507904616 05/12/2023

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

EPAS ID: PAT7951741

SUBMISSION TYPE:

NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT
CONVEYING PARTY DATA
Name Execution Date
JAYANTHI R 05/01/2023
CHANDRASEKHAR A 04/26/2023
JAVIER ANTICH 04/26/2023
SRI SAMPATH MALLIPUDI 05/03/2023
PREMCHANDAR N 05/08/2023
HARSHA LAKSHMIKANTH 04/26/2023
GREGORY A. SIDEBOTTOM 04/26/2023
ZHIFEI FANG 04/25/2023
RECEIVING PARTY DATA
Name: JUNIPER NETWORKS, INC.
Street Address: 1133 INNOVATION WAY
City: SUNNYVALE
State/Country: CALIFORNIA
Postal Code: 94089
PROPERTY NUMBERS Total: 1
Property Type Number
Application Number: 18066407

CORRESPONDENCE DATA
Fax Number:

(651)735-1102

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 2:
Address Line 4:

6517351100
pairdocketing@ssiplaw.com
SHUMAKER & SIEFFERT, P.A.
1625 RADIO DRIVE

SUITE 300

WOODBURY, MINNESOTA 55125

ATTORNEY DOCKET NUMBER:

2014-187US02

NAME OF SUBMITTER:

JACLYN M. SKIBA

SIGNATURE:

/Jaclyn M. Skiba/

507904616

PATENT
REEL: 063633 FRAME: 0696

DATE SIGNED: 05/12/2023

Total Attachments: 58
source=JNP3193-US-CON1_Assignment#page1 .tif
source=JNP3193-US-CON1_Assignment#page?2.tif
source=JNP3193-US-CON1_Assignment#page3.tif
source=JNP3193-US-CON1_Assignment#page4 tif
source=JNP3193-US-CON1_Assignment#pageb.tif
source=JNP3193-US-CON1_Assignment#page®.tif
source=JNP3193-US-CON1_Assignment#page? .tif
source=JNP3193-US-CON1_Assignment#page8.tif
source=JNP3193-US-CON1_Assignment#page9.tif
source=JNP3193-US-CON1_Assignment#page10.tif
source=JNP3193-US-CON1_Assignment#page11.tif
source=JNP3193-US-CON1_Assignment#page12.tif
source=JNP3193-US-CON1_Assignment#page13.tif
source=JNP3193-US-CON1_Assignment#page14.tif
source=JNP3193-US-CON1_Assignment#page15.tif
source=JNP3193-US-CON1_Assignment#page16.tif
source=JNP3193-US-CON1_Assignment#page17.tif
source=JNP3193-US-CON1_Assignment#page18.tif
source=JNP3193-US-CON1_Assignment#page19.tif
source=JNP3193-US-CON1_Assignment#page20.tif
source=JNP3193-US-CON1_Assignment#page?21.tif
source=JNP3193-US-CON1_Assignment#page22.tif
source=JNP3193-US-CON1_Assignment#page23.tif
source=JNP3193-US-CON1_Assignment#page24.tif
source=JNP3193-US-CON1_Assignment#page25.tif
source=JNP3193-US-CON1_Assignment#page26.tif
source=JNP3193-US-CON1_Assignment#page27 .tif
source=JNP3193-US-CON1_Assignment#page28.tif
source=JNP3193-US-CON1_Assignment#page29.tif
source=JNP3193-US-CON1_Assignment#page30.tif
source=JNP3193-US-CON1_Assignment#page31.tif
source=JNP3193-US-CON1_Assignment#page32.tif
source=JNP3193-US-CON1_Assignment#paged3.tif
source=JNP3193-US-CON1_Assignment#page34.tif
source=JNP3193-US-CON1_Assignment#page35.tif
source=JNP3193-US-CON1_Assignment#page36.tif
source=JNP3193-US-CON1_Assignment#paged7.tif
source=JNP3193-US-CON1_Assignment#page38.tif
source=JNP3193-US-CON1_Assignment#paged9.tif
source=JNP3193-US-CON1_Assignment#page40.tif
source=JNP3193-US-CON1_Assignment#page41.tif
source=JNP3193-US-CON1_Assignment#page42.tif
source=JNP3193-US-CON1_Assignment#page43.tif
source=JNP3193-US-CON1_Assignment#page44.tif
source=JNP3193-US-CON1_Assignment#page45.tif
source=JNP3193-US-CON1_Assignment#page46.tif

PATENT
REEL: 063633 FRAME: 0697

source=JNP3193-US-CON1_Assignment#page47 tif
source=JNP3193-US-CON1_Assignment#page48.tif
source=JNP3193-US-CON1_Assignment#page49.tif
source=JNP3193-US-CON1_Assignment#page50.tif
source=JNP3193-US-CON1_Assignment#page51..tif
source=JNP3193-US-CON1_Assignment#page52.tif
source=JNP3193-US-CON1_Assignment#page53.tif
source=JNP3193-US-CON1_Assignment#page54.tif
source=JNP3193-US-CON1_Assignment#page55.tif
source=JNP3193-US-CON1_Assignment#page56.tif
source=JNP3193-US-CON1_Assignment#page57.tif
source=JNP3193-US-CON1_Assignment#page58.tif

PATENT
REEL: 063633 FRAME: 0698

CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to Juniper
Networks, Inc., having a place of business at 1133 Innovation Way, Sunnyvale, CA 94089-
1206, United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER™) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
US.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 U.S.C. § 371
(“APPLICATION™):

Application No. 18/066,407, entitled “PROGRAMMABLE DIAGNOSIS
MODEL FOR CORRELATION OF NETWORK EVENTS” filed on
December 15, 2022 which is a Continuation of U.S. Application No.
16/821,745, entitled “PROGRAMMABLE DIAGNOSIS MODEIL FOR
CORRELATION OF NETWORK EVENTS” filed on March 17, 2020
which claims the benefit of Indian Provisional Application No.
202041004313, filed January 31, 2020 (I hereby authorize the Assignee
and its representative to hereafter add herein such application number(s)
and/or filing date(s) when known.)

2. The entire worldwide right, title, and interest in and to:

(a) the APPLICATION;, (b) all applications claiming priority from the APPLICATION;
(¢) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (¢) above; and (e) all right of
priority in the APPLICATION and in any underlving provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawful
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,
assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not

1 PATENT
REEL: 063633 FRAME: 0699

Attorney Docket No.: 204107

Application No.: 15

hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,

titles, and interests herein conveyed.

INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature

4

Date of Signature

Jayanthi R

Name and Signature

May 1, 2023

{

Date of Signature

Chandrasekbhar A

Name and Signature

Apr26, 2023

e

Date of Signature

Javier Antich

Name and Signature

Apr 26, 2023

[N

Date of Signature

Sri Sampath Mallipudi

Name and Signature

May 3, 2023

N AL

Date of Signature

Premchandar ¥

Attorney Docket No.: 2

May 8, 2023

PATENT
REEL: 063633 FRAME: 0700

Application No.: 13

Name and Signature Date of Signature
Harsha Lakshmikanth

Name and Signature Date of Signature
Greg Sebottom Apr 26,2023

Gregory A. Sidebottom

Name and Signature Date of Signature
g Apr 25, 2023
Zhifei Fang
Attorney Docket No.: 31 3 PATENT

REEL: 063633 FRAME: 0701

Y TN S
3 TRTEYW
PR RRN

Date Filed: oo
Application No.: 13

APPENDIX

Attorney Docket No:: 2 4 PATENT

REEL: 063633 FRAME: 0702

Docket No.: 2014-187US02/JNP3193-US-CON

PROGRAMMABLE DIAGNOSIS MODEL FOR CORRELATION OF NETWORK
EVENTS

[0001] This application is a continuation of U.S. Application No. 16/821,745, filed March 17,
2020, which claims benefit of priority from India Provisional Application No. 202041004313
filed on 31 January 2020, the entire contents of each of which are incorporated herein by

reference.

TECHNICAL FIELD
[0002] This disclosure relates to computer networks, and more particularly, to management of

network devices.

BACKGROUND

[0003] A computer network is a collection of interconnected computing devices that can
exchange data and share resources. A variety of devices operate to facilitate communication
between the computing devices. For example, a computer network may include routers,
switches, gateways, firewalls, and a variety of other devices to provide and facilitate network
communication.

[0004] These network devices typically include mechanisms, such as management interfaces,
for locally or remotely configuring the devices. By interacting with the management interface,
a client can perform configuration tasks as well as perform operational commands to collect
and view operational data of the managed devices. For example, the clients may configure
interface cards of the device, adjust parameters for supported network protocols, specify
physical components within the device, modify routing information maintained by a router,
access software modules and other resources residing on the device, and perform other
configuration tasks. In addition, the clients may allow a user to view current operating
parameters, system logs, information related to network connectivity, network activity or other
status information from the devices as well as view and react to event information received
from the devices.

[000S5] Network configuration services may be performed by multiple distinct devices, such as
routers with service cards and/or dedicated service devices. Such services include connectivity

services such as Layer Three Virtual Private Network (L3VPN), Virtual Private Local Area

PATENT
REEL: 063633 FRAME: 0703

Docket No.: 2014-187US02/JNP3193-US-CON

Network Service (VPLS), and Peer to Peer (P2P) services. Other services include network
configuration services, such as Dotlq VLLAN Service. Network management systems (NMSs)
and NMS devices, also referred to as controllers or controller devices, may support these
services such that an administrator can easily create and manage these high-level network
configuration services.

[0006] In particular, user configuration of devices may be referred to as “intents.” An intent-
based networking system lets administrators describe the intended network/compute/storage
state. User intents can be categorized as business policies or stateless intents. Business
policies, or stateful intents, may be resolved based on the current state of a network. Stateless
intents may be fully declarative ways of describing an intended network/compute/storage state,
without concern for a current network state.

[0007] Intents may be represented as intent data models, which may be modeled using unified
graphs. Intent data models may be represented as connected graphs, so that business policies
can be implemented across intent data models. For example, data models may be represented
using connected graphs having vertices connected with has-edges and reference (ref) edges.
Controller devices may model intent data models as unified graphs, so that the intend models
can be represented as connected. In this manner, business policies can be implemented across
intent data models. When Intents are modeled using a unified graph model, extending new
intent support needs to extend the graph model and compilation logic.

[0008] In order to configure devices to perform the intents, a user (such as an administrator)
may write translation programs that translate high-level configuration instructions (e.g.,
instructions according to an intent data model, which may be expressed as a unified graph
model) to low-level configuration instructions (e.g., instructions according to a device
configuration model). As part of configuration service support, the user/administrator may
provide the intent data model and a mapping between the intent data model to a device
configuration model.

