507937595

06/01/2023

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

EPAS ID: PAT7984726

SUBMISSION TYPE:

NEW ASSIGNMENT

NATURE OF CONVEYANCE:

CONFIRMATORY ASSIGNMENT

CONVEYING PARTY DATA

Name

Execution Date

MICHAEL T. PIECUCH

05/25/2023

RECEIVING PARTY DATA

Name: 128 TECHNOLOGY, INC.
Street Address: 200 SUMMIT DRIVE
City: BURLINGTON
State/Country: MASSACHUSETTS
Postal Code: 01803

PROPERTY NUMBERS Total: 1

Property Type

Number

Patent Number:

10009282

CORRESPONDENCE DATA
Fax Number:

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 4:

(651)735-1102

6517351100
pairdocketing@ssiplaw.com

SHUMAKER & SIEFFERT P. A.
1625 RADIO DRIVE, SUITE 100
WOODBURY, MINNESOTA 55125

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

ATTORNEY DOCKET NUMBER:

2014-348US01

NAME OF SUBMITTER:

JULIA A. EHRREICH

SIGNATURE:

/Julia A. Ehrreich/

DATE SIGNED:

06/01/2023

Total Attachments: 61

source=Confirmatory Assignments in re_ JNA0155-US

2014-348US01

- signed#page1.tif

507937595

()
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page?2.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page3.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page4.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page5.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page6.tif
PATENT

REEL: 063822 FRAME: 0534

source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page? .tif

source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page8.tif

source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page9.tif

source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page10.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page11.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page12.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page13.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page14.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page15.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page16.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page17 tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page18.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page19.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page20.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page21 .tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page22.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page23.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page24 tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page?25.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page26.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page27 .tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page28.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page29.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page30.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page31 .tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page32.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page33.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page34.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page35.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page36.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page37 tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page38.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page39.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page40.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page41 .tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page42.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page43.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page44 tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page45.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page46.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page47 tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page48.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page49.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page50.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page51 .tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page52.if
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page53.tif
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01) - signed#page54 tif

PATENT

REEL: 063822 FRAME: 0535

source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)
source=Confirmatory Assignments in re_ JNA0155-US (2014-348US01)

- signed#page58.tif

signed#page55.tif
signed#page56.tif
signed#page57 .tif

signed#page5b9.tif
signed#page60.tif
signed#page61 .tif

PATENT
REEL: 063822 FRAME: 0536

CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to 128
Technology, Inc., having a place of business at 200 Summit Drive, Burlington, MA 01803,
United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER”) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
U.S.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 US.C. § 371
(“APPLICATION”):

Application No. 15/174,610, entitled “SELF-PROTECTING COMPUTER
NETWORK ROUTER WITH QUEUE RESOURCE MANAGER?” filed
on June 06, 2016.

2. The entire worldwide right, title, and interest in and to:

(a) the APPLICATION; (b) all applications claiming priority from the APPLICATION,
(c) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (c) above; and (e) all right of
priority in the APPLICATION and in any underlying provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

3. The entire worldwide right, title, and interest in and to (including all
claims of):

U.S. Patent No. 10,009,282 issued June 26, 2018, which is included as an
Appendix to this Assignment.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawful
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,
assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not

Attorney Docket No.: 201434880 1 PATENT
REEL: 063822 FRAME: 0537

Date Filed: .
Application No.: 1%

hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,
titles, and interests herein conveyed.

INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature Date of Signature
Heitaed 7 Friceck May 25,2023

Michael T. Piecuch

Attorney Docket No.: 214 2 PATENT

REEL: 063822 FRAME: 0538

ied,
frs
s,
P
i5a8

7o

P

g
Q
—
o
[
=
)

]
Z
=]
3
]
2
g
<

APPENDIX

PATENT
063822 FRAME

Attorney Docket No.:

0539

REEL

United States Patent

US010009282B2

(12) a0y Patent No.: US 10,009,282 B2
Piecuch 45) Date of Patent: Jun. 26, 2018
(54) SELF-PROTECTING COMPUTER g,;g‘l‘,g;l‘ E} 46‘;%8843‘ Eodiﬁlam et al.
sl 2 etcham
NETWORK ROUTER WITH QUEUE 6,738,387 Bl 5/2004 Lin et al.
RESOURCE MANAGER 6,778,531 Bl 8/2004 Kodialam et al.
6,798,743 Bl 9/2004 Maetal ..o 370/235
(71) Applicant: 128 Technology, Inc., Burlington, MA 7,020,143 B2 3/2006 Zdan 370/395.21
(US) 7,035,214 Bl 4/2006 Seddigh et al.
7,106,739 B2 9/2006 Beier
7,154,902 Bl 12/2006 Sikd
(72) TInventor: Michael T. Piecuch, Hudson, NH (US) 7:2 18:632 Bl 52007 Blechéﬁ)lsheim ot al.
7,315,541 B1 1/2008 Housel et al.
(73) Assignee: 128 Technology, Inc., Burlington, MA 7,373,660 Bl 5/2008 Guichard et al.
(us) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 ,
CN 101552703 A 10/2009
US.C. 154(b) by 89 days. CN 101646220 A 212010
(21) Appl. No.: 15/174,610 (Continued)
(22) Filed: Jun. 6, 2016 OTHER PUBLICATIONS
(65) Prior Publication Data Berners-Lee et al., Uniform Resource Identifier (URI): Generic
Syntax, Network Working Group, Request for Comments 3986, The
US 2017/0353391 Al Dec. 7, 2017 Internet Society, 61 pages, Jan. 2005.
(51) Int. Cl (Continued)
HO4L 12/56 (2006.01) Primary Examiner — Wei Zhao
HO4L 12/873 (2013.01) 74) Attorney, Agent, or Firm — Sunstein Kann Murph
Y, Ag urphy
HO4L 1224 (2006.01) & Timbers LLP
(52) US.CL
CPC HO4L 47/522 (2013.01); HO4L 41/06 (57) ABSTRACT
(2013.01) A self-protecting router limits the extent to which its queues
. . . P g q
(58) Ficld of Classification $carch)) can be filled with potentially malicious or otherwise harmful
CPC HO4L, 47/522; HQ4L 41/06; H04L 12/26; messages received from outside the router, thereby ensuring
g Licati goiL 12/5 6’1 1304‘1 1/ lh6i1'Ht04J 3/14 the queues have sufficient room to accept messages gener-
¢ application hiie lor complete search fustory. ated internally within the router and are necessary for
(56) References Cited management and operation of the router. Such routers are,

