing by including a primary routing engine as well as one or more

standby routing engines. As described herein, router 6A may be a network device that

PATENT
REEL: 063425 FRAME: 0036



Docket No.: 2014-31617502/ INP3398-U5-CON1

includes both the primary and secondary routing engines, or router 6A and router 6B may
represent the primary and secondary routing engines, respectively, as part of separate
network devices. In the event of a graceful switchover, i.¢., when the primary routing engine
of router 6 A fails or otherwise needs to be shut down, one of the secondary routing engines
assumes control over routing resources and routing functionality generally. Prior to the
switchover, the primary and secondary routing engines synchronize information
corresponding to their respective states to allow the secondary routing engine to assume
control of the routing resources without having to relearn state information. Morcover, a
corresponding socket is pre-established on the secondary routing engine for each socket
currently in use by the primary routing engine for routing sessions.

[0035] For example, router 6 A may engage in a routing session with, ¢.g., router 6C using a
socket (e.g., a connected socket). Router 6A and router 6C, a peer network device, may
exchange session messages over the connected socket in accordance with a routing protocol,
such as BGP. When router 6A receives a message from router 6C, the message may be
internally forwarded to the primary routing engine of router 6 A for processing. At some
point between reception and acknowledgment, a replication module (on behalf of the primary
routing engine) is configured to replicate the received message and then, send to the
secondary routing engine of router 6A via a replication socket. In some examples, the
replication module in the primary routing engine generates a data unit in accordance with a
transport protocol of the second socket, such as TCP and then, communicates that data unit
with the received message (e.g., in its payload). With respect to outbound messages, when
router 6 A generates a message for communication to router 6C via the connected socket, the
replication module of the primary routing engine is configured to replicate the message to be
sent and then, send that replicated message to the secondary routing engine via the
replication socket. In some examples, router 6A generates a composite message configured
to store (e.g., in its payload) the replicated message with state information corresponding to
the connected socket.

[0036] Similarly, router 6B may engage in a routing session with, e.g., router 6C using a
second connected socket in accordance with a transport protocol. With respect to inbound
routing messages, when router 6B receives a message from router 6C, the message may be

internally forwarded to the primary routing engine of router 6B for processing. At some

10

PATENT
REEL: 063425 FRAME: 0037



Docket No.: 2014-31617502/ INP3398-U5-CON1

point between reception and acknowledgment, a replication module (on behalf of the primary
routing engine at router 6B) replicates the received message and then, sends that replicated
message to the secondary routing engine running in router 6A via the second replication
socket. When router 6B generates a message for communication to router 6C via the socket,
the replication module replicates the message to be sent and then, sends that message to the
secondary routing engine via the second replication socket.

[0037] In response to receiving inbound or outbound messages via the replication socket or
the second replication socket, a backup or standby replication module in the secondary
routing engine updates state information (e.g., TCP state information) for a backup socket
that provides network communication connectivity to router 6C. The backup socket
corresponds to the connected socket of the primary routing engine at router 6A or the second
connected socket of the primary routing engine at router 6B. In either example, once the
secondary routing engine configures the backup socket, a signal (e.g., a keepalive signal)
may be automatically enabled with the primary routing engine in either router 6A or the
primary routing engine in router 6B. For the backup socket, the secondary routing engine
updates at least two memory buffers (e.g., receive buffer and sent buffer) within received
inbound and outbound message data, respectively. The data blocks in these buffers have
been written to a socket (e.g., a replication socket in accordance with TCP) that provides
network communication connectivity with a particular primary routing engine. The
secondary routing engine writes the data blocks as enumerated sequences in the buffers and
records a sequence number of a last written block as part of the state of the backup socket. A
portion of the outbound message data blocks has not yet been sent and another portion has
not been acknowledged (¢.g., by way of a received acknowledgement); by recording
respective sequence numbers for these portions, the secondary routing engine (e.g., in a
single operation) retrieve data blocks of either portion from their corresponding memory
buffers.

[0038] By taking advantageous use of an eavesdropping mechanism (e.g., a hook, such as a
Netfilter hook as explained herein) at both primary routing engine, the secondary routing
engine is notified of up-to-date socket state changes for replication to the backup socket. In
some examples, the secondary routing engine of router 6A, via the eavesdropping

mechanism, listens for the inbound messages or outbound messages being received and sent

11

PATENT
REEL: 063425 FRAME: 0038



Docket No.: 2014-31617502/ INP3398-U5-CON1

at the corresponding transport protocol layer by the particular primary routing engine (e.g., at
router 6A or router 6B). This layer of the protocol stack processes outbound message data
after the routing protocol (e.g., application layer), and for at least that reason, the secondary
routing engine may assume that the primary routing engine processed the message (¢.g., and
in turn, updated routing and forwarding information bases). The transport protocol of the
protocol stack may be hooked to update the secondary routing engine of sent data
contemporaneous to their sending. The transport layer of the protocol stack processes
inbound message data after a network layer and therefore, may be hooked update the
secondary routing engine with accurate and current acknowledgements. The replication
module (on behalf of the secondary routing engine) generates data identifying one or more
data blocks of outbound message data that are unacknowledged by the router 6C and data
identifying one or more data blocks of the same outbound message data that are not yet sent
to router 6C.

[0039] As described herein, the eavesdropping mechanism enables the secondary routing
engine to maintain an updated socket state (e.g., a transport protocol layer state) of the
backup socket in the event of a switchover such that the secondary routing engine seamlessly
assumes primary role. The secondary routing engine, by way of the eavesdropping
mechanism, intercepts incoming acknowledgment messages and replicates, to the state
backup socket, acknowledged sequences numbers such that (with trivial latency) the socket
state remains up-to-date and (mostly) current with the connected socket or the second
connected socket of the primary routing engine. The secondary routing engine records a
sequence number after a last acknowledged data block as a starting point of a sequence of
unacknowledged data blocks. In this manner, the secondary routing engine avoids re-
transmitting acknowledged data and prevents router 6 A from lagging. As another
advantageous use of the eavesdropping mechanism, the secondary routing engine intercepts
outbound routing messages at the transport layer of the protocol stack of the primary routing
engine. The secondary routing engine records a sequence number of a data block after a last
sent data block by the primary routing engine. In this manner, the secondary routing engine
automatically resumes routing sessions with router 6C (with zero latency) in response to a
switchover and/or while the primary routing engine is down. The secondary routing engine

quickly identifies each next data block to be sent to router 6C and prepares data units (e.g.,

12

PATENT
REEL: 063425 FRAME: 0039



Docket No.: 2014-31617502/ INP3398-U5-CON1

packets) for communication to router 6C in continuation of the routing session with the
primary routing engine.

[0040] Regardless of any switchover, data blocks storing inbound/outbound messages (¢.g.,
routing messages) that have been processed by the transport layer of the protocol stack at the
secondary routing engine and written to a corresponding send or receive buffer of the backup
socket are (eventually) read by applications (e.g., an application layer). A routing protocol
process at the secondary routing engine may invoke read operations requesting unread data,
and in response, the replication module generates an inter-process communication with the
requested data blocks. The routing protocol process updates various databases storing
routing information (e.g., routing information base (RIB) and forwarding information (e.g.,
forwarding information base (FIB)) in preparation of the switchover such that packet
forwarding engine may properly forward packets to internal destinations within the
autonomous system or to external destinations in a different autonomous system.

[0041] Hence, based on the updated state information, the secondary routing engine
continues routing messages for each session with router 6C without a significant interruption
to packet forwarding. Ewven after the switchover to the backup socket of the secondary
routing engine, when an inbound/outbound message is processed by a (secondary) protocol
stock at router 6A, the replication module updates the data identifying one or more data
blocks of the sent buffer that are unacknowledged by the router 6C and the data identifying
one or more data blocks of the same sent buffer that are not yet sent to router 6C.

[0042] In other examples, the primary routing engine of router 6 A may send replicated data
(e.g., in an outgoing TCP segment or another data unit according to a transport layer
protocol) to the secondary routing engine before that data is processed by the protocol stack
(e.g., a transport layer) for the socket on the primary routing engine. For example, the
replication module at the primary routing engine may replicate and communicate data to the
secondary routing engine, for example, before an outbound message is packaged into a
transport layer protocol data unit (when sending data) by the protocol stack (e.g., the
transport layer) or before an inbound message is unpacked from a transport layer protocol
data unit (when receiving data) by the protocol stack (e.g.. by the transport layer). In the
present disclosure, the transport layer protocol data unit may be known as a TCP segment or

packet. As another example, the replication module at the primary routing engine may

13

PATENT
REEL: 063425 FRAME: 0040



Docket No.: 2014-31617502/ INP3398-U5-CON1

replicate and communicate data to the secondary routing engine after an outbound message is
packaged into a data unit (e.g., a TCP segment or IP packet) by the protocol stack (e.g., the
transport layer) and/or after an inbound message is unpacked by the protocol stack (e.g., the
transport layer). As further illustrated below, this asymmetric/asynchronous replication of
data for routing messages at different levels of the networking stack aids router 6A in
ensuring that the state of the corresponding backup socket on the secondary routing engine
matches that of the connected (e.g., active) socket of the primary routing engine.

[0043] In the event that the primary routing engine of router 6A goes down, for example as a
result of a failure or because software of the primary routing engine is to be updated, the
secondary routing engine detects the event (e.g., by way of heartbeat/’keepalive signal or
explicit message from the primary) and resumes control of the primary’s routing
functionality. Because the secondary routing engine has received all of the data that the
primary routing engine has sent and received, the secondary routing engine may be able to
continue the communication session without the necessity of a session restart. This data
includes socket data replication (e.g., replication of inbound and outbound data) between
different routing engines in a same network device or different routing engines in different
network devices.

[0044] Both the primary routing engine and the secondary routing engine employ a state
machine (e.g., TCP state machine) to maintain a state (e.g., TCP state) of a highly available
pair of sockets and their underlying redundant connections (e.g., TCP connections) with a
peer network device. For example, the secondary routing engine may keep track of sequence
numbers of sent data and received data including acknowledgements for the corresponding
socket. The secondary routing engine may also buffer the sent data such that, if the primary
routing engine fails before at least a portion the sent data is pushed to the protocol stack and
actually transmitted, the secondary routing engine may start transmitting that portion of the
sent data. Starting with a first data block immediately succeeding a last sent data block that
has been successfully placed on a wired/wireless connection, the secondary routing engine
routes messages for the benefit of the primary routing engine’s session routing messages.
Furthermore, if the primary routing engine fails at a time when the sent data is not received
by the peer network device recipient (as determined by whether the secondary routing engine

has received an acknowledgement), the secondary routing engine may wait for the

14

PATENT
REEL: 063425 FRAME: 0041



Docket No.: 2014-31617502/ INP3398-U5-CON1

acknowledgement before and/or instead of retransmitting the data after taking control of
routing duties.

[0045] The primary routing engine and/or the secondary routing engine may also map each
byte of the sent data buffer to send (byte) sequence numbers (e.g., TCP send sequence
numbers). By piggybacking socket replication with the TCP state of the underlying
connection, the techniques described herein enable asynchronous socket data replication in a
manner that may be more efficient than other socket replication techniques. For incoming
data, the primary routing engine updates the TCP state in the TCP state machine for the
corresponding socket as (e.g., after) the packet traverses the protocol stack, and in turn, the
secondary routing engine updates the TCP state in the TCP state machine of the
corresponding replicated socket. For outgoing data, the primary routing engine replicates the
outgoing data to the secondary routing engine, and when an acknowledgement from a peer is
received, the secondary routing engine identifies at least a portion of the outgoing data that
maps to the acknowledgement and may follow that identification by removing that portion
from memory. For both outgoing data and incoming data, the primary routing engine
transmits, by way of an out-of-band communication (¢.g., an inter-process communication
(IPC) by a hooked protocol stack), current and/or updated TCP state data, upon receiving
acknowledgments from the peer network device. For outgoing data, the primary routing
engine replicates the sent data buffer to the secondary routing engine before pushing the send
buffer through the protocol stack and then, packaging the sent data buffer as a TCP segment
(or another protocol data unit). The secondary routing engine does not update the TCP state
of'the TCP machine until the TCP acknowledgement from the peer is received.