[0009] In order to simplify the mapping definition for the user, controller devices may be
designed to provide the capability to define the mappings in a simple way. For example,
some controller devices provide the use of Velocity Templates and/or Extensible Stylesheet
Language Transformations (XSL.T). Such translators contain the translation or mapping

logic from the intent data model to the low-level device configuration model. Typically, a

PATENT
REEL: 063633 FRAME: 0704

Docket No.: 2014-187US02/JNP3193-US-CON

relatively small number of changes in the intent data model impact a relatively large number
of properties across device configurations. Different translators may be used when services

are created, updated, and deleted from the intent data model.

SUMMARY

[0010] In general, this disclosure describes techniques for managing network devices. A
network management system (NMS) device, also referred to herein as a controller device, may
configure network devices using low-level (that is, device-level) configuration data, e.g.,
expressed in Yet Another Next Generation (Y ANG) data modeling language. According to
the techniques described herein, the controller device may configure the network devices at
individual component level or individual service level. The controller device implements a
programmable network diagnosis model to provide root cause analysis (RCA) for events (e.g.,
faults) detected over the network. The programmable network diagnosis model of this
disclosure applies model traversal techniques over a resource definition graph that accounts
for device resources, service resources provided by the network devices, and the
interdependencies between the various resources.

[0011] The programmable network diagnosis model permits for programming cause and effect
relationships between resource events, and to initialize telemetry rules for both devices
resources and service-associated device resources. Additionally, the programmable network
diagnosis model enables forward chaining-based RCA by automatically deriving inference
rules, and accounts for temporal relations between network events. The programmability of
the network diagnosis model enables the controller device to perform the forward chaining-
based RCA techniques of this disclosure while accommodating dynamic network changes. In
this way, the programmable network diagnosis model is scalable in that the controller device
may program the model to accommodate changes to the size or configuration of the network,
and to support numerous resources implemented by the network devices.

[0012] In one example, this disclosure is directed to a method of monitoring a device group of
a network. The method includes receiving, by a programmable diagnosis service running on
a controller device that manages the device group, a programming input and forming, by the
programmable diagnosis service, based on the programming input, a resource definition graph

that models interdependencies between a plurality of resources supported by the device group.

3

PATENT
REEL: 063633 FRAME: 0705

Docket No.: 2014-187US02/JNP3193-US-CON

The method further includes detecting, by the programmable diagnosis service, an event
affecting a first resource of the plurality of resources, and identifying, based on the
interdependencies modeled in the resource definition graph formed based on the programming
input, a root cause event that caused the event affecting the first resource, the root cause event
occurring at a second resource of the plurality of resources.

[0013] In another example, this disclosure is directed to a controller device for managing a
device group of anetwork. The controller device includes a network interface, a memory, and
processing circuitry in communication with the memory. The processing circuitry is
configured to receive, using a programmable diagnosis service executed by the processing
circuitry, a programming input, and to form, using the programmable diagnosis service, based
on the programming input, a resource definition graph that models interdependencies between
a plurality of resources supported by the device group. The processing circuitry is further
configured to detect, using the programmable diagnosis service, an event affecting a first
resource of the plurality of resources, and to identify, using the programmable diagnosis
service, based on the interdependencies modeled in the resource definition graph formed based
on the programming input, a root cause event that caused the event affecting the first resource,
the root cause event occurring at a second resource of the plurality of resources.

[0014] In another example, this disclosure is directed to a controller device for managing a
device group of a network. The controller device includes means for receiving, using a
programmable diagnosis service executed by the processing circuitry, a programming input,
and means for forming, using the programmable diagnosis service, based on the programming
input, a resource definition graph that models interdependencies between a plurality of
resources supported by the device group. The controller device further includes means for
detecting, using the programmable diagnosis service, an event affecting a first resource of the
plurality of resources, and means for identifying, using the programmable diagnosis service,
based on the interdependencies modeled in the resource definition graph formed based on the
programming input, a root cause event that caused the event affecting the first resource, the
root cause event occurring at a second resource of the plurality of resources.

[0015] In another example, this disclosure is directed to a non-transitory computer-readable
medium encoded with instructions. When executed, the instructions cause processing circuitry

of a controller device for managing a device group of a network to receive, using a

PATENT
REEL: 063633 FRAME: 0706

Docket No.: 2014-187US02/JNP3193-US-CON

programmable diagnosis service executed by the processing circuitry, a programming input, to
form, using the programmable diagnosis service, based on the programming input, a resource
definition graph that models interdependencies between a plurality of resources supported by
the device group, to detect, using the programmable diagnosis service, an event affecting a first
resource of the plurality of resources, and to identify, using the programmable diagnosis
service, based on the interdependencies modeled in the resource definition graph formed based
on the programming input, a root cause event that caused the event affecting the first resource,
the root cause event occurring at a second resource of the plurality of resources.

[0016] The programmable network diagnosis model of this disclosure provides several
technical improvements over existing RCA technology. Networks are dynamic with respect
to their structures and components (e.g., structures and/or configurations thereof). The
programmable network diagnosis model enables administrators to adapt the correlation system
to accommodate changes in the network topology, the component types and versions, and the
services offered. Because the offered services can change and grow in number because of
potential differences between customers or entities catered to, the programmability of the
network diagnosis model enables integration of new services with respect to the forward
chaining-based RCA techniques of this disclosure. In this way, the programmable network
diagnosis model of this disclosure provides scalable and reliable error resilience over networks
that incorporate diverse devices and support diverse resources.

[0017] The details of one or more examples are set forth in the accompanying drawings and
the description below. Other features, objects, and advantages will be apparent from the

description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0018] FIG. 1 is a block diagram illustrating an example including clements of an enterprise
network that are managed using a controller device of this disclosure.

[0019] FIG. 2 is a block diagram illustrating an example set of components for the controller
device of FIG. 1.

[0020] FIG. 3 is conceptual diagram illustrating components of an example programmable
diagnosis model which may be implemented by a controller device, such as the controller

device of FIGS. 1 and 2

PATENT
REEL: 063633 FRAME: 0707

Docket No.: 2014-187US02/JNP3193-US-CON

[0021] FIG. 4 is conceptual diagram illustrating resource definition graphs of this disclosure.

[0022] FIG. 5 is a conceptual diagram illustrating an example of a resource definition graph
illustrated in FIG. 4.

[0023] FIG. 6 is a conceptual diagram illustrating an example system in which the
programmable network diagnosis techniques of this disclosure are performed.

[0024] FIG. 7 is a conceptual diagram illustrating a model that the programmable diagnosis
service of this disclosure may generate with respect to a device or device group of the network
illustrated in FIG. 1.

[0025] FIG. 8 is a conceptual diagram illustrating an example model update that the
programmable diagnosis service of FIG. 2 may implement, in accordance with aspects of this
disclosure.

[0026] FIG. 9 is a conceptual diagram illustrating instance dependencies that the
programmable diagnosis service of FIG. 2 may process in accordance with aspects of this
disclosure.

[0026.1] FIG 10 is a flowchart illustrating process that a controller device may perform

to monitor a device group of a network, in accordance with aspects of this disclosure.

DETAILED DESCRIPTION

[0027] Fault diagnosis (sometimes referred to as “root cause analysis™ or “RCA™) is a process
to identify the initiating condition or event that triggers a network component failure from a
set of possible candidate events/conditions that are generated or present within a discrete time
window. RCA 1is a critical task for operators to maintain a properly functioning network. A
few possible techniques to perform RCA include a model traversing technique and a
dependency graph technique.

[0028] The model traversing technique uses object models to determine fault propagation. The
network is represented using various components and relationships between the components.
Based on this model representing the network, fault dependencies can be inferred and used to
identify the root cause of an issue. Model traversing techniques do not specify fault
dependencies directly, but instead, derive the fault dependencies from the model during run-
time. These techniques are suitable for a network that changes frequently. However, by

themselves, model traversing techniques cannot deal with more complex fault propagation

6

PATENT
REEL: 063633 FRAME: 0708

Docket No.: 2014-187US02/JNP3193-US-CON

scenarios (e.g., basing fault propagation on an assumption that only one issue happens at a
time, etc.).

[0029] The dependency graph technique uses a directed graph to model dependencies between
the object events. Nodes represent network elements (e.g., hosts). An edge from node A:event
to node B:event indicates that the failures in node A can cause failures in node B. Dependency
graphs are often used in networks with infrequent changes. In networks with frequent changes,
the dependencies need to be updated frequently. Network complexity is on the increase,
particularly in light of the rapid increase in the number of connected devices, the relatively
complex topology of distributed networks, and increasing internet of things (IoT) adoption.
These factors also contribute to the heterogeneity of networks, due to the differences in device
capabilities and configurations. For example, one network can be overlaid on top of another
network. For example, virtual private networks (VPNg) are overlaid on internet protocol (IP)
networks that use it as a transport layer. Network troubleshooters need a mechanism by which
to correlate the issues across layers with a generic model-driven solution that can be applied to
any network and service topology that can support networks with frequent changes and support
multiple concurrent faults at a time.

[0030] Because networks are dynamic with respect to their structures and components,
adaptability of the correlation system to ongoing changes in the network topology, component
types and versions, and the services offered represents a technical improvement over existing
RCA technologies. Programmable diagnosis services of this disclosure provide scalability and
response times that enable reliable RCA over dynamic, heterogenous networks. The
programmable diagnosis model of this disclosure enables network administrators to program
the network and device resources including service resources, device resources, and resource
dependencies therebetween. Additionally, the programmable diagnosis model of this
disclosure enables network administrators to program cause-and-effect relationships between
resource events that may occur within the network.

[0031] The programmable diagnosis model of this disclosure enables network administrators
to initialize telemetry rules, either with device resource properties in the case of device
resources, or via service association inheritance in the case of service-associated device
resources. Based on the model programmed in this way, the controller may automatically

derive inference rules with respect to resource event interrelationships. The controller may

PATENT
REEL: 063633 FRAME: 0709

Docket No.: 2014-187US02/JNP3193-US-CON

continually update the inference rules, and may implement the inference rules to perform RCA
based on forward chaining of network resource events. Additionally, the programmable
diagnosis model of this disclosure enables the incorporation of temporal relationships between
resource events to perform RCA among potentially interrelated events. The inference rules
are augmented with temporal constraints to enable temporal-based RCA.

[0032] Aspects of the underlying element and service models are described in U.S. Patent
Application No. 16/731,372 filed on 31 December 2019, the entire content of which is
incorporated herein. The Network Model Aware Diagnosis technique of the present disclosure
uses element models, service models, and multi-layer models. The element model accounts
for network devices that uses various resources (e.g., a packet forwarding engine (PFE), a line
card, interfaces, chassis, CPUs, etc.) and captures the relationships between these resources
and captures dependencies between various network resource events.