U.S. PATENT DOCUMENTS

6,515,963 Bl
6,563,824 Bl

2/2003 Bechtolsheim et al.
5/2003 Bhatia et al.

Source
Client }——

28 130
1111

Router

therefore, immune to attack by floods of messages from
malicious or malfunctioning network nodes, such as com-
puters, switches and other routers.

27 Claims, 30 Drawing Sheets

Desiination
Service

128

Router

32

5555

PATENT

REEL: 063822 FRAME: 0540

US 10,009,282 B2

Page 2
(56) References Cited WO WO 2007/084755 A2 7/2007
WO WO 2008/043230 Al 4/2008
U.S. PATENT DOCUMENTS WO WO 2015/131537 Al 9/2015
7,466,703 Bl 12/2008 Arunachalam et al.
7,536,720 B2 5/2009 Burdett et al. OTHER PUBLICATIONS
7,634,805 B2 12/2009 Aroya . .
7706411 B2 4/2010 Walzlumoto ot al. Bjorklund, Yang—A Data Modeling Language for the Network
7,730,301 B2 6/2010 Correll et al. Configuration Protocol (NETCONF), Internet Engineering Task
7,773,611 B2 8/2010 Booth, III et al. Force (IETF), Request for Comments 6020, ISSN: 2070-1721, 173
7,872,973 B2 1/2011 Sterne et al. 370/235
pages, Oct. 2010.
8,068,417 B1 11/2011 Roberts CAIDA. Observi . in I
8,094,560 B2 1/2012 Bagepalli et al. i , serving routing as;I;mmetry in Internet traffic, (Www.
8,139,479 BI 3/2012 Raszuk caida.org/research/traffic-analysis/asymmetry/1), 7 pages, dated Jul.
REA44,119 E 4/2013 Wang et al. 370/230 17, 2013.
8,437,248 B2 5/2013 Li et al. Chiosi, et al, Network Functions Virtualisation—lIntroductory White
8,527,641 B2 9/2013 Degaonkar et al. Paper, Issue 1, at the “SDN and OpenFlow World Congress”,
8,570,893 B2 1072013 Guo et al. Darmstadt-Germany, (http://portal.etsi.org/nfv/nfv_white_paper),
8,584,199 B1 11/2013 Chen et al.
8634478 B2 12014 Le P 1 16 pages, dated Oct. 22, 2012.
Deg ¢ Pennec et al. Cisco Systems, Parallel Express Forwarding on the Cisco 10000
8,804,489 B2 8/2014 Lu et al. ; . . .
8.042.085 Bl 1/2015 Pani et al. Series, (White Paper) Cisco Systems, printed Jun. 17, 2015, 4 pages.
8’989’020 B2 3/2015 So Data Plane Development Kit, Programmer’s Guide, Release 16.04.
9,059,920 B2 6/2015 Ravindran et al. 0, 216 pages, Apr. 12, 2016.
9,160,652 B2 10/2015 Taillon et al. Davis, Layer 3 Switches Explained, Happy Router, 6 pages, dated
9,240,953 B2 1/2016 Carlstrom HO04L 47/6295 Aug. 30, 2007.
9,276,864 Bl 3/2016 Vincent HO041. 47/25 Filsfils et al., Segment Routing Architecture, Network Working
2001/0030649 Al 10/2001 Mamiya et al. Grroup, Draft, 28 pages, Oct. 21, 2013.
2002/0044553 Al 4/2002 Chakravorty Hansson, et al., 4 Unified Approach to Constrained Mapping and
2002/0075883 Al 6/2002 Dell_ et al . Routing on Network-on-Chip Architectures, CODES+ISSS 05 Pro-
2002/0176363 Al 112002 Durinovic-Johri et al. ceedings of the 3rd IEEE/ACM/IFIP International Conference on
2003/0198189 Al 10/2003 Roberts et al. Hardware/Software Codesign and System Synthesis, 6 pages, Sep
2003/0214938 A1 11/2003 Jindal et al. 19-21. 2005 ’ ’ ’
2004/0088542 Al 5/2004 Daude et al. .) . . .
2004/0264481 Al 12/2004 Darling et al. Herbert, xps. Transmit Packet Steering, Eklektix, Inc., Oct. 26,
2005/0018618 Al 1/2005 Mualem et al. 2010, 11 pages.
2005/0036616 Al 2/2005 Huang et al. IANA, Transmission Control Protocol (TCP) Parameters, (WWw.
2005/0063307 Al 3/2005 Samuels et al. iana.org/assignments/tcp-parameters/tcp-parameters.xhtm), 5
2005/0182932 Al 8/2005 Wheeler pages, dated Sep. 22, 2014.
2005/0213570 Al 9/2005 Stacy et al. Katz et al., Bidirectional Forwarding Detection (BFD), Internet
2005/0238022 Al 10/2005 Panigrahy Engineering Task Force (IETF), Request for Comments 5880,
2006/0176894 Al 82006 Oh et al. ISSN: 2070-1721, Juniper Networks, 49 pages, Jun. 2010.
%88;;8};}%2 ﬁ} ;;388; %gg:ﬁ: Zt ﬁ Klement, .2 Overview of a TCP communications session, RPG IV
2008/0214175 Al 9/2008 Papadoglou e al. S.ocket2Tutorlalzégitp://Www.scottklement.com/rpg/socketut/over-
2009/0007021 Al 1/2009 Hayton view), 2 pages, .)))
2009/0059958 Al 3/2009 Nakata Microsoft, Introduction to Receive Side Scaling, Developer
2010/0125898 Al 5/2010 Dubuc et al. Resources, https://msdn.microsoft.com/en-us/library/windows/
2010/0191968 Al 7/2010 Patil et al. hardware/ff556942(v=vs.85).aspx, 3 pages, Apr. 2014.
2010/0271955 A1* 10/2010 ALSUMI oooevoeeeeenn, HO04IL. 47/58 Microsoft, RSS with a Single Hardware Receive Queue, Developer
370/241 Resources, https://msdn.microsoft.com/en-us/library/windows/
2012/0144061 Al 6/2012 Song hardware/ff570727(v=vs.85).aspx, 2 pages, Jan. 2015.
2012/0236860 Al 9/2012 Kompella et al. Microsoft, RSS with Hardware Queuing, Developer Resources,
2013/0091237 Al1* 4/2013 Arulambalam HO4L 65/60 https://msdn.microsoft.com/en-us/library/windows/hardware/
709/213 f570728(v=vs.85).aspx, 2 pages, Jan. 2015.
2013/0227166 Al 8/2013 Ravindran et al. Microsoft, Non-RSS Receive Processing, Developer Resources,
2013/0297824 A1 11/2013 Lan et al. https://msdn.microsoft.com/en-us/library/windows/hardware/
2014/0040488 Al 2/2014 Small et al. f568798(v=vs.85).aspx, 2 pages, Jan. 2015.
2014/0115688 Al 4/2014 Zuk et al. PC Magazine Encyclopedia, Definition of: TCP/IP abc’s, PC Maga-
2015/0188814 Al 7/2015 Jain et al. zine Encyclopedia (www.pcmag.com/encyclopedia/term/52615), 5
2015/0229618 Al 8/2015 Wan et al. pages, 2005
2015/0381324 Al 12/2015 Mirsky ct al. Previdi, et al., IPv6 Segment Routing Header (SRH), Nelwork
2016/0094444 Al 3/2016 MeLampy et al. working Group, Draft, 24 pages, Jul. 3, 2014.
2016/0219088 Al* 7/2016 Ma .o, HO4L 65/605 Roberts, The Next Generation of IP—Flow Routing, SSGRR 2003S
International Conference, L’ Aquila Italy, 11 pages, Jul. 29, 2003.
FOREIGN PATENT DOCUMENTS Rouse, What is routing table?, Posted by Margaret Rouse (http://
searchnetworking.techtarget.com/definition/routing-table), S pages,
CN 101068242 B 4/2010 Apr. 2007.
CN 102158371 A 8/2011 Shang, et al., Making Better Use of All Those TCP ACK Packets,
CN 101640629 B 8/2012 : : :
Computer Science Department, Worcester Polytechnic Institute, 10
CN 102739507 A 10/2012
pages, 2005.
CN 101207604 B 3/2013
CN 102769679 B 6/2015 Shaw, Multi-queue network interfaces with SMP on Linux,
CN 103179192 B 11 /201; Greenhost, https://greenhost.net/2013/04/10/multi-queue-network-
CN 105245469 A 12016 interfaces-with-smp-on-linux/, 5 pages, Apr. 10, 2013.
EP 1313267 Bl 12/2006 Sollins et al., Functional Requirements for Uniform Resource
KR 10-2011-0062994 A 6/2011 Names, Network Working Group, Request for Comments 1737, 7
WO WO 2007/084707 A2 7/2007 pages, Dec. 1994.