[0046] Furthermore, according to the techniques of this disclosure, the primary routing
engine may be configured to replicate state information (e.g., socket data) to the secondary
routing engine without relying on kernel-level enhancements, thus enabling graceful failover
including socket data replication without requiring modification to an underlying kernel of an
operating system of the primary routing engine. That is, the primary routing engine may be
configured with a user-space replication application that intercepts socket calls, a new kernel-
level module that operates separate from existing kernel software and is invoked by the
replication application for replicating socket data to the secondary routing engine. When the

socket layer of the operating system of the primary routing engine receives data from a peer

15

PATENT
REEL: 063425 FRAME: 0042



Docket No.: 2014-31617502/ INP3398-U5-CON1

(e.g., router 6B) or an application (e.g., a routing process), the kernel module intercepts the
data and replicates this data to the secondary routing engine. After receiving an
acknowledgement from the secondary routing engine, the kernel module proceeds to process
the data. In general, the kernel module may include three parts: a kernel thread to process
data for replication, a device driver (e.g., a Linux or Unix character driver or the like) to
intercept socket data from an application (e.g.. the routing process), and functionality for
socket receive data event interception and event processing.

[0047] The techniques described herein may provide certain advantages. For example,
router 6A may be able to perform graceful switchover between routing engines, thereby
achieving non-stop routing. In the event of a failure or other need to bring down the primary
routing engine, router 6 A may be able to continue to forward packets without downtime and
in a manner that avoid routing session reestablishment, thus avoiding route flapping by peer
routers. Similarly, these techniques may enable a router to receive in-service software
upgrades without causing route flapping. For example, when a software upgrade is necessary
for the router, a system administrator may take the secondary routing engine offline to
receive and install the upgrade.

[0048] Moreover, router 6 A may perform socket replication transparently to outside network
devices, such as routers 6B—6C, because no modification to existing communication
protocols is necessary. Routers 6B-6C need not change their behavior with respect to the
routing protocols used when communicating with peer network devices in order for router

6 A to implement socket replication and non-stop routing. Moreover, routers 6B—6C need not
have any indication of the fact that router 6A is configured to perform switchover.

[0049] FIG. 2 is a block diagram illustrating an example router 20 capable of performing a
graceful switchover from primary routing engine 22 to a secondary routing engine 40 using
the techniques described herein. Router 20 may, for example, correspond to router 6A of
FIG. 1.

[0050] In the example embodiment of FIG. 2, router 20 includes primary routing engine 22
and secondary routing engine 40. In this manner, router 20 may be viewed as having a
primary control unit and a backup control unit. Primary routing engine 22 is responsible for
maintaining routing database 24 to reflect the current topology of a network and other

network entities to which router 20 is connected. That is, primary routing engine 22 provides

16

PATENT
REEL: 063425 FRAME: 0043



Docket No.: 2014-31617502/ INP3398-U5-CON1

an operating environment for execution of a routing process (daemon) 26 that implements
one or more routing protocols to communicate with peer routers and periodically update
routing database 24 to accurately reflect the topology of the network and the other network
entities. Example protocols include routing and label switching protocols, such as BGP, MP-
BGP, IS-IS, OSPE, RIP, RSVP-TE and LDP. In a similar fashion, secondary routing engine
40 provides an operating environment for maintaining routing database 42 in accordance
with data received from primary routing engine 22. Alternatively, the techniques described
herein may be applied between a routing engine of a first router (e.g., router 6A of FIG. 1)
and a routing engine of a second router (e.g., router 6B of FIG. 1). That is, a routing engine
of router 6 A may act as a primary routing engine, while a routing engine of a second router
may act as a secondary or back-up routing engine.

[0051] In a typical architecture, router 20 includes interface cards (IFCs) S8A-38N (“IFCs
58) that receive packets on inbound links 60A—60N (“inbound links 60”) and sends packets
on outbound links 62A—62N (“outbound links 627). TFCs 58 are coupled to primary routing
engine 22 and secondary routing engine 40 by high-speed switch 56. In another
embodiment, router 20 may be a multi-chassis router in which multiple routing nodes are
physically coupled and configured to operate as a single routing node. One example of a
multi-chassis router includes multiple line card chassis (LCCs), which include one or more
interface cards (IFCs) for sending and receiving packets, and a central switch control chassis
(SCC), which provides top-down management of the LCCs. U.S. Patent 8,050,559, issued
Novw. 1, 2011, entitled MULTI-CHASSIS ROUTER WITH MULTIPLEXED OPTICAL
INTERCONNECTS, describes a multi-chassis router in which a multi-stage switch fabric,
such as a 3-stage Clos switch fabric, 1s used as a high-end forwarding plane to relay packets
between multiple routing nodes of the multi-chassis router. The entire contents of U.S.
Patent 8,050,559 are incorporated herein by reference.

[0052] One or more routing protocols implemented by routing process 26 establish (peer)
routing sessions with other routers and, by way of these network communication sessions,
exchange routing messages. As such, an operating system (OS) 30 executing within primary
routing engine 22 implements kernel-level processes for handling data at various layers of
the open systems interconnection (OSI) networking model (shown as protocol stack 36). OS

30 provides an API by which routing process 26 creates sockets 34 and establishes, for

17

PATENT
REEL: 063425 FRAME: 0044



Docket No.: 2014-31617502/ INP3398-U5-CON1

example, TCP/IP-based communication sessions for sending and receiving routing messages
for each socket. Sockets 34 are logical constructs having data structures and state data
maintained by OS 30 of primary routing engine 22 and may be viewed as acting as interfaces
between routing process 26 and protocol stack 36. OS 30 also provides both a kernel space
for execution of OS-related processes, such as replication driver 32 and the kernel itself, and
an application space for execution of applications, such as routing process 26. Replication
driver 32 may be implemented as a device driver. The kernel space and application space
generally correspond to separate regions of memory, ¢.g., random access memory (RAM), in
which applications, modules, and the like are executed, and OS 30 generally prevents
applications executed in the application space from accessing memory addresses assigned to
the kernel space.

[0053] Primary routing engine 22 of router 20 also includes replication application 28. One
or more processors implemented in circuitry of router 20 execute replication application 28
to perform packet and data replication between primary routing engine 22 and secondary
routing engine 40, in accordance with the techniques of this disclosure. Replication
application 28 may, for example, receive data from routing process 26 to be written to one of
sockets 34. In accordance with the techniques of this disclosure, replication application 28
passes such data to replication driver 32, executed within the kernel space provided by OS
30, which replicates the data to secondary routing engine 40 while writing the data to the one
of sockets 34, as explained in greater detail below. In particular, OS 30 and OS 48
communicate data and acknowledgements via communication channel 64, which may
correspond to a channel between sockets of OS 30 and OS 48.

[0054] Secondary routing engine 40 provides an operating environment for execution of
routing process 44, Like routing process 26, routing process 44 implements one or more
routing protocols and periodically updates routing database 42 to accurately reflect the
topology of the network and the other network entities. That is, like routing process 26,
routing process 44 sends and receives routing messages through replicated sockets 52, where
cach of the replicated sockets corresponds to one of sockets 34 currently in use for routing
communications. Routing process 44 receives replicated routing messages from primary
routing engine 22, updates routing database 42, and outputs routing messages as if it were

handling all routing functions for router 20. Replicated sockets 52 of secondary routing

18

PATENT
REEL: 063425 FRAME: 0045



Docket No.: 2014-31617502/ INP3398-U5-CON1

engine 40 are logical constructs having data structures and state data maintained by OS 48
and act as an interface between routing process 44 and protocol stack 54, also of secondary
routing engine 40. Like OS 30, OS 48 also provides a kernel space and an application space.
One or more processors implemented in circuitry of router 20 may execute routing process
44 and replication application 46 in the application space provided by OS 48, and replication
driver 50 in the kernel space provided by OS 48.

[00SS] After opening a new routing session, routing process 26 interacts with operating
system 30 to allocate a new socket of sockets 34 for the new routing session, and tags the
socket (referred to as the “original socket™) for replication by an API call to operating system
30. The call causes operating system 30 to asynchronously set up the replication
communications between protocol stacks 36, 54 as described below.

[0056] In accordance with the techniques of this disclosure, when routing process 26
performs a write operation to send data to one of sockets 34, replication application 28
receives the data prior to the data reaching the one of sockets 34. Replication application 28
may then construct a write message including the data to send to replication driver 32. For
example, replication application 28 may construct a message in the form of an io0 buffer data
structure as discussed in greater detail below with respect to FIG. 3. In general, this message
may indicate that the data is to be written, and include the data to be written itself (or a
pointer to a memory location at which the data is stored). Replication application 28 may
then pass this message to replication driver 32.

[0057] In response to receiving this message, replication driver 32 may cause OS 30 to send
data of the message (e.g., the data intended for one of sockets 34) to OS 48 for replication.
Ultimately, replication driver 50 of OS 48 may receive the data and update one of replicated
sockets 52 corresponding to the one of sockets 34 with this received data. In this manner, the
one of replicated sockets 52 will reflect the state of the corresponding one of sockets 34.
After updating the one of replicated sockets 52 with the data, replication driver 50 and/or OS
48 may send an acknowledgement of the data to OS 30 and/or replication driver 32.

[0058] In response to the acknowledgement, replication driver 32 and/or OS 30 may direct
the data to the one of sockets 34. OS 30 may ultimately deliver the data from the one of

sockets 34 to protocol stack 36, which encapsulates the data according to the OSI model to

19

PATENT
REEL: 063425 FRAME: 0046



Docket No.: 2014-31617502/ INP3398-U5-CON1

form a packet. OS 30 then sends the packet to switch 56, which directs the packet to an
appropriate one of IFCs 58 to be sent via one of outbound links 62.

[0059] Router 20 may also receive a packet via one of inbound links 60. The one of IFCs 58
that receives the packet may send the packet to switch 56, which may direct the packet to
protocol stack 36 of primary routing engine 22, assuming primary routing engine 22 is still
active as the primary node. Protocol stack 36 may decapsulate the packet to extract
application-layer data associated with an application, such as a routing instance of routing
process 26. In accordance with the techniques of this disclosure, OS 30 may maintain a data
structure (not shown) representative of applications for which data is to be replicated.
Accordingly, OS 30 may determine whether the application-layer data is to be replicated to
secondary routing engine 40 based on the application to which the application-layer data is to
be delivered and the data structure.

[0060] If the application-layer data is to be replicated, OS 30 may deliver the application-
layer data to replication driver 32. Replication driver 32 may again form a data structure
including and/or representative of the application-layer data and send this data structure (e.g.,
the io buffer data structure discussed in greater detail below) to OS 48. After OS 48 and/or
replication driver 50 updates a corresponding one of replicated sockets 52, OS 48 may send
an acknowledgement of the replicated data to OS 30.

[0061] OS 30 may receive a read request from routing process 26 to read data from the one
of sockets 34 to which the received application-layer data is to be written. Replication driver
32 and/or OS 30 may wait until after the acknowledgement is received from OS
48/replication driver 50 before delivering data of the one of sockets 34 to routing process 26
in response to the read request.