[0033] The service model accounts for services spread across the devices (e.g., layer-3 (1.3)
VPN/virtual private LAN services (VPLS), label-switched path (LLSP) tunnels, etc.). The
service model comprises various events captured at the service level. The service model
captures (1) service and service endpoint associations, (ii) connectivity link (path) between
various endpoint (e.g., a VPN service with endpoints Node A, B, C contains a tunnel between
Node A and Node B and a tunnel between Node A and Node C, etc.), (ii1) dependencies across
service events, (iv) dependencies across the endpoint events, and (v) dependency between
device event to service event. Networks are layered, and as such, a broken link in an underlying
layer or any other problem in the lower layer services cause many higher layer services to fail,
even when these services are not directly connected to the failing components. The multi-layer
model captures (service to service dependencies, (i) service link to service link dependencies,
and (1i1) dependencies across service events.

[0034] FIG. 1 is a block diagram illustrating an example including elements of an enterprise
network 102 that are managed using a controller device 110. Managed elements 114A-114G
(collectively, “elements 1147) of the enterprise network 102 include network devices
interconnected via communication links to form a communication topology in order to
exchange resources and information. The elements 114 (also generally referred to as network
devices or remote network devices) may include, for example, routers, switches, gateways,

bridges, hubs, servers, firewalls or other intrusion detection systems (IDS) or intrusion

PATENT
REEL: 063633 FRAME: 0710

Docket No.: 2014-187US02/JNP3193-US-CON

prevention systems (IDP), computing devices, computing terminals, printers, other network
devices, or a combination of such devices. While described in this disclosure as transmitting,
conveying, or otherwise supporting packets, the enterprise network 102 may transmit data
according to any other discrete data unit defined by any other protocol, such as a cell defined
by the Asynchronous Transfer Mode (ATM) protocol, or a datagram defined by the User
Datagram Protocol (UDP). Communication links interconnecting the elements 114 may be
physical links (e.g., optical, copper, and the like), wireless, or any combination thereof.
[0035] The enterprise network 102 is shown coupled to a public network 118 (e.g., the
Internet) via a communication link. The public network 18 may include, for example, one or
more client computing devices. The public network 18 may provide access to web servers,
application servers, public databases, media servers, end-user devices, and other types of
network resource devices and content.

[0036] The controller device 110 is communicatively coupled to the elements 114 via the
enterprise network 102. The controller device 110, in some examples, forms part of a device
management system, although only one device of the device management system is illustrated
for purpose of example in FIG. 1. The controller device 110 may be coupled either directly
or indirectly to the various elements 114. Once the elements 114 are deployed and activated,
administrators 112 uses the controller device 110 (or multiple such management devices) to
manage the network devices using a device management protocol. One example device
protocol is the Simple Network Management Protocol (SNMP) that allows the controller
device 110 to traverse and modify management information bases (MIBs) that store
configuration data within each of the managed elements 114. Further details of the SNMP
protocol can be found in Harrington et al., RFC 3411, “An Architecture for Describing Simple
Network Management Protocol (SNMP) Management Frameworks,” Network Working
Group, the Internet Engineering Task Force draft, December 2002, available at
http://tools.ietf.org/html/rfc3411, the entire contents of which are incorporated herein by
reference.

[0037] In common practice, the controller device 110, also referred to as a network
management system (NMS) or NMS device, and the elements 114 are centrally maintained by
an information technology (IT) group of the enterprise. The administrators 112 interact with

the controller device 110 to remotely monitor and configure the elements 114. For example,

PATENT
REEL: 063633 FRAME: 0711

Docket No.: 2014-187US02/JNP3193-US-CON

the administrators 112 may receive alerts from the controller device 110 regarding any of the
elements 114, view configuration data of the elements 114, modify the configurations data of
the elements 114, add new network devices to the enterprise network 102, remove existing
network devices from the enterprise network 102, or otherwise manipulate the enterprise
network 102 and network devices therein. Although described herein with respect to an
enterprise network as an example use case, it will be the techniques of this disclosure are also
applicable to other network types, public and private, including LANs, VLANs, VPNg, and the
like.

[0038] In some examples, the administrators 112 uses controller device 10 or a local
workstation to interact directly with the elements 114, e.g., through telnet, secure shell (SSH),
or other such communication sessions. That is, the elements 114 generally provide interfaces
for direct interaction, such as command line interfaces (CLIs), web-based interfaces, graphical
user interfaces (GUIs), or the like, by which a user can interact with the devices to directly
issue text-based commands. For example, these interfaces typically allow a user to interact
directly with the device, e.g., through a telnet, secure shell (SSH), hypertext transfer protocol
(HTTP), or other network session, to enter text in accordance with a defined syntax to submit
commands to the managed element. In some examples, the user initiates an SSH session 115
with one of the elements 114, e.g., element 14F, using the controller device 110, to directly
configure element 14F. In this manner, a user can provide commands in a format for execution
directly to the elements 114.

[0039] Further, the administrators 112 can also create scripts that can be submitted by the
controller device 110 to any or all of the elements 114. For example, in addition to a CLI
interface, the elements 114 also provide interfaces for receiving scripts that specify the
commands in accordance with a scripting language. In a sense, the scripts may be output by
the controller device 110 to automatically invoke corresponding remote procedure calls (RPCs)
on the managed the elements 114. The scripts may conform to, e.g., extensible markup
language (XML) or another data description language.

[0040] The administrators 112 use the controller device 110 to configure the elements 114 to
specify certain operational characteristics that further the objectives of the administrators 112.
For example, the administrators 112 may specify for an element 114 a particular operational

policy regarding security, device accessibility, traffic engineering, quality of service (QoS),

10

PATENT
REEL: 063633 FRAME: 0712

DocketNo.: 2014-187U302/INP3193-US-CON

network address translation (NAT), packet filtering, packet forwarding, rate limiting, or other
policies. The controller device 110 uses one or more network management protocols designed
for management of configuration data within the managed network elements 114, such as the
SNMP protocol or the Network Configuration Protocol (NETCONF) protocol, or a derivative
thereof, such as the Juniper Device Management Interface, to perform the configuration. The
controller-device 10 may establish NETCONTF sessions with.one or more of the elements 114.
[0041] Controller device 110 may be configured to compare a new intent data model to an
existing (or-old) intent data model, determine differences between the new and existing intent
data models, and apply the reactive mappers to the differences between the new and old intent
data models. 1In particular, the controller device 110 determines whether the new data model
mcludes any additional configuration parameters relative to the old intent data model, as well
as whether the new data model modifies or omits any configuration parameters that were
included in the old intent data model.

[0042] The intent data model may be a unified graph model, while the low-level configuration
data may be expressed in YANG, which is described in (i) Bjorklund, “YANG—A Data
Modeling Language for the Network Configuration Protocol (NETCONF),” Internet
Engineering Task Force, RFC 6020, Oct. 2010, available at tools.ietf.org/html/rfc6020, and
(i1} Clemm et al., “A 'Y ANG Data Model for Network Topologies,” Internet Engineering Task
Force, RFC 8345, March 2018, available at tools.detf. org/html/afc8345 (sometimes referred to

as “REC 83457). In some examples, the intent data model may be expressed in YAML Ain’t
Markup Language (YAML). Controller device 10 may include various reactive mappers for
translating the intent data meodel differences. These functions are configured to accept the
intent data model (which may be expressed as structured input parameters, e.g., according to
YANGor YAML). The functions are also configured to output respective sets of low-level
device configuration data model changes. e.g., device configuration additions and removals.
That is, v1 =f1(x), ¥2 =2(x), ... yN = {N(x).

[0043] The controller device 110 may use YANG modeling for intent data model and low-
level device configuration models. This data may contain relations across Y ANG entities,
such as list items and containers. As discussed in greater detail below, the controller device
110 may convert a YANG data model mto a graph data model, and convert Y ANG validations

into data validations. Techniques for managing network devices using a graph model for high

11

PATENT
REEL: 063633 FRAME: 0713

Docket No.: 2014-187US02/JNP3193-US-CON

level configuration data is described in “CONFIGURING AND MANAGING NETWORK
DEVICES USING PROGRAM OVERLAY ON YANG-BASED GRAPH DATABASE.”
U.S. Patent Application No. 15/462,465, filed on 17 March 2017, the entire content of which
is incorporated herein by reference.

[0044] Controller device 110 may receive data from any of administrators 112 representing
any or all of create, update, and/or delete actions with respect to the unified intent data model.
The controller device 110 may be configured to use the same compilation logic for each of
create, update, and delete as applied to the graph model.

[0045] In general, controllers, such as controller device 110, use a hierarchical data model for
intents, low-level data models, and resources. The hierarchical data model can be based on
YANG or YAML. The hierarchical data model can be represented as a graph, as discussed
above. Modern systems have supported intents to ease the management of networks. Intents
are declarative. To realize intents, the controller device 110 attempts to select optimal
resources.

[0046] In accordance with aspects of this disclosure, controller device 110 implements a
programmable diagnosis model that facilitates RCA when one or more of the network elements
114 exhibits a failure (e.g., packet loss, or other failure). The programmable diagnosis model
constructs the network resources and inter-resource dependencies in the form of a resource
definition graph. The resource definition graph is a construct that can be programmed,in such
a way that it specifies a set of objects (resources) which include: (1) attributes(s); (i1) state(s);
and (ii1) links to other object(s) (resource(s). A particular instance of a resource definition
graph defines the relationships that characterize a particular corresponding network context,
which can be a network domain, a network device, a network service, etc. The programmable
diagnosis service 224 discovers resources (instances) based on the constructed resource
definition graph.

[0047] FIG. 2 is a block diagram illustrating an example set of components for controller
device 110 of FIG. 1. Inthis example, controller device 110 includes control unit 202, network
interface 204, and uvser interface 206. The network interface 204 represents an example
interface that can communicatively couple the controller device 100 to an external device, e.g.,
one of the elements 114 of FIG. 1. The network interface 204 may represent a wireless and/or

wired interface, e.g., an Ethernet® interface or a wireless radio configured to communicate

12

PATENT
REEL: 063633 FRAME: 0714

Docket No.: 2014-187US02/JNP3193-US-CON

according to a wireless standard, such as one or more of the IEEE 802.11 wireless networking
protocols (such as 802.11 a/b/g/n or other such wireless protocols). Controller device 110
may include multiple network interfaces in various examples, although only one network
interface is illustrated in the non-limiting example of FIG. 2.