PATENT
REEL: 063822 FRAME: 0541

US 10,009,282 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Srinivasan, et al.,, 4 Technique for Low FEnergy Mapping and
Routing in Network-on-Chip Architectures, ISLPED ’05 Proceed-
ings of the 2005 International Symposium on Low Power Electron-
ics and Design, 6 pages, Aug. 8-10, 2005.

Wikipedia, LAN switching, 5 pages, dated Jun. 12, 2013.
Wikipedia, Management information base, 6 pages, dated Jul. 15,
2013.

Wikipedia, Reverse path forwarding, 3 pages, dated Jul. 31, 2013.
Wikipedia, Equal-cost multi-path routing, 1 page, dated Sep. 12,
2013.

Wikipedia, Transmission Control Protocol, 18 pages, dated Sep. 16,
2013.

Wikipedia, Sofiware-defined nerworking, 6 pages, dated Sep. 16,
2013.

Wikipedia, Network socket, 4 pages, dated Sep. 19, 2013.
Wikipedia, Router (computing), 8 pages, dated Sep. 23, 2013.
Wikipedia, Network address translation, 11 pages, dated Sep. 24,
2013.

Wikipedia, Open vSwitch, 2 pages, dated Nov. 24, 2013.
Wikipedia, Network interface controller, https://en.wikipedia.org/
wiki/Network_interface_controller,5 pages, May 19, 2015.
International Searching Authority, International Search Report—
International Application No. PCT/2015/044815, dated Dec. 6,
20135, together with the Written Opinion of the International Search-
ing Authority, 8 pages.