[0062] In this manner, router 20 may perform a socket replication process between sockets
34 and replicated sockets 52 of primary routing engine 22 and secondary routing engine 40,
respectively. In particular, this socket replication process does not need to involve alteration
of a kernel of OS 30 or a kernel of OS 48. Thus, the techniques of this disclosure may be
implemented in a router for which OSs 30, 48 are closed source or for which licensures
prevent kernel alteration. That is, because the techniques of this disclosure can be performed,

at least in part, by replication drivers 32, 50 (implemented as device drivers in this example),

20

PATENT
REEL: 063425 FRAME: 0047



Docket No.: 2014-31617502/ INP3398-U5-CON1

replication drivers 32, 50 have access to kernel-level resources, without modifying the kernel
itself.
[0063] FIG. 3 is a flow diagram illustrating an example process for performing data
replication according to the techniques of this disclosure. In particular, FIG. 3 depicts an
example set of components of router 20 of FIG. 2 in greater detail. In this example, primary
routing engine 22 includes application space 70 and kernel space 72, provided by OS 30 of
FIG. 2 (not shown in FIG. 3). One or more processors of router 20 execute routing process
26 and replication application 28 in application space 70, and replication driver 32,
replication module kernel thread 74, sockets 34, protocol stack 36, and TCP state 76 in kernel
space 72. Routing process 26 represents one example of a primary application that may write
data to one of sockets 34, which may be replicated according to the techniques of this
disclosure. Replication driver 32 and replication module kernel thread 74 may be
functionally integrated as a single module or driver in some examples, but are illustrated and
discussed separately for purposes of explanation.
[0064] In the process of FIG. 3, routing process 26 initially calls a function that is configured
to write data to the socket using socket interfaces. However, according to the techniques of
this disclosure, replication application 28 is part of a replication library of router 20. In
particular, replication application 28 is configured to receive a socket write call from
applications, such as routing process 26 of FIG. 3. Thus, the socket write system call
(syscall) from routing process 26 is overridden, and the written data is sent to replication
application 28 (80).
[0065] Replication application 28 constructs a write message and calls its own replication
write function, which passes the write message to replication driver 32 (82). The write
message may be in the form of a data structure, ¢.g., as shown below:
struct 10_buffer {

int i0_flags; /* operation flags rd/wr */

int 1o fd; /* socket descriptor for /O after replication is performed */

char* 1o buffer; /* socket data */

I8

[0066] The i0_flags element of the 10_buffer data structure may have one of the following

values:

21

PATENT
REEL: 063425 FRAME: 0048



Docket No.: 2014-31617502/ INP3398-U5-CON1

10 _FD: socket file descriptor (FD) for read/write

IO _REPL FD: REPLICATION FD to replicate data to the backup(only once)
I0 RD : socket READ OP

I0 WR ; socket WRITE OP

IO MORE : set by replication module to indicate to application that there is

more data to be read.
[0067] The io fd element of the 10 buffer data structure represents a socket descriptor for
one or more input/output (I/O) operations.
[0068] The io_buffer element of the i0_buffer data structure is a buffer having a value that
points to data for read/write operations. For the IO REPL_FD operation, the value of the
buffer points to the replication FD.
[0069] In this manner, replication application 28 writes the struct io buffer data structure to
replication driver 32. Replication application 28 may mark one or more of sockets 34 that
should be interpreted as replicated by the kernel replication driver (e.g., /dev/repl) to replicate
the data to secondary routing engine 40 or to append the data to the socket send buffer
directly and trigger layer 4 processing of the data. In particular, replication driver 32 and/or
replication module kernel thread 74 may maintain data indicating which of sockets 34
(including their respective TCP state 76) are to be replicated to secondary routing engine 40.
In this manner, as explained in greater detail below with respect to FIGS. 6-12, when data for
one of sockets 34 is received that is to be replicated, replication driver 32 and/or replication
module kernel thread 74 may return this data to routing process 26 immediately after the data
has been replicated to secondary routing engine 40, using a transport layer acknowledgment;
this is in contrast with other systems where a different acknowledgement determines when to
return the data to routing process 26.
[0070] Replication driver 32 then passes the data to replication module kernel thread 74 (84),
which writes this data over a replication link or channel (e.g., a socket, represented by
communication channel 64 of FIG. 2) to secondary routing engine 40 (86), which executes a
similar replication kernel thread (not shown in FIG. 3). Replication driver 32 appends
enough header information to this data for secondary routing engine 40 to identify the
connection to which the data corresponds. The data could then be delivered to the

application. In some examples, replication driver 32 and/or replication module kernel thread

22

PATENT
REEL: 063425 FRAME: 0049



Docket No.: 2014-31617502/ INP3398-U5-CON1

74 creates a composite message that includes, in the buffer data, a TCP segment to be
communicated to the peer network device via a connected socket of sockets 34. After the
replication module kernel thread on secondary routing engine 40 has received this data,
secondary routing engine 40 sends a TCP ACK acknowledging the received data to primary
routing engine 22 (88). Instead of waiting for secondary routing engine 40 to send an
explicit ACK message (e.g., a byte-level ACK sequence number) for each received replicated
data block, primary routing engine 22 and secondary routing engine 40 rely on the TCP ACK
for the corresponding (replication) TCP socket as a mechanism for determining whether the
data block has been delivered and received by secondary routing engine 40. Instead of
multiple acknowledgements (e.g., for each byte), primary routing engine 22 receives a single
acknowledgment (e.g., a TCP ACK message with a packet-level sequence number). In some
examples, primary routing engine 22 encapsulates multiple data blocks into a TCP segment
and then, sends that TCP segment to the TCP socket for secondary routing engine 40 to
receive. In response, secondary routing engine 40 returns one TCP ACK to acknowledge the
entire TCP segment. Hence, a single acknowledgment may confirm receipt of multiple each
data blocks, each of configurable size (e.g., a byte). Validity of messages is confirmed
asynchronously while secondary routing engine 40 processed replicated data blocks. This
ACK mechanism ensures minimal wait time for data to be processed and less CPU/network
load caused by extensive messaging to acknowledge (ACK) back the replicated data once
received at secondary routing engine 40.

[0071] In some examples, for protocols such as TCP that utilize an acknowledgement (ACK)
mechanism, replication module kernel thread 74 may ensure that TCP ACK’s will be sent out
via protocol stack 36 only after data has been successfully replicated to secondary routing
engine 40. However, replication module kernel thread 74 continues to process the replicated
data for transmission to a destination while waiting for the TCP ACK from secondary routing
engine 40. The ACK’s generated by the TCP stack would be held at hooked code (as
described herein) without kernel modifications. After replication module kernel thread 74
receives an ACK for the given data block from secondary routing engine 40, replication
module kernel thread 74 identifies the one of sockets 34 for the data and signals the NF
hooked code to release the TCP ACK for the data block. Replication module kernel thread

74 may also include a mechanism to periodically update primary routing engine 22 about the

23

PATENT
REEL: 063425 FRAME: 0050



Docket No.: 2014-31617502/ INP3398-U5-CON1

buffer size available on secondary routing engine 40 for each socket of sockets 34. This
mechanism may be used for protocols like TCP to communicate window size (taking into
account buffer size available on secondary routing engine 40°s backup socket) in the TCP
headers to the peer.

[0072] Without waiting for an explicit acknowledgement that the replicated data and instead
relying on the TCP ACK, replication module kernel thread 74 on primary routing engine 22
appends the replicated data to the connected socket of sockets 34 for which the data was
intended (pointed to by io fd ficld of the object 10 buffer received by replication driver 32)
(90). Protocol stack 36 then receives the socket buffer data from the connected socket of
sockets 34 (92) and processes the data accordingly to be sent via corresponding network
protocols (94). Some attribute-fields in TCP state 76 are determined only when the received
data is successfully replicated to secondary routing engine 40, which will most likely occur
by the data’s scheduled transmission time. Replication module kernel thread 74” of FIG. 4
may return an explicit acknowledgment when the data is successfully replicated as secondary
routing engine 40.

[0073] Outbound data may be packetized into a number of packets and then, transmitted
downstream, with appropriate header information, to a peer network device. Example
attributes of the header include sequence numbers, such as a packet-level sequence number
that is incremented for each sent packet, a byte-level sequence number that is incremented
for each byte of sent data, and/or the like. Replication module kernel thread 74 or the
complimentary replication module kernel thread of secondary routing engine 40 may employ
byte-level sequence numbers for addressing bytes in each replicated data block in the socket
buffer data.

[0074] Outbound data replication (as described herein) may not have available up-to-date
state information (e.g., TCP state information about a TCP socket) because buffered data in
one or more sent data buffers of sockets 34 has not been processed by protocol stack 36.
Outbound data replication relies upon replication module kernel thread 74 to update the
information in TCP state 76 and propagate such updates to the replication module kernel
thread of secondary routing engine 40.

[0075] When protocol stack 36 sends an outgoing TCP segment (or another packet), a

hooked code element in protocol stack 36 (e.g., transport layer) prompts replication module

24

PATENT
REEL: 063425 FRAME: 0051



Docket No.: 2014-31617502/ INP3398-U5-CON1

kernel thread 74 to update TCP state (95) and then, notify secondary routing engine 40 of the
updated TCP state (96). Transport layer protocols such as TCP define “hooks™ as well-
defined points in a packet’s traversal of that protocol stack. A hooked code clement may be a
pointer to a function that is called as soon as the hooked code is triggered. In other examples,
replication module kernel thread 74 periodically updates TCP state 76 and then, sends TCP
update messages secondary routing engine 40. The hooked code element may be one of a
number of well-known hooks in existing hook infrastructure, such as Linux Netfilter ingress
and egress hooks. Linux Netfilter implements a framework for packet mangling, outside the
normal socket interface.

[0076] Replication module kernel thread 74 may ensure that any data received on one of
sockets 34 that is to be replicated is not read by routing process 26 (and replication
application 28) unless the data is replicated successfully to secondary routing engine 40. To
achieve this, initially, received data is written to the appropriate one of sockets 34, and
replication module kernel thread 74 is woken up in response to data being received by
protocol stack 36. Replication module kernel thread 74 then sends the data to secondary
routing engine 40, which acknowledges the data after receipt.

[0077] Receipt of an acknowledgement message (e.g., a TCP acknowledgment message) for
each transmitted packet from the peer (97) causes another hooked code element in protocol
stack 36 to prompt replication module kernel thread 74 to update TCP state 76 (98) and then,
notify primary routing engine 40 (99) based on ACK sequence number, which refers to a
sequence number of a last byte transmitted to the peer and a sequence number of a first byte
of data to be transmitted next. Replication module kernel thread 74 retrieves the current TCP
state 76 (99), generates a TCP update message to store the current TCP state 76, and sends
the TCP update message to the replication module kernel thread of secondary routing engine
40. As described herein, replication module kernel thread 74 configures a hook (or another
eavesdropping mechanism) on protocol stack 38 (e.g., transport layer) such that when data is
processed by hooked code, the TCP update message is generated and then, communicated to
the replication module kernel thread of secondary routing engine 40.

[0078] To illustrate by way of an example TCP socket as one of sockets 34, replication
module kernel thread 74 updates secondary routing engine 40 with recent changes to TCP

state 76 in accordance with at least the following three code statements. First, code statement

25

PATENT
REEL: 063425 FRAME: 0052



Docket No.: 2014-31617502/ INP3398-U5-CON1

tp->snd _una = ntohl(msg->remote.ack seq) is operative to update send next sequence
number to point to the next byte in the sequence space that peer is expecting. Second, code
statement tp->snd nxt = ntohl(msg->snd seq) is operative to update a sequence number for
a last byte out for transmission. Each byte of data written to the socket is assigned a
sequence number representing that byte’s position in a stream of bytes. In the write buffer, a
last byte 1s assigned with a TCP send sequence number. This is different from the send
sequence number mentioned above, which is the sequence number of the last byte out for
transmission. Third, code statement tp-=>write seq = ntohl(msg->tcp snd seq) is operative
to update a sequence number of for the last byte written by routing process 26 (or another
application) and replication module kernel thread 74 on the socket.

[0079] Inbound of types replication may be performed in a similar manner or a completely
different manner. In one example, incoming data is received in the socket’s receive buffer
and then, the socket wakeup mechanism is slightly modified, so that for the replicated
sockets of sockets 34, replication module kernel thread 74 is woken up instead of the real
application that owns the socket (routing process 26, in this example). Different operating
systems implement different wakeup call back mechanism for each socket type whenever
data 1s received on the socket. This callback mechanism on the event “data-received” could
be applied on any operating system. The example of replication module kernel thread 74 of
this disclosure is configured to override this callback mechanism to wake up after reception
of socket data.

[0080] FIG. 4 is a flow diagram illustrating non-stop routing after a graceful switchover
according to the techniques of this disclosure. The flow diagram also illustrates a read
operation for inbound and outbound data as requested an application . Router 21 is another
network device within a same network as router 20. Router 21 operates an example
secondary routing engine 40 with complimentary components to components of router 20,
such as routing process 26°, replication application 28°, replication driver 32°, sockets 34°,
protocol stack 36°, replication module kernel thread 74°, and TCP state 76°. Each
complimentary component operates in parallel and in event of a switchover, the
complimentary component effectuates non-stop routing for a primary routing engine.

[0081] FIG. 4 shows TCP state 76° for storing per-process transport layer states of replicated
socket FDs being retrieved and/or (when needed) updated by replication application 28°.

26

PATENT
REEL: 063425 FRAME: 0053



Docket No.: 2014-31617502/ INP3398-U5-CON1

Replication module kernel thread 74” maintains an up-to-date TCP state 76° of all backup
sockets 34” to which connected sockets are replicated.