[0048] Control unit 202 represents any combination of hardware, hardware implementing
software, and/or firmware for implementing the functionality attributed to the control unit 202
and its constituent modules and clements. When control unit 202 incorporates software or
firmware, control unit 202 further includes any necessary hardware for storing and executing
the software or firmware, such as one or more processors or processing units. In general, a
processing unit may include one or more microprocessors, digital signal processors (DSPs),
application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs),
fixed function circuitry, programmable processing circuitry, or any other equivalent integrated
or discrete logic circuitry, as well as any combinations of such components. A processing unit
is generally implemented using fixed and/or programmable logic circuitry.

[0049] User interface 206 represents one or more interfaces by which a user, such as the
administrators 112 of FIG. 1, interacts with the controller device 110, ¢.g., to provide input and
receive output. For example, the user interface 206 may represent one or more of a monitor,
keyboard, mouse, touchscreen, touchpad, trackpad, speakers, camera, microphone, or the like.
Furthermore, although in this example the controller device 100 includes a user interface 206,
the administrators 112 need not directly interact with the controller device 100, but instead
may access the controller device 100 remotely, e.g., via the network interface 204.

[0050] Functionality of the control unit 202 may be implemented as one or more processing
units in fixed or programmable digital logic circuitry. Such digital logic circuitry may include
one or more microprocessors, digital signal processors (DSPs), application specific integrated
circuits (ASICs), fixed function circuitry, programmable logic circuitry, field programmable
gate arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as
any combination of such components. When implemented as programmable logic circuitry,
the control unit 202 may further include one or more computer readable storage media storing
hardware or firmware instructions to be executed by processing unit(s) of control unit 202.
[0051] In this example, control unit 202 includes a user interface module 208, network

interface module 210, and management module 212. Control unit 202 executes user interface

13

PATENT
REEL: 063633 FRAME: 0715

Docket No.: 2014-187US02/JNP3193-US-CON

module 208 to receive input from and/or provide output via user interface 206. Control unit
202 also executes network interface module 210 to send and receive data (e.g., in packetized
form) via network interface 204. The user interface module 208, the network interface module
210, and the management module 212 may again be implemented as respective hardware units,
or in software or firmware implemented by appropriate hardware infrastructure, or a
combination thereof.

[0052] The control unit 202 executes a management module 212 to manage various network
devices, e.g., the clements 114 of FIG. 1. Management includes, for example, configuring the
network devices according to instructions received from a user (e.g., the administrators 112 of
FIG. 1) and providing the user with the ability to submit instructions to configure the network
devices. The management module 212 accesses various databases, such as a configuration
database 214, a model database 216, an inference database 218 and a telemetry database 220,
that store data to assist in managing the various network devices. While the databases 214—
220 are illustrated as separate databases, one or more of these databases 214-220 may be
combined or otherwise rearranged. In this example, the management module 212 further
includes a configuration module 222 and programmable diagnosis service 224.

[0053] The management module 212 is configured to receive intent unified-graph-modeled
configuration data for a set of managed network devices from a user, such as the administrators
112. Such intent unified-graph-modeled configuration data may be referred to as an “intent
data model.” Over time, the user may update the configuration data, e.g., to add new services,
remove existing services, or modify existing services performed by the managed devices. The
unified intent data model may be structured according to, e.g., YANG or YAML. The graph
model may include a plurality of vertices connected by edges in a hierarchical fashion. In
YANG, edges of graph models are represented though “leafref” elements. In the case of
YAMI., such edges may be represented with a “ref” edge. Similarly, parent-to-child vertex
relations can be represented with a “has™ edge. For example, a vertex for Element A refers to
a vertex for Element B using a has-edge can be understood to mean, “Element A has Element
B.”

[0054] The configuration database 214 generally includes information describing the managed
network devices, e.g., the elements 114. The configuration database 214 may include

information indicating device identifiers (such as MAC and/or IP addresses), device type,

14

PATENT
REEL: 063633 FRAME: 0716

Docket No.: 2014-187US02/JNP3193-US-CON

device vendor, devices species (e.g., router, switch, bridge, hub, etc.), or the like. The
configuration database 214 also stores current configuration information (e.g., intent data
model, or in some cases, both intent data model and low-level configuration information) for
the managed devices (e.g., the elements 114).

[0055] The model database 216 includes the models configured by a user, via the configuration
module 222, that describe the structure of the network 102. As described below, the model
database includes a network aware diagnosis model that is used by programmable diagnosis
service 224 to perform root cause analysis to find the malfunctioning e¢lement 114 that is a
source of an event even when the malfunction is not the direct/immediate result of the event,
but instead, a cascading downstream effect of the event.

[0056] FIG. 3 is conceptual diagram illustrating components of an example programmable
diagnosis model 300, which may be implemented by a controller device, such as the controller
device 10. The programmable diagnosis model 300 models the network from multiple
perspectives to be usable with networks with frequently changing topologies and support
multiple concurrent faults at a time. In the illustrated example, the programmable diagnosis
model 300 includes network resource model(s) 302, a diagnosis model 304, telemetry rules
306, and temporal metadata 308. The network resource model(s) 302 include service resource
model(s) and device resource model(s), and define inter-resource dependencies. The telemetry
rules 306 provide data that that enables the controller device 110 to monitor the state of one or
more components in network 102, The telemetry rules 306 also enable the controller device
110 to generate or instigate alarms based on detecting thresholds configured in network 102.
In some examples, the telemetry rules 306 may be included in a network resource model that
also includes a network model (as described in U.S. Patent Application No. 16/731,372) for
network 102 and device model information for device elements of elements 114.

[0057] The diagnosis model 304 captures the cause and effect (sometime referred to herein as
“correlations™) relationship between various resources. For example, the diagnosis model 304
may reflect cause-and-effect relationships across events that occur over network 102. The
cause and effect relationships are defined between resources and resource alarms/events.
When the cause and effect relationship is defined between resources, any critical alarm/event

on a resource causes an effect on “supporting resources.” When the cause and effect

15

PATENT
REEL: 063633 FRAME: 0717

Docket No.: 2014-187US02/JNP3193-US-CON

relationship is defined between resource alarms/events, an event on a resource causes an effect
on a “supported resource” events.

[0058] The programmable diagnosis model 300 is used by the programmable diagnosis service
224 to perform forward-chained RCA in accordance with aspects of this disclosure. To aid in
identifying the root cause of a fault or other event while accommodating dynamic changes in
the topology of network 102, the programmable diagnosis model 300 enables administrators
to update aspects of the diagnosis model 304 by providing programming input 310 via the
controller device 110. The programmable diagnosis service 224 uses the programming input
310 to construct a resource definition graph that models network resources and
interdependencies therebetween. Based on the model constructed in this way, programmable
diagnosis service 224 discovers the resources from network 102 and build the relations across
the discovered resources.

[0059] Individual vertices of the resource definition graph include one or more “playbooks”™
that define respective telemetry rule(s) that enables the programmable diagnosis service 224
to fetch state information from network 102, The resource definition graph constructed by the
programmable diagnosis service 224 captures both network model and device model
information, as well as corresponding rules of the telemetry rules 306. The resource definition
graph also includes the diagnosis model 304, which provides cause and effect relationship
information across events detected within network 102. A given vertex of the resource
definition graph (including resource model information along with telemetry rule information)
enables the programmable diagnosis service 224 to discover network and device resource
instances of each object that exist on network 102, to collect the data required to fill and update
the value of the object attributes, and to compute the actual value of the “state™ attributes
defined.

[0060] The programmable diagnosis model 300 also includes temporal metadata 308. The
temporal metadata 308 includes information describing timing information of events detected
among the elements 114 of the network 102. The temporal metadata 308 may include exact
times, approximate times, or relative times measured with respect to discrete events detected
within the network 102. Based on criteria provided in the programming input 310 or based on
other criteria, the programmable diagnosis service 224 may apply the portions of the temporal

metadata 308 that apply to potentially interrelated events to perform RCA with respect to a

16

PATENT
REEL: 063633 FRAME: 0718

Docket No.: 2014-187US02/JNP3193-US-CON

downstream event. In one example, the programmable diagnosis service may retain or
eliminate an event as a possible upstream cause based on whether or not the event occurred
within a threshold time frame of causality with respect to the downstream event.

[0061] Using the combination of the network resource model(s) 302, the diagnosis model 304
formed or updated with the programming input 310, the telemetry rules 306, and the temporal
metadata 308, the programmable diagnosis service 224 forms one or more of the inference
rules stored to the inference database 218. In turn, the programmable diagnosis service 224
applies those inference rules of the inference database 218 that are applicable to the particular
event under RCA to run the programmable diagnosis model 300. The output produced by
running the programmable diagnosis model 300 is shown in FIG. 3 as forward-chained RCA
output 312.

[0062] More specifically, the programmable diagnosis service 224 uses the programmed
model (a version of diagnosis model 304 formed using programming input 310) to
automatically derive the relevant inference rules of the inference database 218. In accordance
with aspects of this disclosure, the inference rules stored to the inference database 218 are
subject to one or more temporal constraints, which are described in greater detail below with
respect to the application of temporal metadata. The programmable diagnosis service 224
applies the derived inference rules to identify the source of the fault under RCA. The inference
engine 226 maintains the event under RCA in cache memory for a predetermined time interval,
and generates an inference upon receiving a dependent event. Upon correlating the events, the
inference engine 226 generates a smart event with an RCA tree and a root cause event to be
output as part of forward-chained RCA output 312. In some examples, the programmable
diagnosis service 224 save the forward-chained RCA output 312 to an analytics database which
may be implemented locally at the controller device 110, at a remote location, or in a
distributed manner.

[0063] FIG. 4 is a conceptual diagram illustrating resource definition graphs 402A and 402B
of this disclosure. Each of resource definition graphs 402A and 402B (collectively, “resource
definition graphs 40277) models network resources and dependencies between the resources of
the respective resource definition graph. Each of resource definition graphs 402 is a construct
that 1s formed by modifying programmable diagnosis model 300 using programming input

310. Each of resource definition graphs 402 specifies a set of resource models which contain

17

PATENT
REEL: 063633 FRAME: 0719

Docket No.: 2014-187US02/JNP3193-US-CON

one or more attributes, and/or one or more state(s), and/or one or more links to other resource
models. Each of resource definition graphs 402 defines a set of relationships in a resource
model that characterize a certain network context, which can be any of a network domain, can
be a network device, a network service, etc.

[0064] In the example of FIG. 4, resource definition graph 402A is associated with playbooks
404A-A and 404A-B (collectively, “playbooks 404A™), and resource definition graph 402B is
associated with playbooks 404B-A and 404B-B (collectively, “playbooks 404B™). Each of
playbooks 404 defines those of telemetry rules 306 that enable programmable diagnosis service
224 to fetch state information from network 102. Each of resource definition graphs 402
captures network model and device model information, as well as the corresponding rules of
telemetry rules 3006.