International Searching Authority, International Search Report—
International Application No. PCT/2015/060840, dated Mar. 8,
2016, together with the Written Opinion of the International Search-
ing Authority, 13 pages.

International Searching Authority, International Search Report—
International Application No. PCT/US2016/013416, dated Jun. 8,
2016, together with the Written Opinion of the International Search-
ing Authority, 12 pages.

International Searching Authority, International Search Report—
International Application No. PCT/US2016/026938, dated Jul. 28,
2016, together with the Written Opinion of the International Search-
ing Authority, 9 pages.

Jamjoom, et al., “Persistent Dropping: An Efficient Control of
Traffic Aggregates,” https://cs.uwaterloo.ca/~brecht/servers/read-
ings-new/jamjoon-sigcomm-2003.pdf, SIGCOMM’03, 12 pages,
2003.

Kumar, et al., “Comparison of Queuing Algorithms against DDoS
Attack,” https://pdfs.semanticscholar.org/d3d6/
15bf0094e7564a57267¢34683aa5e590e4ed.pdf, International Jour-
nal of Computer Science and Information Technologies, vol. 2 (4),
pp. 1574-1580, 2011.

Israel Patent Office, International Search Report, International
Application No. PCT/US2017/027169, together with the Written
Opinion of the International Searching Authority, 13 pages, dated
Jul. 13, 2017.

Wikipedia, “Active queue management,” https://en.wikipedia.org/
wiki/Active_queue_management, 2 pages, Apr. 22, 2015.

* cited by examiner

PATENT

REEL: 063822 FRAME: 0542

U.S. Patent Jun. 26, 2018 Sheet 1 of 30 US 10,009,282 B2

(Prior Art)
Figure 1

PATENT
REEL: 063822 FRAME: 0543

U.S. Patent Jun. 26, 2018 Sheet 2 of 30 US 10,009,282 B2

202 204 206 208 210 212
N Ao, N A .. .
& \Qf \!f \ﬁ(‘\ﬂ! ‘\gé" kY
! t : 200
H H : —~—
Message
T | Payload - 214
s
% (Body)

g Packet \!‘“216
218

(Prior Art)
Figure 2

PATENT

REEL: 063822 FRAME: 0544

U.S. Patent Jun. 26, 2018 Sheet 3 of 30 US 10,009,282 B2

Network 4

AAAAAAAA Interface ;

-
Router ;

Interface 1 Interface 2 N, L.,
N 304 308
- Network 1 P N ;
302 e

Network 2
310

} Raouter
2

P Network 3
D 3@6

(Prior Art)
Figure 3

PATENT
REEL: 063822 FRAME: 0545

U.S. Patent Jun. 26, 2018 Sheet 4 of 30 US 10,009,282 B2

..... ocal Area Netwcr ™

Switch or :

Computer SIS

""" .‘ MR o00nee 426
(400
Router / |
404 ™ _4 Routing Routing . 406
Table Table
,S_ 414 (402 408
Network Backp!ang Qr‘cmssbgr Metwork
’ switch or switching fabric or -
Irterface interface
stc.
§4e8 5412 § 410 5430
Houting MNetwork Network Controfier
Table interface interface
418 =/ Router | Router ¥l 416
S, Wide Area Network Wide Area Network .
{Prior Art)
Figure 4

PATENT
REEL: 063822 FRAME: 0546

U.S. Patent Jun. 26, 2018 Sheet 5 of 30 US 10,009,282 B2

PR RIS U UV FOUS WURU R
g Shared Memory : 51z
q) 2
g Queue E Processor 0
/ - 504 5
3 Q 1 i P 1
ueue rOCEsSor
i
Network Device /j”)? i
Interface Driver I : L 508 : \)\.., 514
i - S 508 } :
|
\j\ Queue n T Processorn
§ | 5
N 2 g 518
< 502 500)
ra
510
{Prior Art)
Figure §
PATENT

REEL: 063822 FRAME: 0547

U.S. Patent

Interface B

Jun. 26, 2018

Network
Interface A

606 D E— 7 ‘

Sheet 6 of 30 US 10,009,282 B2

NN — 614

-~ 616

Device
Driver

518

Processor p

626

620
A
61 2/,
(Prior Art)
Figure 6
PATENT

REEL: 063822 FRAME: 0548

U.S. Patent Jun. 26, 2018 Sheet 7 of 30 US 10,009,282 B2

Source Router
Chient
26 730
I
Router Destination
Service
5555
Figure 7
PATENT

REEL: 063822 FRAME: 0549

U.S. Patent Jun. 26, 2018 Sheet 8 of 30 US 10,009,282 B2

796
. AIPR1
Source Y
(1.414) 708
el . (2.2.2.2)
SA 1111 SA 2222 9
P10 P 0
ORIGINAL
LEAD A 555 3.3,
RO <4 DA 555 DA 3333 VOBIEIED
801 DP 20 DP 40 L LEAD
PR 100 PR 100 PACKET
. v 802
(0SA=1111; 08P = 10;
ODA = 5.5.5.5; ODP = 20}
AIPRZ
714
(3.3.3.3) SA 3333 N
5P 50
DA 4444
MODIFIED
P 60 . LEAD
PACKET
PR 100 803
(OSA=1.1.1.1; OSP = 10;
, ODA = 5.5.5.5; ODP = 20)
AIPR4
792
4444
(} P lsa e)
P10 RESTORED
DA 5555 - LEAD
PACKET
P20 804
PR 100 j
Destination
728 {55.5.5)
Figure 8
PATENT