[0082] Router 10 benefits from having replication module kernel thread 74 maintain
replicated sockets 34” (100) at a current or near-current TCP state 74” (101) with
complimentary sockets 34 at router 20; as one benefit, protocol stack 36” may commence
message routing (102) almost immediately after assuming control over routing functionality
of the primary routing engine. Router 10 may receive a signal indicative of a switchover to
secondary routing engine 40 and in response, commence the message routing for router 20
(103). In some examples, TCP state 76° stores a send next sequence number identifying a
first send next data block in a send buffer of replicated sockets 34’. Primary routing engine
22 had the first send next data block scheduled for transmission before the switchover halted
the scheduled transmission. After sending each message, protocol stack 36 may update one
or more memory buffers in sockets 34° (104). In some examples, hooked code elements may
update TCP state 76" in response to inbound and outbound data (105).

[0083] Replication module kernel thread 74 executes a data read operation for either a send
buffer or a receive buffer in sockets 34°. An application in application space 707 issues a read
request that is ultimately services by replication module kernel thread 74. Replication
application 28” may be woken up by receiving the read request, causing replication module
kernel thread 74 to perform the read operation and retrieve one or more requested data blocks
from a buffer in sockets 34” (106) and deliver the retrieved data to replication driver 32’
(107), which sends the data to replication application 28” (108), which delivers the data to
routing process 26° (109). Replication application 28” completes the read request by
providing the requested data clocks to routing process 26°.

[0084] FIG. 5 is a block diagram illustrating an example network 2 capable of non-stop
routing from either a primary router 20 or router 21 using the techniques of this disclosure.
FIG. 5 illustrates examples of network 2 where primary routing engine 22 and secondary
routing engine 40 operate in separate physical network devices as opposed to residing in a
same network device.

[0085] Network 2 includes a number of network devices including routers 20, 21 operating
as a primary node and a standby node, respectively. As the standby node, router 21 is

configured to provide control over routing functionary for the primary node, router 20, in

27

PATENT
REEL: 063425 FRAME: 0054



Docket No.: 2014-31617502/ INP3398-U5-CON1

response to a switchover. A number of mechanisms trigger switchovers and, as one example,
a failure at router 20 invokes the switchover to router 21 allowing (secondary routing engine
40 of) that router 21 to resume routing sessions with a peer network device. Besides failure,
another cause of switchover may cause secondary routing engine 40 to resume routing
session on behalf of primary routing engine 22.

[0086] Replication module 12 represents one or more of replication application 28,
replication driver 32, and replication module kernel thread 74 of FIG. 3. Replication module
14 compliments replication module 12 and operates in router 21 as a backup replication
module.

[0087] Router 21 comprises one or more processors implemented in circuitry and configured
to execute replication module 14 (i.¢., a standby replication module). As described herein,
replication module 14 may compliment replication module 12 and include replication
module kernel thread 74 or a combination of replication application 28°, replication driver
32°, and replication module kernel thread 74’ as illustrated in FIG. 4.

[0088] As described herein, replication module 14 generates sockets 34” using information
corresponding to respective sockets 34 at router 20, the primary node, for network 2. For
example, replication module 14 generates socket 34A” using information corresponding to
socket 34 A at router 20 where socket 34A is a connected socket providing network
communication connectivity with the peer network device of another network, for example,
via a transport layer protocol (e.g., TCP). Socket 34A” is to operate as a backup socket for
socket 34A in case of switchover. As described herein, replication module kernel thread 74’
configures the backup socket to be pre-established (e.g., pre-connected) to the same peer
network device as the connected socket, enabling the backup socket to provide network
communication connectivity with the same peer network device and effectuate the
switchover to router 21 (e.g., after the failure of router 20 or another primary node. Hence, at
least one portion of such information describes a transport layer state (or transport state) of
the socket at router 20.

[0089] Replication module 14, upon assuming control over the routing session with the peer
network device, resumes exchanging session messages starting with a next message after the
last message communicated by router 20. In this manner, router 21 continues the routing

session where router 20 left off with the next message (¢.g., a next data block). Replication

28

PATENT
REEL: 063425 FRAME: 0055



Docket No.: 2014-31617502/ INP3398-U5-CON1

module 14 retrieves a portion of a send buffer of socket 34A” in accordance with the transport
layer state of socket 34A. The send buffer may include a sequence of data blocks have been
written to socket 34A by primary routing engine 22. The transport layer state of socket 34
includes information identifying the portion of the send buffer storing at least one next data
block to be transmitted to the peer network device from the primary node at a time of the
switchover (e.g., failure), and send the at least one next data block to the peer network device
via socket 34A".

[0090] Replication module 14 updates the transport layer state of socket 34A” after
transmitting a transport layer protocol data unit (e.g., a TCP packet which may be known as a
segment) to the peer network device. The transport layer protocol data unit includes a last
transmitted data block. In preparation of the switchover, replication module 14 of secondary
routing engine 40 (of router 21), by invoking hooked code elements in protocol stack 36 of
primary routing engine 22 (at router 20), may receive a socket state update (e.g., a transport
layer state update) when protocol stack 36 transits the data unit via socket 34 and the,
propagate that update to socket 34A’. The above update may include information indicating
a transport layer protocol sequence number for identifying (e.g., pointing to a location of) the
last transmitted data block in the send buffer of socket 34A’. Similarly, after the switchover,
replication module 14, by invoking hooked code elements in protocol stack 36°, listens for
and intercepts (¢.g., cavesdrops) transmissions of transport layer protocol data unit, and for
cach transmitted data unit sent to peer network device 18, replication module 14 updates the
transport layer state of socket 34A” with a transport layer protocol sequence number of that
data unit. Because the updated sequence number reflects a most recent transmitted data
block, replication module 14 may determine a sequence number of at least one next data
block to be sent to peer network device 18. In one example, replication module 14 identifies
a particular subsequence of unsent/send next data blocks in the send buffer of socket 34A°
and then, updates a transport layer state of socket 34A” with a first sequence number or a
sequence space of that subsequence.

[0091] Peer network device 18 may respond with an acknowledgement to receiving the at
least one next data block and an example acknowledgment includes a socket
acknowledgment. An example socket acknowledgment refers to acknowledgement message

(e.g., a TCP ACK message) in accordance with a same transport layer protocol of socket 34A°

29

PATENT
REEL: 063425 FRAME: 0056



Docket No.: 2014-31617502/ INP3398-U5-CON1

(e.g., a TCP socket). The socket acknowledgment may include information representing the
last message (e.g., a last data block) received (i.e., acknowledged) by peer network device 18
and informing router 21 of a next data block expected in a next transmission.

[0092] In response to receiving an acknowledgement from peer network device 18,
replication module 14 updates the transport layer state of socket 34A” with information
identifying a last acknowledged data block. As described herein, socket 34 A’ represents a
transport layer connection (¢.g., TCP connection) between router 21 and peer network device
18, and the above information may be a transport layer protocol sequence number identifying
(e.g., pointing to a location of) the last acknowledged data block in the send buffer of socket
34A’. Having an arrangement of data blocks in the send buffer mapped to an address space
of sequence numbers, replication module 14 may use the acknowledgement to identify a next
data block to be sent to peer network device 18 in continuation of the routing session for
router 20. Replication module 14 stores a sequence number of the next data block as part of
the transport layer state of socket 34A” and to identify a portion of the send buffer as a
subsequence of unsent/send next data blocks. Similar to the hooked transmissions of data
units, replication module 14, by invoking hooked code elements at protocol stack 36 and/or
protocol stack 36°, receives and propagates socket state updates in response to
acknowledgment messages received via at socket 34A and/or socket 34A° from peer network
device 18. In this manner, replication module 14 may partition the socket buffer into
respective subsequences for unacknowledged transmitted data blocks and non-transmitted
data blocks.

[0093] Via socket 35, which i1s configured to provide network communication connectivity
between primary routing engine 22 of router 20 and secondary routing engine 40 of router
21, replication module 12 and replication module 14 perform socket replication. Replication
module 12 replicates data including state information for socket 34A by writing that data to
socket 35 and then, sending the replicated data as a socket message to secondary routing
engine 40 of router 21. When primary routing engine 22 of router 20 transmits and receives
data units to and from peer network device 18 via socket 34 A, replication module 12
propagates socket state updates to replication module 14 via socket 35 (i.e., a replication

socket).

30

PATENT
REEL: 063425 FRAME: 0057



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0094] FIG. 6 is a flowchart illustrating an example method for replicating outbound data
received from a local application to be written to a socket for communication from primary
routine engine 22 to a peer network device according to the techniques of this disclosure.
[0095] As shown, the outbound data is replicated to secondary routing engine 40 according
to the techniques of this disclosure. Initially, replication application 28 executing within a
user space of primary routing engine 40 receives data from an application (e.g., routing
process 26) to be written to one of sockets 34 for outbound communication to a peer network
device (120). The one of sockets 34 is designated as a socket for which data is to be
replicated, in this example, to support graceful failover in the event of failure of the primary
routing engine. Thus, as discussed above, replication application 28 delivers the data to
replication driver 32, which sends the data to replication module kernel thread 74 of FIG. 3,
which writes the data to a socket send buffer (122).

[0096] Replication module kernel thread 74 retrieves current state information from TCP
state 76 and based on the data written to the socket send buffer, updates TCP state 76 for the
corresponding TCP socket. In one examples, updating TCP state 76 is in accordance with the
following three code statements:

[0097] Replication module kernel thread 74 first executes code statement ip->snd una =
ntohl(msg->remote.ack seq) to update send next sequence number to point to the next byte
in the sequence space that peer is expecting. Second, replication module kernel thread 74
executes code statement tp->sid nxt = ntohl(msg->snd seq) is operative to update a
sequence number for a last byte out for transmission. Each byte of data written to the TCP
socket is assigned a sequence number representing that byte’s position in a stream of bytes.
In the write buffer, a last byte is assigned with a TCP send sequence number. This is different
from the send sequence number mentioned above, which is the sequence number of the last
byte out for transmission. Replication module kernel thread 74 executes third code
statement p->write_seq = ntohl(msg->tcp snd seq) is operative to update a sequence
number of for the last byte written by primary application on the TCP socket.

[0098] Replication module kernel thread 74 sends a representation of the data to secondary
routing engine 40 (126). For example, replication module kernel thread 74 may instantiate a
message according to the io_buffer data structure discussed above. Replication module

kernel thread 74 may then send this message to secondary routing engine 40.

31

PATENT
REEL: 063425 FRAME: 0058



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0099] Secondary routing engine 40 receives the message from primary routing engine 22
(128). Secondary routing engine 40 responds to the receiving the message by sending an
acknowledgement of a successful transmission (130). Secondary routing engine 40 (in
particular, a replication module kernel thread similar to replication module kernel thread 74
of primary routing engine 22) writes the replicated data in the received message in a
corresponding send buffer of backup socket 34” and updates backup socket 34
corresponding to the replicated data in the message to reflect a current state of corresponding
connected socket 34 for primary routing engine 22 (132). The replication module kernel
thread may record the updated TCP state 76 for the corresponding connection socket 34 of
primary routing engine 22. In this manner, if primary routing engine 22 fails over to
secondary routing engine 40, secondary routing engine 40 can operate on behalf of primary
routing engine 22, to prevent disruption of established network communications.

[0100] Primary routing engine 22 receives the acknowledgement from secondary routing
engine 40. This causes protocol stack 36 to construct a packet from a number of bytes of the
data of the one of sockets 34 (134), ¢.g., encapsulating the application-layer data with various
network layer headers. Replication module kernel thread 74 then delivers the data received
from replication driver 32 to the one of sockets 34 by pushing the data (in packetized form)
to data link layer of protocol stack 34 and transmits each packet of data (136). Ultimately,
one of IFCs 58 outputs the packet.

[0101] Assuming a peer received the transmitted data successfully and none of the packets
were dropped, primary routing engine 22 receives a TCP acknowledgement (ACK) from the
peer (138) and in turn, replication module kernel thread 74 updates TCP state 76 of the
corresponding socket 34. Replication module kernel thread 74 propagates updated TCP state
information by sending, to secondary routing engine 40, an update message via the
replication socket (140). In response to the updated TCP state information, the replication
module kernel thread of secondary routing engine 40 updates corresponding backup socket
34" and removes acknowledged data from send socket buffer (142). In some examples, the
replication module kernel thread of secondary routing engine 40 removes the acknowledged
data only if that data has been read by an application.