[0065] FIG. 5 is a conceptual diagram illustrating an example of resource definition graph
402A of FIG. 4. Resource definition graph 402A is a static graph, in that resource definition
graph 402 includes definitions of object types (and not individual instances of the objects) of
network 102, Resource definition graph 402 A is also pluggable, in that it provides scalability
and support for the programmability to integrate new service models. In the example of FIG.
5, resource definition graph 402A defines relationships between various object models,
namely, a physical device (IFD 502), a logical device (IFL. 504), and a maximum transmission
unit size supported by the interface (MTU) 506, an internet protocol (IP) address 508, and a
border gateway protocol (BGP) session 512. The inter-object links shown within resource
definition graph 402 A may include one or more unidirectional relationships and/or one or more
bidirectional relationships.

[0066] Resource definition graph 402A captures network model information, device model
information, and corresponding telemetry rules for the resources shown. Using the information
available from resource definition graph 402A, controller device 110 may discover the various
instances of the objects described in resource definition graph 402A included in a particular
device group of network 102. Based on the causality link between IFD 502 and IFL 504,
controller device 110 may determine that a fault occurring at IFD 502 potentially affects the
functioning of TFL. 504. Based on the causality link, programmable diagnosis service 224 may
include IFD 502 in the discovery process with respect to fault investigation for IFL 504. In

this way, programmable diagnosis service 224 may obtain object properties and service

18

PATENT
REEL: 063633 FRAME: 0720

Docket No.: 2014-187US02/JNP3193-US-CON

properties for the device group under discovery based on the causality links included in
resource definition graph 402A.

[0067] In examples in which IFD 502 has multiple interfaces, programmable diagnosis service
224 may run programmable diagnosis model 300 to derive an inference rule that associates the
particular interface of IFD 502 with the dependent event (e.g., packet loss or other fault)
occurring at IF1, 504. Programmable diagnosis service 224 further tunes the inference rule
using one or more temporal constraints formed based on temporal metadata 308, If the fault
discovered at IFL 504 fits the temporally compliant inference rule, programmable diagnosis
service 224 generates forward-chained RCA output to identify the fault at IFD 502 as either
the root cause or as an intermediate cause (which leads to the root cause) of the fault discovered
at IFL 504.

[0068] To obtain forward-chained RCA output 312, programmable diagnosis service 224 may
use diagnosis model 304 (formed or modified using programming input 310) to automatically
derive the relevant inference rules of inference database 218. Again, programmable diagnosis
service 224 may derive the inference rules to comport with temporal constraints for causality
as derived from temporal metadata 308. In turn, programmable diagnosis service 224 uses the
inference rules stored to inference database 218 to identify the source of the detected event
(e.g. fault). Inference engine 226 may maintain an event in cache storage for a specified time
interval and generate an inference when a potentially dependent (e.g., downstream effect) event
arrives. Upon generating an event correlation, programmable diagnosis service 224 may
generate a “smart event” with an RCA tree and an identified root cause event. Programmable
diagnosis service 224 stores the smart event and the identified root cause event to an analytics
database that may be implemented locally at controller device 110, at a remote location, or in
a distributed manner.

[0069] FIG. 6 is a conceptual diagram illustrating system 600 in which the programmable
network diagnosis techniques of this disclosure are performed. Programmable diagnosis
service 224 may receive one or more alarms 602, and process alarms 602 in first-in-first-out
(FIFO) manner via input queue 604. Upon the resource definition graph being programmed,
system 600 discovers the resources over network 102. Programmable network diagnosis
service loads these resource instances to model cache 612. Model update 606 of system 600

represents a step in which system 600 decorates the events with additional information through

19

PATENT
REEL: 063633 FRAME: 0721

Docket No.: 2014-187US02/JNP3193-US-CON

model loader 608. Programmable diagnosis service 224 also includes smart event generator
610 that is configured to generate alerts based on inferences output by inference engine 226
reflecting a correlation between different events captured from a device group of network 102.
Smart event generator 610 may store the alerts to alerts event database 616 of telemetry unit
618. In turn, telemetry unit 618 may trigger one or more remediation actions 620 in response
to new alerts being pushed to alerts event database 616. Telemetry unit 618 draws on telemetry
rules 306 and playbooks 404 to formulate and/or select from remediation action(s) 620.
[0070] More specifically, to generate the alerts stored to alerts event database 616, smart event
generator 610 uses inference rules formulated by inference engine 226. Inference engine 226
also stores events received from the programmable network diagnosis service 224 to event
cache 614. Inference engine 226 implements a knowledge-based generation mechanism with
respect to the inference rules stored to inference database 218.

[0071] FIG. 7 is a conceptual diagram illustrating a model 700 that programmable diagnosis
service 224 may generate with respect to a device or device group of network 102. Upon
creation of model 700, programmable diagnosis service 224 may associate model with a device
or device group of network 102. Inturn, controller device 110 may internally invoke discovery
and populate model 700 via resource discovery. Resource information may be loaded from
other controllers or discovered from network 102.

[0072] At a high level, model 700 may capture the following: (i) a resource model for network
and device resources; (i1) resource dependencies; (including (a) parent and child resources and
(b) unidirectional and bidirectional dependencies); (ii1) cause and effect dependencies between
resource events; and (iv) a mapping of a telemetry playbook to model 700. As shown in FIG.
7, model 700 includes two types of edges. One type of edge included in model 700 is a
“contains” edge (or “has” edge), which denotes a parent-child relationship between resources.
The other type of edge included in model 700 is a “dependency” edge, which denotes a
dependency relationship between resources. Both of these edge types shown in model 700
create cause-and-effect relationship between resources.

[0073] In the example of FIG. 7, device 702 includes an interface 704, which in turn includes
a logical interface 708. These nested parent-child relationships are denoted by consecutive
“contains™ edges in FIG. 7. Device 702 also includes a VRF, which is shown by way of a
contains edge drawn directly from device 702 to VRF 706 in FIG. 7. Downstream fault

20

PATENT
REEL: 063633 FRAME: 0722

Docket No.: 2014-187US02/JNP3193-US-CON

propagation occurs automatically from parent to child by way of contains edges, and therefore,
programmable diagnosis service 224 automatically derives inference rules that link faults
upstream via each contains edge shown in FIG. 7. Said another way, child nodes inherit faults
from upstream parent, grandparent, or ancestor nodes via contains edges or chains composed
of serial contains edges. VRF 706 is also linked to interface 704 by way of a dependency edge,
and therefore, programmable diagnosis service automatically derives inference rules linking
faults between VRF 706 and interface 704 (in a unidirectional way in the particular example
of model 700).
[0074] YANG code for a data model corresponding to model 700 is presented below:
module: resource
augment /topic:
+--rw resource® [resource-key|

+--rw resource-key string

+--rw parent-resource? string

+--rw description? string

+--rw resource-field* [field-name]

| +--rw field-name string

| +--rw type? enumeration

| +--rw description? string

| +--rw value? string

+--rw state* [state-name]

| +--rw state-name string

| +--rw description? string

| +--rw status? string

+--rw rules* [rule-name]

| +--rw rule-name string

| +--rw fields* [rule-field resource-field]

| | +=-rw rule-field string

| | +--rw resource-field string

| +--rw triggers*® [trigger-state resource-state]

| +--rw trigger-state string

21

PATENT
REEL: 063633 FRAME: 0723

Docket No.: 2014-187US02/JNP3193-US-CON

| +--rw resource-state string
+--rw dependent-resource* [dependent-resource-name]
+--rw resource-name -> ../../resource-key
+--rw description? string
+--rw rules* [rule-name]
| +--rw rule-name string
| +--rw fields* [rule-field resource-field]
| | +=-rw rule-field string
| | +--rw resource-field string
| +--rw triggers*® [trigger-state resource-state]
| +--rw trigger-state string
| +--rw resource-state string
+--rw dependency* [cause effect]
+--rw cause string
+--rw effect string
[0075] The YANG data model above includes various constructs. Resource fields define
attributes of the corresponding resource. State fields define operational states of the
corresponding resource. Dependencies capture inter-resource dependencies. Resource-rule
mapping fields capture mappings between the resource field and the rule field, along with
triggers to the resource state mapping.
[0076] A YANG model corresponding to the YANG code above is presented below:
module resource {
namespace "http:// yang/ resource";
prefix " resource";
augment "/topic” {
uses resource-model-group;
3
grouping cause-effect-event-dependency-group {
list dependency {
key "cause effect";

leaf cause {

22

PATENT
REEL: 063633 FRAME: 0724

Docket No.: 2014-187US02/JNP3193-US-CON

type string {

pattern
"[a-z][a-zA-Z0-9 -]*";
3
description
"Causer event",

3
leaf effect {

type string {

pattern
"[a-z][a-zA-Z0-9 -]*";
3
description

"Impacted event";

3

3

grouping resource-model-group {
list resource {
key resource-key,
leaf resource-key {
type string {
length "1..64";
pattern
"[a-z][a-z0-9 -]*";
h
description
"Key of the resource. Should be of pattern [a-z][a-z0-9 -]*";
h

leaf parent-resource {

type string {

23

PATENT
REEL: 063633 FRAME: 0725

Docket No.: 2014-187US02/JNP3193-US-CON

length "1..64";
pattern
"[a-z][a-z0-9 -]*":
3
description
"Parent of the resource. Should be of pattern [a-z][a-z0-9 -]*";
3
leaf description {
type string;
description
"Description about the rule"”;
3
uses resource-fields-group;
uses state-group;
uses rule-mapping-group;,
uses dependency-group,
h
h

grouping resource-fields-group §
list resource-field {

key field-name;

leaf field-name {
type string {
length "1..64";
pattern
"[a-z][a-zA-Z0-9 -]*";
3

description

"Name of the field. Should be of pattern [a-z][a-zA-70-9 -]*";

h
leaf type §

24

PATENT
REEL: 063633 FRAME: 0726

Docket No.: 2014-187US02/JNP3193-US-CON

type enumeration {
enum string;
enum integer;

enum float;

3
3

leaf description {

type string;

description

"Description about this field";
3
leaf value {

type string;

description

"value for the field";

h
grouping state-group {
list state {
key state-name;
leaf state-name {
type string {
length "1..64";
pattern
"[a-z][a-z0-9 -]*";
3
description
"Resource state name. Should be of pattern [a-zA-7][a-zA-7.0-9 -]*";
h

leaf description {

25

PATENT
REEL: 063633 FRAME: 0727

Docket No.: 2014-187US02/JNP3193-US-CON

type string;

description

"Description about the resource state™;
3

leaf status {

type string;

3

h
grouping field-mapping-group {
leaf rule-field {
description
"field in rule";
type string;
3
leaf resource-field §
description
"field in resource, this can be jinja template leveraging the attributes in
Resource";
type string;
h
h
grouping trigger-mapping-group {
leaf trigger-state {
description
"maps to trigger in rule";
type string;
3
leaf resource-state {
description

"operational state of resource";

26

PATENT
REEL: 063633 FRAME: 0728

Docket No.: 2014-187US02/JNP3193-US-CON

type string;
h
3
grouping dependency-group {
list dependent-resource {
description
"dependent resource name",
key "dependent-resource-name";
leaf dependent-resource-name {
type leafref {
path "../../resource-key";
3
description
"Name of the dependency resource. Should be of pattern [a-zA-7][a-zA-7.0-9 -
1"
3
leaf description {
type string;
description
"Description about the dependency";
h
uses rule-mapping-group;
uses cause-effect-event-dependency-group;
3
h
grouping rule-mapping-group {
list rules {
key rule-name;
leaf rule-name {
type string;

description

27

PATENT
REEL: 063633 FRAME: 0729

Docket No.: 2014-187US02/JNP3193-US-CON

"Rules that needs to be triggered";

h
list fields §

key "rule-field resource-field";

uses field-mapping-group;
h
list triggers {

key "trigger-state resource-state",

uses trigger-mapping-group;

h
3
3
h
[0077] Descriptions for various data model fields are presented below in Table 1.
Data Model Description
Resource Resource in network
Resource fields Attributes of resource
Resource state Operational state of resource
Resource dependencies Captures dependency between resources.