REEL: 063822 FRAME: 0550

U.S. Patent Jun. 26, 2018 Sheet 9 of 30

US 10,009,282 B2

AIPR 1708
Session X
Return Association (RA)
S8A 1
SsP 10
SDA 5555
sDP 20
SPR 100
Forward Association (FA)
SSA 2222 {implicit)
SsP 30 {session source port assigned by AIPR 1 708)
SDA 3333 {next node address — AIPR 2 714}
S0P 40 {session destination port assigned by AIPR 1 708}
SPR 100
Flag = First Waypoint AIPR
Session Y
RA
FA
Flag
Session Z
RA
FA
Flag

Figure 8

PATENT
REEL: 063822 FRAME: 0551

U.S. Patent

Jun. 26, 2018

Sheet 10 of 30 US 10,009,282 B2

{implicit)

implicit)

{
{session source porf assigned by AIPR 2 714)
{next node address —~ AIPR 4 722}

(

sgssion dastination port assigned by AIPR 2714}

AIPR 2714
Session X
Return Association {RA)
SSA 2222
ssp 30
SDA - 3333
sShP 40
SPR 100
Forward Association (FA)
SSA 3333
SsP 50
SDA 4444
sDP 60
SPR 100
Flag = Infermediate Waypoint AIPR
Session Y
RA
FA
Flag
Session Z
RA
F&
Flag

Figure 10

PATENT
REEL: 063822 FRAME: 0552

U.S. Patent Jun. 26, 2018 Sheet 11 of 30 US 10,009,282 B2

Return Association (RA)

3.3.3.3

50

4444 {implicit)
60

100

Forward Association (FA)

1411 {original source address from metadata)

10 {original sourne port from metadata)

5555 {original destination address from metadata)
20 {original destination port from metadata)
100

Flag = Final Waypoint AIPR

AIPR 4722
Session X
SSA
SSP
SDA
S0P
SPR
SSA
SEP
SDA
spp
SPR
Session Y
RA
FA
Fag
Session Z
RA
FA
Flag

Figure 11

PATENT
REEL: 063822 FRAME: 0553

U.S. Patent

~¥
()
(o))

Source
ARR

Jun. 26, 2018

SESSION
PACKET
1201

<

SA
3P
DA
oP
PR

1144
10
5555
20
100

AIPRY
708
(2222
SA
sp
DA
DP
PR
h
AlPRZ
714
v
{3.3.3.3) A
5P
34
bpP
PR
W
AlPR4
722
{4444
SA
SP
DA
pp
PR
e
Destination
{5555) 728
Figure 12

Sheet 12 of 30

2222
30
3333
448
100

33.33
50
4444
&0
100

11441

100

b

e

US 10,009,282 B2

FORWARDED
SESSION
PACKET
1202

FORWARDED
SESSION
PACKET
1203

FORWARDED
SESSION
PACKET
1204

PATENT

REEL: 063822 FRAME: 0554

U.S. Patent Jun. 26, 2018 Sheet 13 of 30 US 10,009,282 B2

726

i AIPR1
Source 708
(1.1.1.1) 2222

C 8A 5555 SA 2333 "

3 20 P 4D ARDE
FORWARDED - FORWAf{f;m
RETURN < DA 1111 DA 29222 & RETURN
PACKET } PACKET
1304 bp 10 P 30 1303

PR 100 PR 100 J

o

S
AIPR2
714
(3.3.3.3}
SA 4444)
SP 6 FORWARDED
RETURN
DA 3333 > PACKET
pPo 5G 1302
PR 100 J
\
AIPR4
722
4.4.4.4)
SA 5555)
sP 20
RETURN
DA 1111 " DACKET
DP 10 1301
PR 100 J
Destination
(5555 | 728
Figure 13
PATENT

REEL: 063822 FRAME: 0555

U.S. Patent

Jun. 26, 2018 Sheet 14 of 30 US 10,009,282 B2

Obtain Lead Packet Of A Session

By An Intermediate Node 1402

l

Store 5-Tuple Information From
Received Packet For Retum Association | 1404

l

Determine Nexi Node Based On

=
Original Destination Addrass 1405
Assign A Session Source Port Number e 1406
And A Session Destination Port Number
Store 5-Tuple information
e 1 407

For Forward Associgtion

L

Create A Modified Lead Packet including The
AlPR’s Network Address As The Source
Address, The Next Node Address As The

Destination Address, The Assigned Session
Source And Destination Port Numbers, And [™=1408
The Criginal Protocol Identifier, And Including
The Original Souwrce And Destination
Addresses And The Original Source and
Destination Port Numbers As Metadala

L

Forward The Modified Lead Packet e 1410

Figure 14

PATENT
REEL: 063822 FRAME: 0556

U.S. Patent Jun. 26, 2018 Sheet 15 of 30 US 10,009,282 B2

SN
=)
o

Receive Session-Related Packet ——1502

l

Determine If Session-Related Packet Is Being
Routed To Or From The Destination Device

—— 1504

1506

FROM .
s the packet being routed fo
or from the destination?
Use Final Forward Association Information
W
1508 To Produce A Modified Session Packet

Use Final Return Association To Produce 1510
A Modified Session Packet

1512 =~ Forward The Modified Session Packet
Based On The Modified Destination Address

Figure 15

PATENT
REEL: 063822 FRAME: 0557

U.S. Patent

ac

04

a8

12

18

Jun. 26, 2018 Sheet 16 of 30 US 10,009,282 B2

i 2 3

34567888 123456789612343678989¢1

Bestination MAC Address
1612

Source MAC Address

802 1 aViLAN Tag
16804

Ether Type

Figure 16

PATENT
REEL: 063822 FRAME: 0558

U.S. Patent Jun. 26, 2018 Sheet 17 of 30 US 10,009,282 B2

00

04

08

12

16

20

2 3
0123456789061 234567898612345678901
Version HL Type of Sarvice Total Length

Identification Flags Fragment Offset
- L Protocol
ime to Live 1702 Header Checksum