[0102] As described herein, socket data replication is piggy backed with TCP state 76 of the

connection at that moment. When secondary routing engine 40 receives the replicated data

32

PATENT
REEL: 063425 FRAME: 0059



Docket No.: 2014-31617502/ INP3398-U5-CON1

for transmission, the replicated data is queued on a send buffer of a Socket I/O object for the
connection. A write_count on Socket IO object is incremented by a number of bytes
received. In some examples, secondary routing engine 40 may queue the replicated data in
the send buftfer only if there is enough space in that buffer to accommodate the replicated
data. The replication module kernel thread of secondary routing engine 40 marks data blocks
as read only if the application has read them. The replication module kernel thread of
secondary routing engine 40 removes/frees bytes of data from the queue in response to a TCP
ACK for these bytes from the peer. Primary routing engine 22 may generate a TCP/socket
state update message to store the TCP ACK and related sequence number(s). For this to
happen, replication module kernel thread 74 and/or the replication module kernel thread of
the secondary routing engine 40 may associate each data block queued on the Socket IO
receive buffer with the TCP receive stream sequence space. To generate the update message,
replication module kernel thread 74 fetches state information from TCP state 76, prepares a
composite message with the data to be transmitted, and then, sends the message to secondary
routing engine 40.

[0103] When the TCP/socket state update message is received for the connection
corresponding to the replicated socket, the replication module kernel thread of the secondary
routing engine 40 checks if the received TCP ACK correspond to any data block (fully or
partially) and if such a data block is identified, the replication module kernel thread of the
secondary routing engine 40 removes the data block from the socket 10 buffer or reduces the
data blocks size accordingly.

[0104] To illustrate by way of example, if the replication module kernel thread of the
secondary routing engine 40 receives a TCP update message with ACK sequence number of
“S4”” and each byte until sequence space S4 is read by an application, the replication module
kernel thread of the secondary routing engine 40 removes the first two data blocks from the
socket send buffer. If the replication module kernel thread of the secondary routing engine
40 receives a TCP update message with ACK sequence no. “S6” instead, the replication
module kernel thread of the secondary routing engine 40 waits to remove data blocks from
socket send buffer as soon as those data blocks are read by the application.

[0105] The following describes primary routing engine 22 or secondary routing engine 40
handling of “last UNACKed window™ at the time of switchover. If the replication module

33

PATENT
REEL: 063425 FRAME: 0060



Docket No.: 2014-31617502/ INP3398-U5-CON1

kernel thread of secondary routing engine 40 determines at least some data to be transmitted
in connected socket 34’s I/O buffer, that data is written over to corresponding I/O buffer of
backup socket 34°. In one example, the replication module kernel thread of secondary
routing engine 40 determines a value resulting from write seq — snd nxt and based on that
value, determines that connected socket 34’s send buffer includes one or more data blocks
not yet transmitted to the peer by primary routing engine 22. In addition to untransmitted
data, there may be at least some unacknowledged (e.g., UNACKed) data in the connected
socket send buffer given by value resulting from snd una — snd nxt. Any data that is pointed
to by sequence number snd nxt onwards is transmitted from primary routing engine 22 to
secondary routing engine 40, leaving a remainder of data to be to handled with future
acknowledgment messages (ACKs) from the peer. Connected socket 34 is corked and all
data is written over to backup socket 34 which is now active. Corking of any socket is done
to avoid retransmitting data; secondary routing engine 40 have to adjust backup socket 34’
state information and header information of incoming data units such that both the socket and
the header point to a location of a next data block to send. This location corresponds to a
data block of the send buffer of backup socket 34” denoted by the sequence number snd #xt.
[0106] TCP state information for backup socket 34°, such as sequence number snd_nxt, may
be updated only after the data is processed by the socket as described herein. Socket write
data is communicated to the secondary routing engine 40 before being processed by protocol
stack 34. It is possible that primary routing engine 22 might have sent some data that has not
been updated/replicated to secondary routing engine 40 because primary routing engine 22
crashed just after transmitting the TCP segment or the administrator triggered the switchover.
In that case, updated sequence number snd nxt will not be communicated to secondary
routing engine 40. Hence, when secondary routing engine 40 becomes a new primary
routing engine after the switchover, the new primary engine may lag behind the old primary
with respect to snd_nxt. After the switchover, the new primary routing engine transmits old
data that has already been ACKed (¢.g., acknowledged) by the old primary routing engine.
When the new primary routing engine receives an ACK, this ACK may be more than what is
already transmitted by the old primary routing engine. This may cause both the new primary
routing engine and the peer network device to keep transmitting the same data, resulting in

connection flap.

34

PATENT
REEL: 063425 FRAME: 0061



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0107] To mitigate the above connection flap issue, the replication module kernel thread is
programmed to hook at NF_IP TLOCAIL. OUT. The of secondary routing engine 40 or the
replication module kernel thread 74 of the primary routing engine keeps track of each
connection being replicated with minimal state information (e.g., TCP state machine
parameters). Once the replication module kernel thread finds new TCP data going out of the
new primary, the replication module kernel thread records the sequence number snd nxt
from a TCP data segment header. Any new ACK coming in from the peer which has ACK
sequence number more than the snd nxt transmitted by the new primary till that point is
adjusted to current snd_nxt, the replication module kernel thread recomputes checksums
based on the new ACK seq. This new ACK sequence is well accepted by the new TCP state
machine and protocol stack 34. The replication module kernel thread continues to transmit
next data. Once the replication module kernel thread determines that snd nxt is same as
snd_una, the replication module kernel thread sets off a flag to update the snd_una post
switchover, commencing normal operations for the connections.

[0108] FIG. 7 is a flowchart illustrating an example method for replicating inbound data
received from a peer network device via a socket associated with primary routine engine 22
according to the techniques of this disclosure. As described, the inbound data is replicated to
secondary routing engine 40 according to the techniques of this disclosure. Initially, primary
routing engine 22 receives data from the network via protocol stack 36 (150). That is,
protocol stack 36 receives a packet and decapsulates the packet to extract application-layer
data. Ultimately, protocol stack 36 delivers this data to one of sockets 34 (152), which
prompts a wake-up of replication module kernel thread 74.

[0109] Replication module kernel thread 74 then receives the data (154), updates TCP state
76 with current TCP state information based on received data, and replicates the received
data (156). Replication module kernel thread 74 then sends replicated data (e.g., a message
constructed according to the i0_buffer data structure discussed above) to secondary routing
engine 40 (158).

[0110] Secondary routing engine 40 receives a socket message having the replicated data
(160). As discussed herein, secondary routing engine 40 responds to the socket message by
sending a TCP acknowledgement for the socket message (and not necessarily the replicated

data) (162) and updating backup socket 34” using state information for corresponding

35

PATENT
REEL: 063425 FRAME: 0062



Docket No.: 2014-31617502/ INP3398-U5-CON1

connected socket 34 (162). Secondary routing engine 40 sends the TCP acknowledgement to
notify primary routing engine 22 that the socket message has been received. Secondary
routing engine 40 may process the received data and then, copy the received data into a send
buffer of the backup socket, in the event of a switchover prior to primary routing engine 22
sending the data (164).

[0111] Primary routing engine 22 then receives the acknowledgement (166). Because
primary routing engine 22 does not prohibit read requests for the received data, applications
such as a routing process may read the data during replication. Replication module kernel
thread 74 also sends an acknowledgement of the packet to a source of the packet after
receiving the TCP acknowledgement from secondary routing engine 40 (170). Although not
shown in the example method of FIG. 6, replication module kernel thread 74 may also cause
protocol stack 36 to send an acknowledgement of receipt of the data to a device from which
the data was received (e.g., another router) in response to receiving the acknowledgement
from secondary routing engine 40.

[0112] FIG. 8 is a flow diagram illustrating messaging-free socket data/state replication
according to the techniques of this disclosure. A mechanism implementing messaging-free
socket replication may operate on primary replication module 200 and/or backup replication
module 202 within primary and standby nodes, respectively. Any mechanism implementing
messaging-free socket replication does not wait for a standby node (e.g., secondary routing
engine 40 of FIG. 1) to send an explicit acknowledgement message for each replicated data
block that is received and instead, relies on a TCP ACK for a (replication or backup) TCP
socket. Some examples rely solely on the TCP ack to know that a particular data block has
been delivered to the standby node.

[0113] Some examples continue to send the explicit ACK message for which a primary
routing engine (e.g., primary routing engine 22) may validate asynchronously while the
standby processes replicated data blocks. This mechanism of replication ensures minimal
waiting time for data to be processed and less CPU/network load caused by extensive
messaging to ACK back the data replicated.

[0114] Some examples establish on the primary node socket 206 A, a TCP socket, to be

connected to a peer and engage in a routing session to exchange routing information. Some

36

PATENT
REEL: 063425 FRAME: 0063



Docket No.: 2014-31617502/ INP3398-U5-CON1

examples establish on the standby node socket 206B, another TCP socket, to operate as a
backup socket for socket 206 A.

[0115] In one example where the primary and the standby replicate outbound data, when a
data block is received from an application, replication module 200 sends the data block to
replication module 202 over socket 208, a TCP socket that may be referred to as a replication
socket. Replication module 200 may write the data block a memory buffer and, via a socket
interface, generate socket message 204. One example of socket message 204 is a composite
message combining the data block and state information for socket 206A. Replication
module 200 on the primary node pushes the data block to a protocol stack after the data block
is replicated and socket acknowledgment 210, a TCP ACK, is received confirming that the
standby node received the replicated data block. The standby node reads the replicated data
block on the TCP socket and queues the data block on that socket in a socket I/O buffer (e.g.,
a socket send buffer). Replication module 200 may include a replication module kernel
thread (e.g., replication module kernel thread 74 of FIG. 1) configured to receive the TCP
ACK on the TCP socket, designates or marks the data block as replicated, and informs the
primary replication module to continue processing application data including the replicated
data block. In some examples, the replication module kernel thread receives a single ACK
message acknowledging the standby node’s receipt of a TCP segment encapsulating the
replicated data block. The single ACK message may acknowledge a first or last data block in
the TCP segment (e.g., with a sequence number) or acknowledge the whole TCP segment.
The single ACK message may represent a next block that is expected in a next TCP segment
(e.g., with a sequence number). When comparing to an explicit ACK message for each byte
of the replicated data block, receiving the single ACK message eliminates a latency in the
replication process. As a result, the replication module kernel thread consumes less time
replicating data and there is an increase in a rate at which data is transmitted from the
primary node.

[0116] An alternative replication module 200 pushes the data block onto the stack and at a
transport layer, writes, onto the memory bufter of socket 208, a transport layer packet that
includes the data block. One example of socket message 204 is a composite message
combining the transport layer packet, such as a TCP segment, and TCP state information for
socket 206A.

37

PATENT
REEL: 063425 FRAME: 0064



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0117] In one example where the primary and the standby replicate inbound data, when a
data block is received from a peer and is encapsulated in a packet, the primary replication
module replicates the data block and sends the replicated data block over the TCP socket
corresponding to the standby node. Similar to the outbound data, the backup replication
module reads the data block on the TCP socket and queues the read data block on the TCP
socket in a socket receive buffer. The standby communicates a TCP ACK that the replication
module kernel thread of the primary node receives, confirming receipt of the replicated data
block. The primary continues processing the data block. In the event of a switchover, the
application may read the data block from the receive buffer.

[0118] As another benefit to employing messaging-free socket data/state replication as
described herein, an explicit ACK message is not generated for every replicated data block
that the standby node receives. As an example, a single TCP ACK may be sent to
acknowledge a sequence space spanning multiple data blocks. This reduces the overall
messaging processing load on the nodes, a network load, and a waiting period for the data
queued on the socket 10 buffer to be processed on the primary. Replication of socket
data/state is much faster. The standby node benefits from the backup replication module
handling missed TCP state data (e.g., TCP state machine parameters) at the time of
planned/unplanned switchover. The backup replication module may include a NF hook
module to effectuate the above socket replication mechanism.

[0119] FIG. 9 is a conceptual diagram illustrating an example process for updating a pre-
connected socket according to the techniques of this disclosure.