It also includes a set of rules that need to be
triggered when the dependent resource is

also present.

Resource-rule mapping Holds the resource to rule mapping. This
captures the resource field to rule ficld

mapping along with triggers to resource state

mapping.
Table 1.

[0078] Based on the association of resources, programmable diagnosis service 224 may apply
configuration information model 700. Programmable diagnosis service 224 may collect
additional state information based on a service association to a resource. To collect the

additional state information, programmable diagnosis service 224 may apply additional

28

PATENT
REEL: 063633 FRAME: 0730

Docket No.: 2014-187US02/JNP3193-US-CON

telemetry rules (e.g., telemetry rules 306 or other telemetry rules) based on service-to-resource
assocations. For example, a VPN service associated interface may require additional telemetry
rule(s) run on the associated interface. The application of this telemetry rule is given as below:
node vrf §
dependent-resource :{
resource-name :interface;

rule : interface-status.rule;

3
3

Execution of the code above will add “interface-status.rule” to interfaces that are associated to
resource “VRF.”

[0079] FIG. 8 is a conceptual diagram illustrating an example model update 800 that
programmable diagnosis service 224 may implement, in accordance with aspects of this
disclosure.

[0080] Model update 800 may be described as “network model decoration” or “event
decoration™ with respect to events with a network model under diagnosis, in accordance with
aspects of this disclosure. An analytics engine operated by controller device 110 may capture
a stream of events captured from network 110 and feed the event stream into the programmable
diagnosis service 224. Model update 606 may decorate every event with model dependency
information.

[0081] The analytics engine may collect certain state information based on service
associations. For example, if a VPN is associated with a particular interface, the analytics
engine may fetch state information for that interface. Programmable diagnosis service may
execute an interface status rule if there is an association between a VPN instance to an interface
mstance. “VPN1” shown in model 800 is such a VPN instance. In the case of model 800,
model update 606 may decorate device events will be with “vpn1 instance” information. In
the case of the events shown in FIG. 8 (namely, d1:ge-0/0/3 down, d2:VRF2 packet loss),
model update 606 adds model information as below:

e Event(id=d1:ge-0/0/3, type=INTERFACE DOWN_referrers=[vpn:vpnl])

e Event(id=d2: VRF2, type=VRF PACKET LOSS, referrers=[vpn:vpnl])

29

PATENT
REEL: 063633 FRAME: 0731

Docket No.: 2014-187US02/JNP3193-US-CON

In turn, inference engine 226 operates on the event stream processed according to the network
model with upstream dependencies (to the VPN1 instance in the case of FIG. 8).
[0082] Programmable diagnosis service 224 constructs a diagnosis dependency model that
captures cause-and-effect relationships across various resources in a device group of network
102. Programmable diagnosis service 224 may include various types of cause-and-effect
relationships in the diagnosis dependency model, such as cause-and-effect relationships
between resources and/or cause-and-effect relationships between resource alarms/events. If a
cause-and-effect relationship is between resources, any critical alarm/event on a resource can
cause an effect on “supported resources™. That is, a user may provide, as part of programming
imput 310, a dependency definition linking an event on one resource to a causal event on
another resource. If a cause-and-effect relationship is between resource alarms/events, an
event detected on a resource can cause an effect on a supported resource event.
[0083] Dependency and contains edges introduce cause-and-effect relationships between the
resources in the diagnosis dependency model. Dependencies between resource alarms are
shown in the code below:
rw dependency* [dependent-resource-name|

+--rw resource-name -> ../../resource-key

+--rw description? string

+--rw rules* [rule-name]

| +--rw rule-name string

| +--rw fields* [rule-field resource-field]

| | +--rw rule-field string

| | +--rw resource-field string

| +--rw triggers* [trigger-state resource-state]

\ +--rw trigger-state string

\ +--rw resource-state string

+ --rw dependency* [cause effect]

+--rw cause string

+--rw effect string
[0084] Inference engine 226 represents an expert system that can be described as a form of

finite state machine with a cycle consisting of three action states. The three action states are

30

PATENT
REEL: 063633 FRAME: 0732

Docket No.: 2014-187US02/JNP3193-US-CON

EE AT

“match rules,” “select rules,” and “execute rules.” Inference engine 226 may apply rules on
set of facts that are active in memory. Inference engine 226 may requires facts upon which to
operate. Inference engine 226 runs a fact model that captures network event information. The
fact model is denoted by:
class Event {

string 1id;

string type:

String refferList;

h

[0085] As described above, programmable diagnosis service 224 generates temporally based
inference rules by applying temporal metadata 308. That is, inference engine 226 applies
temporal metadata 308 to generate all of the inference rules stored to inference database 218
with temporal constraints. The techniques of this disclosure are based on a realization that
temporal relations are important in handling relationships between network events. Without
applying temporal constraints, event correlation may include inaccuracies because of the time
clapsed being events being disregarded. Because timing information for events are relative to
each other, a purely date/time representation without relative timing deltas may be insufficient
with respect to applying temporal constraints to improve the accuracy of RCA. Two example
temporal operators are “before” and “after” operators. For instance, in the example of model
800, the “ge-0/0/3 interface down” event happened before the VRF1 packet loss event.
[0086] Based on the dependency model created for resources of network 102, inference engine
226 auto-generates inference rules to be stored to inference database 218. Inference engine
226 uses a rule template that accepts, as input, the cause-and-effect dependencies (defined in
the network resource model) and generates the inference rules based on these cause-and-effect
dependencies. Inference engine 226 generates the templates to account for causal and
consequent events to be detected in any order, such as the consequent event being detected
after the causal event (expected), or the consequent (“target”) event being detected before the
causal event (unexpected). In some examples, the causal event may be detected after the target
event because of latency or other system constraints. For instance, an interface down event
may cause VPN packet loss, but the packet loss may be detected before or after the interface

down event is detected, in different use case scenarios. Inference engine 226 may generate the

31

PATENT
REEL: 063633 FRAME: 0733

Docket No.: 2014-187US02/JNP3193-US-CON

rule template to accommodate both scenarios. Inference engine 226 may assign a different
inference rule to each of'these scenarios. Rule template generation is shown by way of example
in the code below, in which X are template

variables:

declare Event

(@expires(7d)
End

rule ‘Dependency Rule — if cause event occurs before effect in stream’
when
Seffect event: Event(type==)
$cause : Event(this before[0, 7d] $effect event, type==)
Seffect: Event(id == S$effect event.getld(), S$Scause.get RefferList () contains
$effect event.getld())
then
Inference $inference = Inference();
Sinference.setCause($cause. getld());
Sinference.updateEffects($effect. getld()):
TreeNode<String> root = new TreeNode<String>($cause.getld()):
root.name = $cause.getType();
TreeNode<String> child = root.addChild($effect.getld());
child.name = $effect.getType();
Sinference.setHierarchy(root);
insert($inference);

end

rule ‘Dependency Rule — if target event occurs before cause in stream’
when
$cause _event: Event(type==)

Seffect : Event(this before[0, 7d] $cause event, type==)

32

PATENT
REEL: 063633 FRAME: 0734

Docket No.: 2014-187US02/JNP3193-US-CON

$cause: Event(id==Scause event.getld(), S$cause event.getBackrefs() contains
$effect.getld())

then
Inference Sinference = Inference();
Sinference.setCause($cause. getld());
Sinference.updateEffects($effect. getld());
TreeNode<String> root = new TreeNode<String>($cause.getld()):
root.name = Scause.get Type();
TreeNode<String> child = root.addChild($effect.getld());
child.name = $effect.getType();
Sinference.setHierarchy(root);
insert($inference),

end

[0087] Programmable diagnosis service 224 performs RCA based on inferences through
forward chaining, in accordance with the techniques of this disclosure. Asused herein, forward
chaining is the logical process of inferring unknown truths from known data, and moving
forward using determined conditions and rules to identify a solution. A generic example, based
on transitive properties can be stated as “if “a’ causes ‘b’ and ‘b’ causes ‘c’, then ‘a’ is the root

R

cause of ‘¢’ As part of inference formation, programmable diagnosis service 224: (1) merges
the causes and effects and causes based on the generated inferences to form one or more
inference rules; and (ii) generates an RCA tree (which can be represented as a graph of related
events) as part of a chaining process.