Source P Address 1704

Destingtion 1P Address 1708

P Options (Optional)

Figure 17
PATENT

REEL: 063822 FRAME: 0559

U.S. Patent Jun. 26, 2018 Sheet 18 of 30 US 10,009,282 B2
1800
Ny 1 2 3
01234567 890172343567890612345678941
Source Pord Destination Port
0o 1802 1804
Sequence Number
04 1806
08 Acknowledgment Number
T 1810
UIAIPIRISIF
Data , i
12 | Offset Reserved (RICISISiYi! Window
GIKIHITININ
T 1808
e Checksum Urgent Pointer
20 Options & Padding
Figure 18

PATENT
REEL: 063822 FRAME: 0560

U.S. Patent

Jun. 26, 2018 Sheet 19 of 30

US 10,009,282 B2

Return Retum
Packet Packet
1 Modifier 7 identifier
Subseguert B acket
Packet Modifier e 1924 1922
Router
1218
1914 T
Network P%zi;iii Pifci(it MNetwork
interface beda Identifer — Modifier or S 3 interface
1902 19086 1812 1804
; 4 ‘:Lw
Lead % Packet Downstream
Packet J Series Controller
fdentifer { Manager Identifier
1920 1808 1916
1900
Figure 18
PATENT

REEL: 063822 FRAME: 0561

U.S. Patent Jun. 26, 2018 Sheet 20 of 30 US 10,009,282 B2

Waypoint information Base

: % 5 2002 2048 2030
State, , Session identification " Backward i Forward |
' E‘ e 2004 o 2006 FF poeee” 2018 I 2020 ¥ et 2032 e 20341
Client " Service 41 Prev. Waypoint 41 This Waypoint 0 This Waypoint i INext Waypoint |
¥ Network Port ¥ Natwork Port * Network Fort 1 Network Pot ¢! Network Port ' Network Fort
Address | Number Address § Number Address | Number Address | Number Address | Number Address E Number
2008 18 2012 74 2022 2024 2025 2028 2036 2038 2040 2042

Figure 20

PATENT
REEL: 063822 FRAME: 0562

U.S. Patent Jun. 26, 2018 Sheet 21 of 30 US 10,009,282 B2

Modified Lead Packet
2100

Source IP Address
2102

Destination |P Address

2104

Source Port

P

106

Destination Port
2108

Session Data Block

N

118

]

intermediate Node 1D 211

Figure 21

PATENT
REEL: 063822 FRAME: 0563

U.S. Patent Jun. 26, 2018 Sheet 22 of 30 US 10,009,282 B2

Obtain Lead Packet Of A Session By An Intermediate Node
2202

Determine Prior Node, Through Which The Lead Packet Traversed
2204

Associate Prior Node 1D And The Session 1D {return Association)
2206

Sfore 1he Return Asscoiabon
2208

sk
Maodify Lead Packet To ldentify The Intermediate Node
2210

Forward Lead Packet Toward Destination Node Through On Output Inferface
22
e
Receive Backward Packet From Next Node, Including Next Node ID
2214
-

Associate Next Node 10 With Ssssion 1D {forward Association)
2248

€

Store Forward Association To Maintain State information For The Session

2218

Obtain Addiional Packets Of The Session
2229
e
Forward Substantially All The Additional Packets Through The Output
Inferface Toward Next Node, Using The Stored Forward Assosiation
2222

¥

Receive Packets OF A Return Session
2224
N
Forward Substantially All The Return Packets Toward Prior Node,
Using The Stored Return Association
2248

Figure 22

PATENT
REEL: 063822 FRAME: 0564

U.S. Patent Jun. 26, 2018 Sheet 23 of 30 US 10,009,282 B2

Access A Rouiting Information Base With
Routing information Aboul The Next Node

2300

|

Use A Routing Table To Forward Ths Lead Packet

3

202

i

Use The Next Node 1D To Address The Lead
Packet Toward The MNext Node

2304

Figure 23

PATENT
REEL: 063822 FRAME: 0565

U.S. Patent Jun. 26, 2018 Sheet 24 of 30 US 10,009,282 B2

&2438 2440 < 2442

2400 2428 2430 ™ 2432 2434 s ARl IR
! N RO >
Router i]
Controller ’ . P : |
Router Router Router] . Web File e
“ine Carg] PLine Card’l 777 PLine Card” Switch Server server | f \L
s Bosoureo {'Line Card™] Pline Ce Jng Cs H Server Server 2444
2438 Allocator] |
| |
| |
o Operating {{ Operating 11 Operating § | Operaling i Operating} {Operating] {Operating i
2428 System Systemn Syslem System | System {1 Bystem |I System i
i |
i Vitual Virtual Virtual . Virtuai H vinuat Virtual Virtual I
2420 Machine Machine Machine Maching {1 Machine { | Machine | | Machine :
i !
X B e s oo oo e o e o o]
2422 ‘/ 2424 >
; Hypervisor E\f 2448
Hardware 2408 2408
24027 | Prosessor | | Prosessor | | Processor 2.,
Memory
Network Netwaork Network b
Interiace Intarface T Interface 2418
] 2414
2438 S ;‘” 2404 \L—zmg
Clche " x
Figure 24

PATENT
REEL: 063822 FRAME: 0566

U.S. Patent Jun. 26, 2018 Sheet 25 of 30 US 10,009,282 B2

25 {Path Controfier i
2500 at > . i
-«\“‘ ! . 4 Classifier Fiow Table . 29301y~ 2536
] 2526 i
mmmmmmmmmmmmmmmmmmmmm i
- 2514
j.r* 2502 e e e e e e e - 2520 j
[T] Networe
Network i i 1 i 3 Interface
interface Pt
o - Forwardable — 2516
2 : : messages j
. ; i Network
Natwork \ I interface
interface E i L
2542 f ;; 2522 j‘Z&%‘:B
[~ 2506 e . 2524
i I
D] prm——— s 1 Network
Metwork - ; i "1 interface
intedace g i