[0120] Similar to FIG. 8, the example process involves a primary node and a standby node of
which these respective nodes include replication module 200 and replication module 202.
The primary node employs a TCP socket for communicating with peers for learning routes
and routing application data. The TCP socket is depicted as socket 206 A may be known as a
pre-connected socket. The primary node has another TCP socket for communicating
replicated data to the standby. Both the primary node and the standby node manage send and
receive buffers for their sockets. As described herein, the standby node generates object 252
to maintain current state information for socket 206A.

[0121] While communicating with the peer over the TCP socket, the primary node may
receive TCP ACKs for previously transmitted outgoing data packets. Each TCP ACK may

38

PATENT
REEL: 063425 FRAME: 0065



Docket No.: 2014-31617502/ INP3398-U5-CON1

constitute an update to a TCP state machine of the socket. In turn, replication module 200,
via a replication module kernel thread, fetches state information 254 including TCP state data
(e.g., TCP state 76 and TCP state 76° of FIGS. 3-4) from socket 206 A, prepares a composite
message 256 including message 256A for transmitting the replicated data block and message
256B for the TCP state data, and then, sends composite message 256 as to the backup
replication module in the standby node. In turn, the backup replication module reads the
TCP state data and the replicated data block from the composite message and copies both
pieces of data to the TCP socket. The replicated data block may be stored in a socket IO
buffer such as socket send buffer or socket receive buffer. As a result, both the primary and
standby nodes have an up-to-date TCP state.

[0122] Replication module 202 maintains send buffer 258 and receive buffer 260 for socket
206B, the backup socket for socket 206 A. When the standby node receives composite
message 256, replication module 202 extracts one or more data blocks from message 256 A
and maps each data block to a sequence number as defined in state information 254 for
socket 206A. Replication module 202 stores each data block in send buffer 258 according to
a corresponding sequence number. With respect to inbound data, replication module 202
maps each data block to a receive sequence number and stores that data block in receive
buffer 260.

[0123] FIG. 10 is a conceptual diagram illustrating an example process for updating a socket
at a secondary routing engine according to the techniques of this disclosure.

[0124] As illustrated in FIG. 10, send buffer 258 reflects a state of socket 206B before a TCP
update message arrives (e.g., at either primary node or standby node). Replication module
200 may send the socket message, prompting replication module 202 to determine that the
message includes a TCP ACK with sequence number “S2” and then, to update socket 206B
by incrementing SND UNA to “S3”. In response to a data read operation for outbound data,
replication module 202 removes a corresponding data block from the send buffer as soon as
it is read by the application. The above replication module 202 operations result in send
buffer 258" as illustrated in FIG. 11. The corresponding data block may map to a same
sequence number as “S3” or “S4” in some examples. Hence, the application is not

prevented from read requesting replicated data blocks in send buffer 258°.

39

PATENT
REEL: 063425 FRAME: 0066



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0125] Updating socket 206B, the backup socket for socket 206 A, may include
eavesdropping incoming and outgoing data units, removal of read data from send buffer, and
correcting any mismatch between a last acknowledged data block and a last transmitted data
block based on reception of TCP ACK. Similar to FIGS. 8-11, a standby node has replication
module 202, send buffer 258, and a replication TCP socket, socket 208, over which replicated
data and TCP state updates are communicated. In a primary node, a primary replication
module fetches current/updated TCP state data and a replicated data block, prepares a
composite message, and sends the composite message to the backup replication module in
the standby node. The backup replication module in the standby node processes the
composite message and updates a local copy of the TCP state. The composite message may
be known as a TCP update message.

[0126] To illustrate by way of example, replication module 202 may receive an out-of-band
IPC (socket) message storing a TCP ACK with a sequence number of “S4.” Since the TCP
update message has an ACK sequence number of S4 and each data block until sequence
space S4 has been read by the application, replication module 202 removes the first two data
blocks from send buffer 258. As a result, sequence space 262A points to a subsequence of
data that is yet to be transmitted by either the primary node or (after a switchover) the
standby node, and sequence space 262B points to a subsequence of data that is vet to be
acknowledged by the peer. SND NXT represents a first data block of space 262A and

SND UNA represents a first data block of space 262B. In the event of a switchover, if the
standby node resumes the routing session at SND NXT, the standby node does not
retransmit any data, which may cause the standby node to lag behind the primary node (e.g.,
even when the primary node has a failure).

[0127] If a next TCP update message arrives and replication module 202 determines that the
message includes a TCP ACK with sequence number “S6”, the backup replication module
removes a corresponding data block from the send buffer as soon as it is read by the
application. The corresponding data block may map to a same sequence number as “S6” in
some examples. Hence, the application is not prevented from read requesting replicated data
blocks in the send buffer.

[0128] FIG. 11 is a conceptual diagram illustrating an example switchover from a primary

routing engine to a secondary routing engine according to the techniques of this disclosure.

40

PATENT
REEL: 063425 FRAME: 0067



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0129] An example (eavesdropping) mechanism configured to support the example process
may be a Netfilter (NF) hook whose operations are illustrated in FIG. 11 and described
herein. The NF hook refers to a known hooked code section that notifies the standby node of
outgoing/incoming packets.

[0130] After a write operation illustrated in FIG. 11, send buffer 258" includes data blocks
having sequence numbers of “S7” and “S8.” After a read operation, data blocks having
sequence numbers of “S3” and “S4” are provided to a requesting application. Also
illustrated in FIG. 11, send buffer 258" includes data to be transmitted after the switchover. A
first block of this data is pointed to by SND NXT. SND NXT is a TCP state variable
representing a byte-level sequence number for a first byte that a peer is next expecting to
receive while SND UNA is a TCP state variable representing an acknowledgement of a
byte-level sequence number for a last byte that the primary node successfully transmitted. At
this point, send buffer 258 has data blocks with sequence space “S1” to “S8”, representing
previously written data of which subsequence 262A” refers to untransmitted data and
subsequence 262B’ represents unacknowledged data.

[0131] In one example, one or more code elements of a protocol stack at a primary mode,
hooked at IP. NET LOCAIL OUT, receives TCP state data including a value for SND NXT
confirming that data blocks with sequence numbers “S3” and “S4” have been transmitted by
the primary routing engine. As aresult, SND NXT is updated to a value of “S5” and
subsequence 262A° is updated to reflect data blocks having sequence numbers “S5” and “S6”
as the next data blocks to be transmitted by either the primary node or the standby node.
Replication module 202 may remove data blocks having sequence numbers “S3” and “S4”
from send buffer 258" because these data blocks have been sent.

[0132] When implemented at the standby node, replication module 202 manages instances
where a TCP state of backup socket 206B may be inconsistent with replicated TCP segments.
As one example, replication module 202 configures the NF hook to identify and then, correct
differences between state data attributes SND NXT and SND UNA on backup socket 2068
(post switchover).

[0133] After the switchover and based the value of SND NXT, the standby node resumes the
primary node’s routing session, starting with the data blocks having sequence numbers

corresponding to the SND NXT. In one example, one or more code elements of a protocol

41

PATENT
REEL: 063425 FRAME: 0068



Docket No.: 2014-31617502/ INP3398-U5-CON1

stack at the standby mode, hooked at IP NET TLOCAI. OUT, hooked outbound data
including a TCP segment with one or more replicated data blocks and TCP state data. As
illustrated, the TCP segment includes data blocks with sequence numbers “S5” and “S6”.
Replication module 202 may update the SND NXT value to “S7” and record “S7” for the
updated TCP state. The SND NXT value may also be “S6” to represent a last transmitted
data block.

[0134] Subsequently, the NF hook receives, at [P NET LOCAL IN, hooked inbound data
including a TCP segment with one or more replicated data blocks and TCP state data
including an acknowledged sequence number for updating SND UNA. The acknowledged
sequence number may have a value of “S”, which is greater than a SND UNA with a value
represented by “S3” and less than a SND UNA with a value represented by “S4.” The NF
hook modifies the acknowledged sequence number in a header of the received TCP segment
to include the value represented by “S4”, checksums the modified header, and pushes the
modified TCP segment up the protocol stack (e.g., to a next layer). Replication module 202
may update the SND UNA to a value to represented as “S35” to represent a next data block
after a last acknowledged data block in backup socket 206B’s send bufter 258°.

[0135] FIG. 12 is a flowchart illustrating an example method for non-stop routing after an
example switchover from a primary routing engine to a secondary routing engine according
to the techniques of this disclosure.

[0136] A network device, such as router 20 or router 21, may include one or more
components that are instructed to replicate data (e.g., a socket) corresponding to a
communication session (e.g., a routing session) with a peer network device. The network
device may include a primary routing engine and a secondary routing engine or just a
primary routing engine with a secondary routing engine running another network device. In
either example, a replication module, such as replication module 12 or 14 of FIG. 5, of the
network device executes the example method to prepare for and facilitate a switchover, for
example, after a failure of the primary routing engine or the network device altogether.
[0137] Regardless of whether the primary and secondary routing engines are in separate
devices or share a same device, in the following description, the primary routing engine and

the secondary routing engine may be referred to as primary node and standby node,

42

PATENT
REEL: 063425 FRAME: 0069



Docket No.: 2014-31617502/ INP3398-U5-CON1

respectively. In this manner, the primary node or the standby node each represent a
component of a network device or the entire network device.

[0138] The following describes the example method with respect to replication module 202
of FIGS. 8-11. Replication module 202, in accordance with socket replication practices,
generates a backup socket, socket 206B, using information corresponding to a connected
socket, socket 206A, at the primary node of the network (300). Replication module 202
receives example information including a transport layer state of the connected socket. As
described herein, the connected socket at the primary node provides network communication
connectivity between the primary node and a peer network device in accordance with a
transport layer protocol. In event of a switchover from the primary node, the backup socket
of the standby node is configured to provide network communication connectivity between
the standby node and the peer network device.

[0139] Replication module 202 updates a transport layer state of the backup socket based on
inbound/outbound data at the primary node and then, writes buffer data to the backup socket
to store the inbound/outbound data (302). Replication module 202 may update the backup
socket (e.g., with a current state of the connected socket). A receive buffer and a send buffer
may store the inbound data (e.g., received data units) and the outbound data (e.g., both
transmitted and non-transmitted data units), respectively. When the primary node prepares
data (e.g., routing message data) for transmission, the primary node replicates that data to the
standby node where replication module 202 stores in the send buffer one or more replicated
data blocks and updates the backup socket (e.g., with a current state of the connected socket).
When the primary node actually transmits the data, the primary node notifies the standby
node and the replication module 202 propagates the notification by updating the backup
socket (e.g., with a current state of the connected socket).

[0140] The standby node detects a failure at the primary node causing a switchover to the
standby node (304), and in response, replication module 202 retrieves, from the send buffer
of backup socket, a next data block scheduled for transmission by the primary node (306). It
should be noted that the switchover may be invoked due to other reasons besides failure,
including, but not limited to, an administrator-initiated switchover. The administrator may
take primary node offline, for example, in order to perform maintenance and/or install

updates. There may be additional reasons envisioned by the present disclosure. As described

43

PATENT
REEL: 063425 FRAME: 0070



Docket No.: 2014-31617502/ INP3398-U5-CON1

herein, the transport layer state of the backup socket indicates which data blocks of the send
buffer have been transmitted but not yet acknowledged and which data blocks of the send
buffer have been written to the connected socket but not yet transmitted by the primary node.
Regarding the latter, replication module 202 identifies a first data block (e.g., a first sequence
number) of the data blocks that have not been transmitted yet as the next data block to be sent
to the peer network device. In some examples, the first data block is followed by a
subsequence of data blocks scheduled for transmission at a next transmission time and
therefore, the sequence number of that first data block is a starting point of the standby nodes
resumption of the routing session.

[0141] Replication module 202 directs the network device to send, to the peer network
device, the identified next data block via the backup socket (308). Similar to other
applications in an application space or other kernel modules in a kernel space, replication
module 202 generates a socket message with the identified next data block and then, pushes
the socket message to a protocol stack. In general, the protocol stack through a number of
layers applies appropriate networking protocols to the socket message. The protocol stack
packages the socket message into a data unit according to a same transport layer protocol as
the backup socket.