[0088] Inference engine 226 may persist the RCA tree in event cache 614 (or another event
DB) for further event analysis. Inference engine 226 generates an inference model that
captures the inferred information from the events stored to event cache 614. The inference
model contains causes and a list of effects. An “inference” class declaration (including a list
of effects) is presented below:

class Inference {

string cause;

list<string> effects;

33

PATENT
REEL: 063633 FRAME: 0735

Docket No.: 2014-187US02/JNP3193-US-CON

3

[0089] Examples of forward-chaining rules are presented in the code below:
rule "Inference rules — cause occurs before effect”
when
Sinferencel: Inference()
$inference2: Inference(this before[0, 7d] S$inferencel, this.getEffects() contains
Sinferencel.getCause())
then
$inference2.updateEffects($Sinference 1. getEffects());
$inference2.mergeHierarchies($inferencel.getHierarchy());
update(Sinference2);
retract(Sinferencel);
end
rule "Inference rules — effect occurs before cause"
no-loop
when
Sinferencel: Inference()
$inference2: Inference(this before[0, 7d] S$inferencel , S$inferencel.getEffects()
contains this.getCause())
then
$inference 1.updateEffects($Sinference2. getEffects());
$inference 1.mergeHierarchies($inference2.getHierarchy());
update(Sinferencel);
retract(Sinference2);

end

rule "Inference rule — merge inferences with same cause"
no-loop
when

Sinferencel: Inference()

34

PATENT
REEL: 063633 FRAME: 0736

Docket No.: 2014-187US02/JNP3193-US-CON

$inference2: Inference(this before[1ms, 7d] $inferencel , $inferencel.getCause() ==

this. getCause(), this.getEffects() != Sinferencel.getEffects())
then

Sinferencel.updateEffects(Sinference2. getEffects());

$inference 1.mergeHierarchies($inference2.getHierarchy());

update(Sinferencel),

retract(Sinference2);
end
[0090] An example use case of the third (merging) rule is in the case of an interface down
event, which may cause VPN packet loss (over potentially numerous VPNs) as well as
customer latency and/or customer connectivity failures. The interface down event may be a
direct parent of both consequent events, or may be an ancestor event via the transitive property
of fault causality. Inference engine 226 may clearing one or more inferences upon clearing
one or more corresponding events from event cache 614. Upon clearing an event from event
cache 614, inference engine 226 may (i) delete, from inference database 218, all facts and
inferences related to the cleared event; and (i1) reactivate all correlated events which were part
of the deleted inference to create new inferences. Code denoting three different rules relating

to inference clearing are presented below:

rule "Re-Inference Rule 1"
salience 10000
when
Scleared event: Event(clear==true)
Sinference: Inference(cause==%$cleared event.getld())
$events : List()
from collect(Event(id memberOf Sinference. getEffects()))
then
retract($inference);
retract($cleared_event),
for(int1=0; i < $Sevents.size(); i++) {

Event Sevent = (Event)Sevents. get(i);

35

PATENT
REEL: 063633 FRAME: 0737

Docket No.: 2014-187US02/JNP3193-US-CON

Sevent.updateClear(false);
update($event);

end

rule "Re-Inference Rule 2"
salience 10000
when
$cleared event: Event(clear==true)
Sinference: Inference(effects contains $cleared event.getld())
$events : ArrayList()
from collect(Event(id memberOf Sinference.getEftects(), id !=
$cleared_event.getld()))
$event inf cause : Event(id==S8inference. getCause())
then
Sevents.add($event inf cause);
retract(S$inference);
retract($cleared_event),
for(inti = 0; i < Sevents.size(); i++) {
Event Sevent = (Event)Sevents. get(i);
Sevent.updateClear(false);
h

end

rule "Re-Inference Rule 3 -- Clear fact without inference"
salience 5000
when
Scleared event: Event(clear==true)
then
retract($cleared_event),

end

36

PATENT
REEL: 063633 FRAME: 0738

Docket No.: 2014-187US02/JNP3193-US-CON

[0091] Smart event generator 610 correlates events and identifies root cause events as part of
the forward chaining inference-drawing process. Smart event generator 610 generates a smart
event per root cause event along with a set of impacted events. Smart event generator 610
persists the smart event in an analytical databases (e.g., alerts/events database 616) to enable a
user to initiate further actions, such as one or more of remediation actions 62().

[0092] FIG. 9 is a conceptual diagram illustrating instance dependencies 900 that
programmable diagnosis service 224 may process in accordance with aspects of this disclosure.
In the example shown in FIG. 9, inference engine creates a smart event with MPC-Slot 904A
of MPC-Slots 904 as the root cause event. Impacted events include all of PFEs 904, all of
Gigabit Ethernet® (ET) interfaces 906, all of label-switched paths (I.SPs) 908, a subset of
external Border Gateway Protocol (¢BGP) services 912, a subset of VRFs 914, and a subset of
customer edge device (CE) latencies 916. Programmable diagnosis service 224 may group all
of the events occurring downstream of MPC-slots 904, and identify the failure of MPC-Slot
904 A as the root cause (direct or transitive, as the case may be) of all of these downstream
events.

[0093] FIG. 10 is a flowchart illustrating process 950 that controller device 110 may perform
to monitoring a device group of network 102, in accordance with aspects of this disclosure.
Process 950 may begin with programmable diagnosis service 224 (which runs on controller
device 110 that manages the device group of network 102) receiving programming input 310
(952). In turn, programmable diagnosis service 224 may form any of resource definition
graphs 402 that models interdependencies between a resources supported by the device group
of network 102 that is managed by controller device 110, based on programming input 310
(954).

[0094] Programmable diagnosis service 224 may detect an event affecting a first resource of
the resources supported by the device group managed by controller device 110 (956). In turn,
programmable diagnosis service 224 may identify a root cause event that caused the event
affecting first resource based on the interdependencies modeled in the respective resource
definition graph 402 formed previously (958). Programmable diagnosis service may identify
the root cause event as occurring at a second resource of the resources supported by the device

group managed by controller device 110.

37

PATENT
REEL: 063633 FRAME: 0739

Docket No.: 2014-187US02/JNP3193-US-CON

[0095] In some examples, to identify the root cause event that caused the event affecting the
first resource comprises, programmable diagnosis service 224 may apply the respective
resource definition graph 402 to at least a subset of the supported resources to generate one or
more inference rules with respect to the supported resources, and may perform a forward-
chained RCA by applying the one or more inference rules to events detected over the supported
resources. In some examples, programmable diagnosis service 224 may initialize one or more
telemetry rules that enable controller device 110 to monitor state information for one or more
components of the device group and/or to instigate one or more alarms in response to detecting
threshold events occurring within the supported resources. In some examples, to initialize the
one or more telemetry rules, programmable diagnosis service 224 may configure first cause-
and-effect relationships between device resources supported by the device group and second
cause-and-effect relationships between service resources supported by the device group based
on the programming input.

[0096] In some examples, to form the resource definition graph that models the
interdependencies between the resources supported by the device group, programmable
diagnosis service 224 may apply one or more temporal constraints to the modeled
interdependencies. In some examples, the one or more temporal constraints include a
constraint according to which the event affecting the first resource occurs after the root cause
event occurring at the second resource. In some examples, the one or more temporal constraints
include a constraint according to which the event affecting the first resource occurs before the
root cause event occurring at the second resource. In some examples, the supported resources
include one or more network resources, and programmable diagnosis service 224 may
configure at least a subset of the one or more network resources.

[0097] In some examples, the supported resources include one or more service resource
models, and programmable diagnosis service 224 may configure at least a subset of the one or
more service resources. In some examples, the supported resources include one or more device
resource models, and programmable diagnosis service 224 may configure at least a subset of
the one or more device resources.

[0098] The techniques described in this disclosure may be implemented, at least in part,
hardware, software, firmware or any combination thereof. For example, various aspects of the

described techniques may be implemented within one or more processors, including one or

38

PATENT
REEL: 063633 FRAME: 0740

Docket No.: 2014-187US02/JNP3193-US-CON

more microprocessors, digital signal processors (DSPs), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), fixed-function circuitry, programmable
circuitry, or any other equivalent integrated or discrete logic circuitry, as well as any
combination of such components. The term “processor” or “processing circuitry” may
generally refer to any of the foregoing logic circuitry, alone or in combination with other logic
circuitry, or any other equivalent circuitry. A control unit comprising hardware may also
perform one or more of the techniques of this disclosure.

[0099] Such hardware, software, and firmware may be implemented within the same device
or within separate devices to support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or components may be
implemented together or separately as discrete but interoperable logic devices. Depiction of
different features as modules or units is intended to highlight different functional aspects and
does not necessarily imply that such modules or units must be realized by separate hardware
or software components. Rather, functionality associated with one or more modules or units
may be performed by separate hardware or software components, or integrated within common
or separate hardware or software components.

[0100] The techniques described in this disclosure may also be embodied or encoded in a
computer-readable medium, such as a computer-readable storage medium, containing
instructions. Instructions embedded or encoded in a computer-readable medium may cause a
programmable processor, or other processor, to perform the method, e.g., when the instructions
are executed. Computer-readable media may include non-transitory computer-readable
storage media and transient communication media. Computer readable storage media, which
is tangible and non-transitory, may include random access memory (RAM), read only memory
(ROM), programmable read only memory (PROM), erasable programmable read only memory
(EPROM), electronically erasable programmable read only memory (EEPROM), flash
memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic media, optical media, or
other computer-readable storage media. The term “computer-readable storage media™ refers
to physical storage media, and not signals, carrier waves, or other transient media.

[0101] Various examples have been described. These and other examples are within the scope

of the following claims.

39

PATENT
REEL: 063633 FRAME: 0741

Docket No.: 2014-187US02/JNP3193-US-CON

WHAT IS CLAIMED IS:

1. A method of monitoring a device group of a network, the method comprising:

forming, by a programmable diagnosis service running on a controller device that
manages the device group, a resource definition graph that models interdependencies
between a plurality of resources supported by the device group;

configuring, by the programmable diagnosis service, first cause-and-effect
relationships between device resources supported by the device group, and second cause-and-
effect relationships between service resources supported by the device group;

detecting, by the programmable diagnosis service, using a detected packet loss
between two or more of the devices of the device group, an event affecting a first resource of
the plurality of resources; and

identifying, by the programmable diagnosis service, based on the interdependencies
modeled in the resource definition graph, the first cause-and-effect relationships, and the
second cause-and-effect relationships, a root cause event that caused the event affecting the
first resource, the root cause event occurring at a second resource of the plurality of

resources.

2. The method of claim 1, wherein identifying the root cause event that caused the event
affecting the first resource comprises:

applying, by the programmable diagnosis service, the resource definition graph to at
least a subset of the plurality of resources to generate one or more inference rules with
respect to the plurality of resources; and

performing, by the programmable diagnosis service, a forward-chained root cause
analysis (RCA) by applying the one or more inference rules to a plurality of events detected

over the plurality of resources.

40

PATENT
REEL: 063633 FRAME: 0742

Docket No.: 2014-187US02/JNP3193-US-CON

3. The method of claim 1, further comprising:
initializing, by the programmable diagnosis service, one or more telemetry rules that
enable the controller device to perform one or more of:
monitoring state information for one or more components of the device group;
or
instigating one or more alarms in response to detecting threshold events

occurring within the plurality of resources.

4. The method of claim 3, wherein initializing the one or more telemetry rules comprises
configuring, by the programmable diagnosis service, based on the programming input, first
cause-and-effect relationships between device resources supported by the device group, and

second cause-and-effect relationships between service resources supported by the device

group.

5. The method of claim 1, wherein forming the resource definition graph that models the
interdependencies between the plurality of resources supported by the device group
comprises applying, by the programmable diagnosis service, one or more temporal

constraints to the modeled interdependencies.