Unfarwardable
messages {io
Service Area)

Figure 254

PATENT
REEL: 063822 FRAME: 0567

U.S. Patent

Jun. 26, 2018

Sheet 26 of 30 US 10,009,282 B2

Service
Controller

i

i

- {

2542 /rﬁ 2544 ;

Processor 0§ Processor 1 Processor 0§ Processor 1 FProcessor 0§ Processor 1 Processor 0§38 Processor 1 ;
ARF TE. ARP T.E. BFOTE. Flow Setup §3 Flow Setup B« (Routing T.E.§§Rouling T.E §ex {
Queue Queus Queue TE Queus {1 T.E Queus Queue Queus i

i

Internal
Process

2564 g /{/

ARP
Service
Qusue

/i
tntemally- = § pes — 4

generated H
messages !
Iservice
Area
Figure 258

ARP
Service
Thread

N Unforwardable

messages
““““““““ i
}

. Fiow Sstup
BFD Service PR 2552 ™ ;
Queue éeu!;’f: - 9550 i
|
! H |
s Fiow Sstup . §
BF%?;;XWL Service by 2560 ™ |
' Thread 2558 i
|

g
To Transmit Queues

PATENT
REEL: 063822 FRAME: 0568

U.S. Patent

Jun. 26, 2018 Sheet 27 of 30

US 10,009,282 B2

Store data in memory 1o represant receive quauss,
transmit queues, traffic enginesring queues and
service queuss

] \f 2600

A4

Associate each network interface with at lsast one
receive queus and at least one transmit queus

J 2602

A2

Configure sach network interface to enqueue

received messages on iis associated receive
queue(s) and to dequeue messages from s
associated transmit queue for transmission

e 2604

ki

Dequeue forwardable messages from the receive
gusues and engusue them on the fransmi queues

\J 26086

A

Degueus unforwardable messages from the receive
gueues and engueue them on the traffic engineering
queues,; drop messages, i a gusue is full

\/r"‘ 2608

k7

Degueue unforwardable messages from the traffic
enginsering queuss and enqueus them anthe
service queues, but only up to a fraction, less than
100%, full

JES?Q

¥

Generate internally-generated messages and
engueue them on the sarvice queues, regardless of
how full the qusues are

\J“Zﬁiz

R 2

Dequeus unforwardable and internally-generated
messages from the service queues and process the
messages

J2614

Figure 26

REEL: 063822 FRAME: 0569

PATENT

U.S. Patent Jun. 26, 2018 Sheet 28 of 30 US 10,009,282 B2

Anaivze protocol portions of the received message -\f— 2700

2702 Engueue message on ARP ~ 2704

fraffic enginsering queue —

2706 Engueuse message on BFD \j’_ 2708

traffic engineering queue

2710 Enqueus message on routing J 2712

traffic engineering queue

Engueue message on other 2716
traffic engineering queue J

Figure 27

Compare address portion of message to data in flow 2800
table ~

2802 Enqueue message on fransmit \f 2804

queue

Enqueue message on flow J 2806
setup traffic engineering queue

Figure 28

PATENT
REEL: 063822 FRAME: 0570

U.S. Patent Jun. 26, 2018 Sheet 29 of 30 US 10,009,282 B2

Degusue a message from the ARP service queue \f 2900

Process the message by the ARP service process \Jm 2902

Figure 29

. 3
Dequeue a message from the BFD sarvice quaue \f 8000

Process the message by the BFD service process \fm 3002

Figure 30

Degueue a message from the flow setup service 2400
queus "

ki

Process the message by the flow setup service 3102
process -/

Figure 31

PATENT
REEL: 063822 FRAME: 0571

U.S. Patent Jun. 26, 2018 Sheet 30 of 30 US 10,009,282 B2

Dequeue a message from the routing service queus \f 3200

[$)]
N
(]
3%

Process the message by the routing service process \fm

Figure 32

Associate each ARP iraffic engineering gueue with \\jf"‘ 2300
g different one of the P processors

.4

Associate each BFD traffic engineering queue with a \f 2302
different one of the P processors

k4

Associate each flow seiup traffic engineering gusue \jﬂ 3304
with a different one of the P processors

¥

Associate each routing traffic engineering quesue \f 3306
with a different one of the F processors

Figure 33

PATENT
REEL: 063822 FRAME: 0572

US 10,009,282 B2

1
SELF-PROTECTING COMPUTER
NETWORK ROUTER WITH QUEUE
RESOURCE MANAGER

FIELD OF THE INVENTION

The invention generally relates to computer network
routers and, more particularly, the invention relates to man-
aging queue resources within routers to prevent the queues
being flooded by router-external traffic to the detriment of
router-internal management traffic.

BACKGROUND OF THE INVENTION

Computer network routers include network interfaces, to
which links from computers, switches and other routers may
be connected. The network interfaces are typically handled
by device drivers (software) executed by processors. The
network interfaces and/or the device drivers enqueue pack-
ets received by the network interfaces onto queues for
subsequent processing within the routers. The subsequent
processing may involve simply moving a packet to another
queue for transmission by an outgoing network interface, or
the processing may be more complex.

Most packets handled by routers are data packets which,
for the most part, are simply forwarded toward their respec-
tive destinations. However, some data packets, such as the
first data packet of a stream of data packets, may require
address resolution. That is, the router may need to ascertain
how to direct the packet toward its destination, which takes
time and consumes hardware resources, such as processor
time, in the router. Once the router resolves the destination
address of the first packet in the stream and places the
address information in a table, the router can rapidly forward
subsequent packets of the stream by simply accessing the
table.