[0142] Replication module 202, by way of hooked code elements at the protocol stack,
intercepts an outbound data unit and updates a send next sequence number (310). The send
next sequence number refers to example state information for the transport layer state of the
backup socket. The send next sequence number (e.g., SND NXT) represents a next data
block to be transmitted to the peer network device. Using a sequence number in the
outbound data unit of a last transmitted data block, replication module 202 updates the send
next sequence number to represents a new next data block to be transmitted to the peer
network device. In some examples, replication module 202 increments the sequence number
of the last transmitted data block (e.g., by one (1)).

[0143] Replication module 202, by way of the hooked code elements at the protocol stack,
intercepts an inbound data unit having new data and then, updates a receive buffer
unacknowledged sequence number. As another example of information for the transport
layer state of the backup socket, the receive buffer unacknowledged sequence number

represents a last acknowledged data block or a first unacknowledged data block. In either

44

PATENT
REEL: 063425 FRAME: 0071



Docket No.: 2014-31617502/ INP3398-U5-CON1

example, replication module 202 may use the inbound data unit to update the receive buffer
unacknowledged sequence number and then, identify a current subsequence of
unacknowledged data blocks.

[0144] Replication module 202, by way of the hooked code elements at the protocol stack,
intercepts a second inbound data unit having an acknowledgment and then, updates a send
buffer unacknowledged sequence number (314). For example, the acknowledgement may
correspond to the transmitted outbound data unit send to the peer network device. As
described herein, replication module 202 may not transmit data from the send buffer if that
data has already been transmitted. Even if the data has not been acknowledged by the peer
network device, retransmitting data may cause lagging and (at the worst) errors in the routing
session.

[0145] Replication module 202 adjusts a header of the acknowledgement with the updated
send next sequence number, re-computes checksum, and pushes the acknowledgment to
network layer of the protocol stack (316). At this point, a state of the backup socket may
indicate that the send buffer unacknowledged sequence number is equal to the send next
sequence number. Replication module 202 may forego adjusting the acknowledgment if the
send buffer unacknowledged sequence number matches the send next sequence number. If
the send buffer unacknowledged sequence number is less than the send next sequence
number, replication module 202 proceeds with the adjustment because, in this manner, other
layers of the protocol stack may assume that at least one unacknowledged data block has
been acknowledged.

[0146] In this manner, the techniques of this disclosure may address various issues related to
socket data replication for, ¢.g., high availability. The techniques of this disclosure may be
used in conjunction with open source operating system software, such as Linux, whose
licensing terms prohibit modification of the operating system kernel. Because the kernel
need not be modified, kernel versions can be upgraded periodically and relatively simply.
The techniques of this disclosure may be applied when an operating system kernel is only
available as a binary and not open source as well, because the kernel need not be modified
and recompiled, since the techniques of this disclosure can be implemented using loadable
modules. The techniques of this disclosure may allow applications to work with socket data

replication without almost any change other than marking a socket to be replicated. These

45

PATENT
REEL: 063425 FRAME: 0072



Docket No.: 2014-31617502/ INP3398-U5-CON1

techniques may provide overall performance benefits in terms of reduced memory copy and
number of system calls made, which would otherwise heavily impact the system in a scaled
environment.

[0147] The techniques described in this disclosure may be implemented, at least in part, in
hardware, software, firmware or any combination thereof. For example, various aspects of
the described techniques may be implemented within one or more processors, including one
or more microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), field programmable gate arrays (FPGAs), or any other equivalent integrated
or discrete logic circuitry, as well as any combinations of such components. The term
“processor’ or “processing circuitry” may generally refer to any of the foregoing logic
circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry.
A control unit comprising hardware may also perform one or more of the techniques of this
disclosure.

[0148] Such hardware, software, and firmware may be implemented within the same device
or within separate devices to support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or components may be
implemented together or separately as discrete but interoperable logic devices. Depiction of
different features as modules or units is intended to highlight different functional aspects and
does not necessarily imply that such modules or units must be realized by separate hardware
or software components. Rather, functionality associated with one or more modules or units
may be performed by separate hardware or software components, or integrated within
common or separate hardware or software components.

[0149] The techniques described in this disclosure may also be embodied or encoded in a
computer-readable medium, such as a computer-readable storage medium, containing
instructions. Instructions embedded or encoded in a computer-readable medium may cause a
programmable processor, or other processor, to perform the method, e.g., when the
instructions are executed. Computer-readable media may include non-transitory computer-
readable storage media and transient communication media. Computer readable storage
media, which is tangible and non-transitory, may include random access memory (RAM),
read only memory (ROM), programmable read only memory (PROM), erasable

programmable read only memory (EPROM), electronically erasable programmable read only

46

PATENT
REEL: 063425 FRAME: 0073



Docket No.: 2014-31617502/ INP3398-U5-CON1

memory (EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette,
magnetic media, optical media, or other computer-readable storage media. It should be
understood that the term “computer-readable storage media” refers to physical storage media,
and not signals, carrier waves, or other transient media.

[0150] Example 1: An method includes receiving, by an protocol stack of an operating
system for a standby node of a network device, a socket message via a first socket, the socket
message comprising a representation of data to be written to a second socket and state
information of a connected socket at a primary node of the network device, wherein the
connected socket at the primary node provides network communication connectivity between
the primary node and the peer network device, wherein the first socket provides network
communication connectivity between the primary node and the standby node of the network
device in accordance with transport protocol, wherein the standby node is configured to
provide control for the network device after failure of the primary node, wherein the second
socket provides network communication connectivity between the standby node and the peer
network device after the failure of the primary node; in response to the socket message,
sending, by the protocol stack of the standby node, a socket acknowledgement in accordance
with the transport protocol, wherein after receiving the socket acknowledgement from the
standby node, a primary replication module in the primary node sends the data to the peer
network device via the connected socket; and updating, by a backup replication module, the
second socket using the state information of the connected socket at the primary node.

[0151] Example 2: The method of example 1 further includes updating, by the backup
replication module, routing information or forwarding information at the standby node using
the data.

[0152] Example 3: The method of any of examples 1 and 2 further includes generating, by
the backup replication module, the second socket as a backup socket for the connected socket
at the primary node, wherein the second socket comprises a replicated state of the connected
state.

[0153] Example 4: The method of any of examples 1 through 3, wherein the representation
of data comprises a route advertisement message.

[0154] Example 5: The method of any of examples 1 through 4, wherein receiving the socket

message comprises receiving, by a transport layer component of the protocol stack, a

47

PATENT
REEL: 063425 FRAME: 0074



Docket No.: 2014-31617502/ INP3398-U5-CON1

composite message comprising a first message and a second message, wherein the first
message comprising the representation of data and the second message comprises the state
information.

[0155] Example 6: The method of any of examples 1 through 5 further includes executing,
by the operating system, at least one of a data write operation to store the data in a receive
buffer of the second socket or a send buffer of the second socket or a data read operation to
remove a portion from the receive buffer or the send buffer.

[0156] Example 7: The method of any of examples 1 through 6, wherein sending the socket
acknowledgement comprises: receiving, by the protocol stack, a first data unit via the first
socket in accordance with a transmission control protocol (TCP), wherein the first data unit
comprises a header storing the state information and a payload storing the representation of
data; and in response to the data unit, sending, by the protocol stack, a second data unit in
accordance with TCP to the standby node, the second data unit comprising a TCP
acknowledgement of the first data unit.

[0157] Example 8: The method of example 7, wherein sending the socket acknowledgement
comprises after receiving the TCP acknowledgment in accordance with TCP from the
protocol stack of the standby node, sending, by the primary replication module , a second
TCP acknowledgement to a source of the first data unit.

[0158] Example 9: The method of any of examples 1 through 8, further comprising
removing, by the backup replication module, a portion from a buffer of the second socket
based on the state information in the socket message.

[0159] Example 10: The method of any of examples 1 through 9. further comprising in
response to a switchover to the standby node, sending, by the operating system, data from a
send buffer of the second socket to the peer network device via the second socket.

[0160] Example 11: The method of example 10, further includes retrieving, by the operating
system, data from a receive buffer of the second socket; and sending, by the protocol stack, a
second socket acknowledgment to the peer network device via the second socket.

[0161] Example 12: The method of example 11, further comprising forming, by the
operating system, a packet including the data sent to the first socket or the data retrieved

from the second socket.

48

PATENT
REEL: 063425 FRAME: 0075



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0162] Example 13: The method of any of examples 1 through 12, wherein the backup
replication module is executed in at least one of a kernel space or a user space.

[0163] Example 14: The method of any of examples 1 through 13, wherein the representation
of the data comprises: one or more operation flags as part of the representation of the data; a
socket descriptor as part of the representation of the data; and buffer data identifying the data
as part of the representation of the data.

[0164] Example 15: A network device includes a standby node configured to provide control
for the network device after failure of a primary node, wherein standby node comprises one
or more processors implemented in circuitry and configured to: execute an operating system
to load a protocol stack operative to: receive a socket message via a first socket, wherein the
socket message comprises a representation of data to be written to a second socket and state
information of a connected socket at a primary node of the network device, wherein the first
socket provides network communication connectivity between the primary node and the
standby node of the network device in accordance with transport protocol, wherein the
second socket provides network communication connectivity between the standby node of
the network device and a peer network device in response to the failure, wherein the
connected socket, wherein the connected socket at the primary node provides network
communication connectivity between the primary node and the peer network device; and
return, in response to the socket message, a socket acknowledgement in accordance with the
transport protocol, wherein after receiving the socket acknowledgement from the standby
node, a primary replication module in the primary node sends the data to the peer network
device via the connected socket; and execute a replication module to: update the second
socket using the state information of the connected socket at the primary node.

[0165] Example 15: The network device of any of examples 14 and 15, wherein the one or
more processors implemented in circuitry are further configured to execute logic operative to
receive, via the first socket, the socket message according to transmission control protocol
(TCP) and to a send, via the second socket, the socket acknowledgment in accordance with
transmission control protocol (TCP).

[0166] Example 16: The network device of any of examples 14 through 16, wherein the one

or more processors are further configured to execute the replication module to remove, based

49

PATENT
REEL: 063425 FRAME: 0076



Docket No.: 2014-31617502/ INP3398-U5-CON1

on the state information, a portion of a send buffer or a portion of a receive buffer of the
second socket.

[0167] Example 17: The network device of any of examples 14 through 17, wherein the one
or more processors are further configured to execute the replication module in response to a
switchover, the replication module being operative to: send data from a send buffer to the
peer network device via the second socket.

[0168] Example 18: The network device of any of examples 14 through 18, wherein the one
or more processors are further configured to execute the replication module to send the data
to an application.

[0169] Example 19: The network device of any of examples 14 through 19 further
comprising one or more second processors of the primary node configured to, after receiving
the socket acknowledgement, execute a primary replication module to send the data to the
peer network device or a second socket acknowledgement to a source.

[0170] Example 20: A computer-readable storage medium having stored thereon instructions
that, when executed, cause one or more processors of a primary node of a network device to:
execute an operating system to provide an application space and a kernel space; execute logic
in the kernel space, the logic operative to: receive a socket message via a first socket,
wherein the socket message comprises a representation of data to be written to a second
socket and state information of a connected socket at a primary node of the network device,
wherein the first socket provides network communication connectivity between the primary
node and the standby node of the network device in accordance with transport protocol,
wherein the second socket provides network communication connectivity between the
standby node of the network device and a peer network device in response to the failure,
wherein the connected socket, wherein the connected socket at the primary node provides
network communication connectivity between the primary node and the peer network device;
return, in response to the socket message, a socket acknowledgement in accordance with the
transport protocol, wherein after receiving the socket acknowledgement from the standby
node, a primary replication module in the primary node sends the data to the peer network
device via the connected socket; and update the second socket using the state information of

the connected socket at the primary node.

50

PATENT
REEL: 063425 FRAME: 0077



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0171] Example 21: A method includes receiving, by a replication module, a representation
of data to be written to a first socket, wherein the first socket provides network
communication connectivity between a primary node of the network device and a peer
network device; sending, by the replication module, a socket message, via a second socket, to
a standby node of the network device, wherein the socket message comprises state
information of the first socket and the representation of data, wherein the second socket
provides network communication connectivity between the primary node and the standby
node in accordance with a transport protocol, wherein the standby node is configured to
provide control for the network device after failure of the primary node; in response to the
socket message, sending, by a protocol stack of the standby node, a socket acknowledgement
in accordance with the transport protocol; and after receiving the socket acknowledgement
from the standby node, sending, by the replication module, the data to the peer network
device via the first socket.