6. The method of claim 5, wherein the one or more temporal constraints include a
constraint according to which the event affecting the first resource occurs after the root cause

event occurring at the second resource.

7. The method of claim 5, wherein the one or more temporal constraints include a
constraint according to which the event affecting the first resource occurs before the root

cause event occurring at the second resource.

8. The method of claim 1, wherein the plurality of resources comprises one or more
network resources, the method further comprising configuring, by the programmable

diagnosis service, at least a subset of the one or more network resources.

41

PATENT
REEL: 063633 FRAME: 0743

Docket No.: 2014-187US02/JNP3193-US-CON

9. The method of claim 1, wherein the plurality of resources comprises one or more
service resource models, the method further comprising configuring, by the programmable

diagnosis service, at least a subset of the one or more service resources.

10. The method of claim 1, wherein the plurality of resources comprises one or more
device resource models, the method further comprising configuring, by the programmable

diagnosis service, at least a subset of the one or more device resources.

11. A controller system for managing a device group of a network, the controller system
comprising:
a network interface;
a memory; and
processing circuitry in communication with the memory, the processing circuitry
being configured to:
form, using a programmable diagnosis service executed by the processing
circuitry, a resource definition graph that models interdependencies between a
plurality of resources supported by the device group;
configure, using the programmable diagnosis service, first cause-and-effect
relationships between device resources supported by the device group, and second
cause-and-effect relationships between service resources supported by the device
group;
detect, using the programmable diagnosis service and a detected packet loss
between two or more of the devices of the device group, an event affecting a first
resource of the plurality of resources; and
identify, using the programmable diagnosis service, based on the
interdependencies modeled in the resource definition graph, the first cause-and-effect
relationships, and the second cause-and-effect relationships, a root cause event that
caused the event affecting the first resource, the root cause event occurring at a

second resource of the plurality of resources.

42

PATENT
REEL: 063633 FRAME: 0744

Docket No.: 2014-187US02/JNP3193-US-CON

12. The controller system of claim 11, wherein to identify the root cause event that
caused the event affecting the first resource, the processing circuitry is configured to:

apply, using the programmable diagnosis service, the resource definition graph to at
least a subset of the plurality of resources to generate one or more inference rules with
respect to the plurality of resources; and

perform, using the programmable diagnosis service, a forward-chained root cause
analysis (RCA) by applying the one or more inference rules to a plurality of events detected

over the plurality of resources.

13. The controller device of claim 11, wherein the processing circuitry is further
configured to:
initialize, using the programmable diagnosis service, one or more telemetry rules that
enable the controller device to perform one or more of:
monitor state information for one or more components of the device group; or
instigate one or more alarms in response to detecting threshold events

occurring within the plurality of resources.

14. The controller device of claim 13, wherein to initialize the one or more telemetry
rules, the processing circuitry is configured to use the programmable diagnosis service to
configure, based on the programming input, first cause-and-effect relationships between
device resources supported by the device group, and second cause-and-effect relationships

between service resources supported by the device group.

15. The controller device of claim 11, wherein to form the resource definition graph that
models the interdependencies between the plurality of resources supported by the device
group, the processing circuitry is configured to apply, using the programmable diagnosis

service, one or more temporal constraints to the modeled interdependencies.

16. The controller device of claim 15, wherein the one or more temporal constraints
include a constraint according to which the event affecting the first resource occurs after the

root cause event occurring at the second resource.

43

PATENT
REEL: 063633 FRAME: 0745

Docket No.: 2014-187US02/JNP3193-US-CON

17. The controller device of claim 15, wherein the one or more temporal constraints
include a constraint according to which the event affecting the first resource occurs before

the root cause event occurring at the second resource.

18. The controller device of claim 11, wherein the plurality of resources comprises one or
more network resources, and wherein the processing circuitry is further configured to use the
programmable diagnosis service to configure at least a subset of the one or more network

resources.

19. The controller device of claim 11, wherein the plurality of resources comprises one or
more service resource models, and wherein the processing circuitry is further configured to
use the programmable diagnosis service to configure at least a subset of the one or more

Service resources.

20. The controller device of claim 11, wherein the plurality of resources comprises one or
more device resource models, and wherein the processing circuitry is further configured to
use the programmable diagnosis service to configure at least a subset of the one or more

device resources.

44

PATENT
REEL: 063633 FRAME: 0746

Docket No.: 2014-187US02/JNP3193-US-CON

21. A non-transitory computer-readable medium encoded with instructions that, when
executed, cause processing circuitry of a controller device for managing a device group of a
network to:
form, using a programmable diagnosis service executed by the processing
circuitry, a resource definition graph that models interdependencies between a
plurality of resources supported by the device group;
configure, using the programmable diagnosis service, first cause-and-effect
relationships between device resources supported by the device group, and second
cause-and-effect relationships between service resources supported by the device
group;
detect, using the programmable diagnosis service and a detected packet loss
between two or more of the devices of the device group, an event affecting a first
resource of the plurality of resources; and
identify, using the programmable diagnosis service, based on the
interdependencies modeled in the resource definition graph, the first cause-and-effect
relationships, and the second cause-and-effect relationships, a root cause event that
caused the event affecting the first resource, the root cause event occurring at a

second resource of the plurality of resources.

45

PATENT
REEL: 063633 FRAME: 0747

Docket No.: 2014-187US02/JNP3193-US-CON

ABSTRACT

Network management techniques are described. A controller device of this disclosure
manages a device group of a network. The controller device includes processing circuitry in
communication with the memory, the processing circuitry being configured to receive, using
a programmable diagnosis service executed by the processing circuitry, a programming
input, to form, using the programmable diagnosis service, based on the programming input, a
resource definition graph that models interdependencies between a plurality of resources
supported by the device group, to detect, using the programmable diagnosis service, an event
affecting a first resource of the plurality of resources, and to identify, using the
programmable diagnosis service, based on the interdependencies modeled in the resource
definition graph formed based on the programming input, a root cause event that caused the
event affecting the first resource, the root cause event occurring at a second resource of the

plurality of resources.

46

PATENT
REEL: 063633 FRAME: 0748

SHEET 10F 8

PUBLIC
NETWORK
118

CONTROLLER
DEVICE
110

ADMINISTRATORS
112

.

\.

FIG. 1

PATENT
REEL: 063633 FRAME: 0749

¢ Old

SHEET 20F 8

vic
3qsvaviva
NOLLYANOIANOD

81T
3svavivd
ERENEEN]

— 0l¢
F0¢
JOVANALNI e J1NAOW
MMOMLIN JOVH4NILNI
MYOMLIN
\ 2 | 2K 2 Q
» > T2e o1
¢ IDIAN3AS
37NAON SISON®VIA
> NOILYINDIINOD MYOMLIN -
_‘ J19VINNVEDOONd
1 2
— 802
90¢
JOV4NIALNI |« m_wwm_m_mﬂ,_z_ 91¢ 0¢¢
¥3sn yasn asvaviva Jsvaviva
713a0on A¥MLIWIIAL
F Y

F4114
LINN TOYLNOD

ol
JIIA3A 43TT0HLNOD

PATENT
REEL: 063633 FRAME: 0750

SHEET 30F 8

PROGRAMMABLE DIAGNOSIS MODEL

300
NETWORK D'&%’B‘gf's
RESOURCE [9
MODEL(S) 304
302 T~

TELEMETRY
RULES
306

TEMPORAL
METADATA
308

FORWARD-CHAINED

PROGRAMMING INPUT RCA OQUTPUT
310 312
RESOURCE DEFINITION GRAPH RESOURCE DEFINITION GRAPH
402A 4028
® [] L [
[} [} [} [}
PLAYBOOK PLAYBOOK PLAYBOOK PLAYBOOK PLAYBOOK
404A-A 404A-B 404B-A 404B-B 404C-A
|
|
|
PLAYBOOK
FIG 4 404D-A
PATENT

REEL: 063633 FRAME: 0751

SHEET 4 0F 8

Traffic
Errors
Opstate
Is-working

RESOURCE DEFINITION GRAPH 402A
P

.ADDRESS
208

BGP
SESSION
212

IFD 202

MTU 506

Interface rule

Fields
Traffic
Errors
Opstate

Trigger
Is-working

FIG. 5
PATENT
REEL: 063633 FRAME: 0752

SHEET 50F 8

9 'Old

029 919 729
(SINOILOVY €4 IN3JAd aq
"aanay S1d3v 575 + AMIAODSIA IDUNOS3Y
7 S2IONIANIAIA TIAOW 1300W v__moaﬁmz
L SISONDVIA ¥YOMLIN —
810 A _
LINA AYLINTTTL _ _
_
_
_ ZIo
_ IHOVD 13AOW
_
_
—————————————— _
_
|
Crid « | 019 s 509
ANIONT 3ONIHIANI HOLVHINID LNIAT LHVINS mu y3avol 13aon

¥19

¥2¢ 0INY3AS SISONDVIA YHOMLIN F1aVINNVIOON

JHOVD LN3IAL

009 ¢09 SWHVTV

Q
O

PATENT
REEL: 063633 FRAME: 0753

SHEET 6 OF 8

-~
o
o

704

708

LOGICAL
INTERFACE

CONTAINS EDGE CONTAINS EDGE

INTERFACE

DEVICE

DEPENDENCY
EDGE

CONTAINS EDGE

706

FIG. 7

sl
=
o

d1:ge-0/0/3

d2:ge-0/0/1

FIG. 8
PATENT

REEL: 063633 FRAME: 0754

SHEET 7 OF 8

ZL6
S32IA19S dO g9

916
salouaje 39 506

} saoeuaul 13
o

> O}

@
@
@
=
806
SdST

006
S3IONIAN3Id3A JONVLSNI

6 'Old

acoe
101S-0dIA

0¢06
1071S-0dN

g¢06
101S-0dIN

Vo6
1071S-0dIW

PATENT
REEL: 063633 FRAME: 0755

SHEET 8OF 8

50

RECEIVE PROGRAMMING INFPUT BY PROGRAMMABLE
DIAGNOSIS SERVICE RUNNING ON CONTROLLER
DEVICE

952

Y

FORM RESOURCE DEFINITION GRAPH MODELING
INTERDEPENDENCIES BETWEEN RESOURCES
SUPPORTED BY DEVICE GRCUP MANAGED BY

CONTROLLER DEVICE 95

h 4

DETECT EVENT AFFECTING FIRST RESOURCE OF
RESOURCES SUPPORTED BY DEVICE GROUP 956

h 4

BASED ON MODELED INTERDEPENDENCIES, IDENTIFY
ROOT CAUSE EVENT THAT CAUSED EVENT
AFFECTING FIRST RESOURCE

28

FIG. 10
PATENT
RECORDED: 05/12/2023 REEL: 063633 FRAME: 0756