[0172] Example 22: The method of any of examples 1 through 22, wherein the replication
module is executed in at least one of a kernel space or a user space.

[0173] Example 23: The method of any of examples 1 through 23, wherein the representation
of data comprises a route advertisement message.

[0174] Example 24: The method of any of examples 1 through 24, wherein sending, by the
replication module, the socket message comprises creating, by the replication module, a
composite message comprising a first message and a second message, wherein the first
message comprising the representation of data and the second message comprises the state
information.

[0175] Example 25: The method of any of examples 1 through 235, further comprising
forming the representation of the data, wherein forming the representation of the data
comprises: generating one or more operation flags as part of the representation of the data;
generating a socket descriptor as part of the representation of the data; and generating buffer
data identifying the data as part of the representation of the data.

[0176] Example 26: The method of any of examples 1 through 26 further includes retrieving,
by the replication module, second data of a data unit via the first socket in accordance with a

transmission control protocol (TCP); and sending, by an operating system of the primary

51

PATENT
REEL: 063425 FRAME: 0078



Docket No.: 2014-31617502/ INP3398-U5-CON1

node, a second data unit in accordance with TCP to the standby node, the socket message
comprising a copy of the second data.

[0177] Example 27: The method of any of examples 6 through 27 further comprising after
receiving a second socket acknowledgment in accordance with TCP from the protocol stack
of the standby node, sending, by the operating system, a third socket acknowledgment in
accordance with TCP to a source of the data unit via the first socket.

[0178] Example 28: The method of any of examples 1 through 28, further comprising
removing, by the replication module, a portion from a buffer of the second socket in response
to an acknowledgment from a second replication module of the standby node.

[0179] Example 29: The method of any of examples 1 through 29, further comprising
forming, by the operating system, a packet including the data sent to the second socket.
[0180] Example 30: The method of any of examples 1 through 30, wherein based on the state
information, a second replication module of the standby node removes a portion of a send
buffer or a portion of a receive buffer of a replicated socket, wherein the replicated socket is
configured for network communication connectivity between the standby node and the peer
network device.

[0181] Example 31: The method of any of examples 30 and 31, further comprising, in
response to a switchover to the standby node: sending, by an operating system of the standby
node, data from the send buffer to the peer network device via the replicated socket; and
retrieving, by the operating system, data from the receive buffer of the replicated buffer.
[0182] Example 32: A network device includes a primary node; and a standby node
configured to provide control for the network device after failure of the primary node,
wherein primary node comprises one or more processors implemented in circuitry and
configured to: execute a replication module to: receive a representation of data to be written
to a first socket, wherein the first socket provides network communication connectivity
between the primary node of the network device and a peer network device; and send a
socket message, via a second socket, to a standby node of the network device, wherein the
socket message comprises state information of the first socket and the representation of data,
wherein the second socket provides network communication connectivity between the
primary node and the standby node in accordance with a transport protocol, wherein the

standby node is further configured to return, in response to the socket message, a socket

52

PATENT
REEL: 063425 FRAME: 0079



Docket No.: 2014-31617502/ INP3398-U5-CON1

acknowledgment in accordance with the transport protocol; and after receiving the socket
acknowledgement from the standby node, send the data to the peer network device via the
first socket.

[0183] Example 33: The network device of any of examples 32 and 33, wherein the
replication module is further operative to execute an operating system to provide an
application space and a kernel space, wherein the replication module is executed in at least
one of the application space and the kernel space.

[0184] Example 34: The network device of any of examples 32 through 34, wherein the
standby node comprises one or more processors implemented in circuitry and configured to
execute logic operative to send, in response to a send, via the second socket, the socket
acknowledgment in accordance with transmission control protocol (TCP).

[0185] Example 35: The network device of any of examples 32 through 35, wherein the
standby node comprises one or more processors implemented in circuitry and configured to
execute a second replication module to remove, based on the state information, a portion of a
send buffer or a portion of a receive buffer of a replicated socket, wherein the replicated
socket is configured for network communication connectivity between the standby node and
the peer network device.

[0186] Example 36: The network device of any of examples 35 and 36, wherein the one or
more processors are further configured to execute the replication module to send data from
the send bufter to the peer network device via the replicated socket; and retrieve data from
the receive buffer of the replicated buffer.

[0187] Example 37: The network device of any of examples 32 through 37, wherein the one
or more processors are configured to send the representation of the data to the standby node
according to transmission control protocol (TCP) and to receive the acknowledgement from
the standby node according to TCP.

[0188] Example 38: The network device of any of examples 32 through 38, wherein the one
or more processors are further configured to execute the replication module to retrieve
second data of a received packet from the first socket, send the second data to the standby
node, and after receiving a second socket acknowledgement from the standby node, send the

second data to an application.

53

PATENT
REEL: 063425 FRAME: 0080



Docket No.: 2014-31617502/ INP3398-U5-CON1

[0189] Example 39: The network device of any of examples 38 and 39, wherein the one or
more processors are further configured to, after receiving the second socket
acknowledgement, execute the replication module to send a third socket acknowledgement of
the received packet to a source of the received packet.

[0190] Example 40: A computer-readable storage medium having stored thereon instructions
that, when executed, cause one or more processors of a primary node of a network device to:
execute an operating system to provide an application space and a kernel space; execute a
replication application in the application space to receive a write function call including data
to be written to a socket of the operating system and to send a representation of the data to a
replication module executed in the kernel space; and execute the replication module to send
the representation of the data to a standby node of the network device and, after receiving an
acknowledgement from the standby node, to send the data to the socket.

[0191] Various examples have been described. These and other examples are within the

scope of the following claims.

54

PATENT
REEL: 063425 FRAME: 0081



Application Number 17/661,698
Preliminary Amendment

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

Claims 1-20 (Cancelled).

Claim 21 (New): A method comprising:

receiving, by a replication module, a representation of data to be written to a first socket,
wherein the first socket provides network communication connectivity between a primary node
of the network device and a peer network device;

sending, by the replication module, a socket message, via a second socket, to a standby
node of the network device, wherein the socket message comprises state information of the first
socket and the representation of data, wherein the second socket provides network
communication connectivity between the primary node and the standby node in accordance with
a transport protocol, wherein the standby node is configured to provide control for the network
device after failure of the primary node;

in response to the socket message. sending, by a protocol stack of the standby node, a
socket acknowledgement in accordance with the transport protocol; and

after receiving the socket acknowledgement from the standby node, sending, by the

replication module, the data to the peer network device via the first socket.

Claim 22 (New): The method of claim 21, wherein the replication module is executed in at

least one of a kernel space or a user space.

Claim 23 (New): The method of claim 21, wherein the representation of data comprises a

route advertisement message.

Claim 24 (New): The method of claim 21, wherein sending, by the replication module, the

socket message comprises creating, by the replication module, a composite message comprising

PATENT
REEL: 063425 FRAME: 0082



Application Number 17/661,698
Preliminary Amendment

a first message and a second message, wherein the first message comprising the representation of

data and the second message comprises the state information.

Claim 25 (New): The method of claim 21, further comprising forming the representation of
the data, wherein forming the representation of the data comprises:
generating one or more operation flags as part of the representation of the data;
generating a socket descriptor as part of the representation of the data; and

generating buffer data identifying the data as part of the representation of the data.

Claim 26 (New): The method of claim 21 further comprising:

retrieving, by the replication module, second data of a data unit via the first socket in
accordance with a transmission control protocol (TCP); and

sending, by an operating system of the primary node, a second data unit in accordance

with TCP to the standby node, the socket message comprising a copy of the second data.

Claim 27 (New): The method of claim 26 further comprising after receiving a second socket
acknowledgment in accordance with TCP from the protocol stack of the standby node, sending,
by the operating system, a third socket acknowledgment in accordance with TCP to a source of
the data unit via the first socket.

Claim 28 (New): The method of claim 21, further comprising removing, by the replication
module, a portion from a buffer of the second socket in response to an acknowledgment from a

second replication module of the standby node.

Claim 29 (New): The method of claim 21, further comprising forming, by the operating

system, a packet including the data sent to the second socket.

Claim 30 (New): The method of claim 21, wherein based on the state information, a second
replication module of the standby node removes a portion of a send buffer or a portion of a
receive buffer of a replicated socket, wherein the replicated socket is configured for network

communication connectivity between the standby node and the peer network device.

PATENT
REEL: 063425 FRAME: 0083



Application Number 17/661,698
Preliminary Amendment

Claim 31 (New): The method of claim 30, further comprising, in response to a switchover to
the standby node:

sending, by an operating system of the standby node, data from the send buffer to the
peer network device via the replicated socket; and

retrieving, by the operating system, data from the receive buffer of the replicated buffer.

Claim 32 (New): A network device comprising:
a primary node; and
a standby node configured to provide control for the network device after failure of the
primary node,
wherein primary node comprises one or more processors implemented in circuitry and
configured to:
execute a replication module to:
receive a representation of data to be written to a first socket, wherein the
first socket provides network communication connectivity between the primary node of the
network device and a peer network device; and
send a socket message, via a second socket, to a standby node of the
network device, wherein the socket message comprises state information of the first socket and
the representation of data, wherein the second socket provides network communication
connectivity between the primary node and the standby node in accordance with a transport
protocol, wherein the standby node is further configured to return, in response to the socket
message, a socket acknowledgment in accordance with the transport protocol; and
after receiving the socket acknowledgement from the standby node, send

the data to the peer network device via the first socket.

Claim 33 (New): The network device of claim 32, wherein the replication module is further
operative to execute an operating system to provide an application space and a kernel space,
wherein the replication module is executed in at least one of the application space and the kernel

space.

PATENT
REEL: 063425 FRAME: 0084



Application Number 17/661,698
Preliminary Amendment

Claim 34 (New): The network device of claim 32, wherein the standby node comprises one
or more processors implemented in circuitry and configured to execute logic operative to send, in
response to a send, via the second socket, the socket acknowledgment in accordance with

transmission control protocol (TCP).

Claim 35 (New): The network device of claim 32, wherein the standby node comprises one
or more processors implemented in circuitry and configured to execute a second replication
module to remove, based on the state information, a portion of a send buffer or a portion of a
receive buffer of a replicated socket, wherein the replicated socket is configured for network

communication connectivity between the standby node and the peer network device.

Claim 36 (New): The network device of claim 35, wherein the one or more processors are
further configured to execute the replication module to send data from the send buffer to the peer
network device via the replicated socket; and retrieve data from the receive buffer of the

replicated buffer.

Claim 37 (New): The network device of claim 32, wherein the one or more processors are
configured to send the representation of the data to the standby node according to transmission
control protocol (TCP) and to receive the acknowledgement from the standby node according to

TCP.

Claim 38 (New): The network device of claim 32, wherein the one or more processors are
further configured to execute the replication module to retrieve second data of a received packet
from the first socket, send the second data to the standby node, and after receiving a second

socket acknowledgement from the standby node, send the second data to an application.

Claim 39 (New): The network device of claim 38, wherein the one or more processors are
further configured to, after receiving the second socket acknowledgement, execute the
replication module to send a third socket acknowledgement of the received packet to a source of

the received packet.

PATENT
REEL: 063425 FRAME: 0085



Application Number 17/661,698
Preliminary Amendment

Claim 40 (New): A computer-readable storage medium having stored thereon instructions
that, when executed, cause one or more processors of a primary node of a network device to:

execute an operating system to provide an application space and a kernel space;

execute a replication application in the application space to receive a write function call
including data to be written to a socket of the operating system and to send a representation of
the data to a replication module executed in the kernel space; and

execute the replication module to send the representation of the data to a standby node of
the network device and, after receiving an acknowledgement from the standby node, to send the

data to the socket.

PATENT
REEL: 063425 FRAME: 0086



Docket No.: 2014-31617502/ INP3398-U5-CON1

ABSTRACT

An example network device includes a primary node and a standby node. The
primary node engages in a routing session with a peer network device via a connected socket.
The standby node includes one or more processors implemented in circuitry and configured
to execute a backup replication module to receive, from the primary node, data to be written
to a backup socket for the connected socket, and, in response to a switchover, to send a

representation of the data to the peer network device via the backup socket.

61

PATENT
RECORDED: 04/24/2023 REEL: 063425 FRAME: 0087