In addition to data packets, routers and other network
nodes exchange various types of network management pack-
ets according to various network management protocols. For
example, the address resolution protocol (ARP) is a protocol
used by the Internet Protocol (IP), specifically IPv4, to map
IP network addresses to hardware addresses used by a data
link protocol. For another example, bidirectional forwarding
detection (BFD) is a network protocol used to detect faults
between two forwarding engines connected by a link.

Most of these network management packets are processed
within a router without being forwarded, i.e., the packets are
“consumed” by the router. Nevertheless, some network
management packets require considerable computation and
may be handled by processor resources that are in limited
supply in the router. Thus, routers typically maintain queues
of network management packets awaiting processing.

A flood of network management packets, such as from a
malicious actor or a malfunctioning router, can fill up these
queues, thereby forcing the receiving router to drop subse-
quent (legitimate) network management packets, which may
cause loss of valuable network management information,
such as address resolutions or information about changes in
network topology.

SUMMARY OF VARIOUS EMBODIMENTS

An embodiment of the present invention provides a
self-protecting network router. The router includes a
memory. The memory stores data representing a plurality of
receive queues. The memory also stores data representing a
plurality of transmit queues. The memory also stores data

15

20

25

30

35

40

45

50

55

60

65

2

representing a plurality of traffic engineering queues. The
memory also stores data representing a plurality of service
queues

An embodiment of the present invention provides a
self-protecting network router. The self-protecting router
includes a memory. The memory stores data representing
several types of queues. The memory stores data represent-
ing a plurality of receive queues. The memory stores data
representing a plurality of transmit queues. The memory
stores data representing a plurality of traffic engineering
queues. The memory stores data representing at least one
service queue.

The router also includes a plurality of network interfaces.
Each network interface is associated with at least one
receive queue of the plurality of receive queues. Each
network interface is associated with at least one transmit
queue of the plurality of transmit queues. Each network
interface is configured to automatically enqueue messages
received by the network interface from outside the router to
the at least one receive queue associated with the network
interface.

Each network interface is configured to dequeue messages
from the at least one transmit queue associated with the
network interface for transmission by the network interface
to outside the router.

The router also includes a path controller. The path
controller is configured to dequeue forwardable messages
from the plurality of receive queues and enqueue the for-
wardable messages to the plurality of transmit queues. The
path controller is configured to dequeue unforwardable
messages from the plurality of receive queues and enqueue
the unforwardable messages to the plurality of traffic engi-
neering queues. Each traffic engineering queue of the plu-
rality of traffic engineering queues is configured to drop,
rather than accept, messages being enqueued to the traffic
engineering queue when the traffic engineering queue is full.

The router also includes a service controller. The service
controller is configured to dequeue the unforwardable mes-
sages from the plurality of traffic engineering queues and
enqueue the unforwardable messages to the at least one
service queue. The messages are enqueued to the at least one
service queue, such that each service queue of the at least
one service queue is at most a predetermined fraction, less
than 100%, full.

The router includes at least one process configured to
generate internally-generated messages and enqueue the
internally-generated messages to the at least one service
queue, without regard to fullness of the at least one service
queue.

The router also includes at least one service process
configured to dequeue and process the unforwardable mes-
sages and the internally-generated messages from the at least
one service queue.

The predetermined fraction may be less than 50%.

The path controller may include a message classifier. The
message classifier may be configured to analyze protocol
portions of the messages received by the plurality of net-
work interfaces. As a result of the analysis, for messages in
which the protocol portions indicate bidirectional forward-
ing detection (BFD), the message classifier may be config-
ured to enqueue the messages to the plurality of traffic
engineering queues.

As a result of the analysis, for messages in which the
protocol portions indicate address resolution protocol
(ARP), bidirectional forwarding detection (BFD) or routing,
the message classifier may be configured to enqueue the
messages to the plurality of traffic engineering queues.

PATENT

REEL: 063822 FRAME: 0573

US 10,009,282 B2

3

As a result of the analysis, for messages in which the
protocol portions indicate address resolution protocol
(ARP), the message classifier may be configured to enqueue
the messages to the plurality of traffic engineering queues.

The router may also include a flow table stored in the
memory. The path controller may be configured to compare
address portions of the messages received by the plurality of
network interfaces to address data stored in the flow table.
As a result of the comparison, for messages in which the
address portions match the address data, the message clas-
sifier may be configured to enqueue the messages to the
plurality of transmit queues. For messages in which the
address portions do not match the address data, the message
classifier may be configured to enqueue the messages to the
plurality of traffic engineering queues.

The plurality of traffic engineering queues may include at
least one ARP traffic engineering queue. The at least one
service queue may include an ARP service queue. The at
least one service process may include an ARP service
process.

The plurality of traffic engineering queues may further
include at least one BFD traffic engineering queue, at least
one flow setup traffic engineering queue and at least one
routing traffic engineering queue. The at least one service
queue may further include a BFD service queue, a flow setup
service queue and a routing service queue. The at least one
service process may further include a BFD service process,
a flow setup service process and a routing service process.

The path controller may include a message classifier. The
message classifier may be configured to analyze protocol
portions of the messages received by the plurality of net-
work interfaces. As a result of the analysis, for messages in
which the protocol portions indicate resolution protocol
(ARP), the message classifier may be configured to enqueue
the messages to the at least one ARP traffic engineering
queue.

As a result of the analysis, for messages in which the
protocol portions indicate bidirectional forwarding detection
(BFD), the message classifier may be configured to enqueue
the messages to the at least one BFD traffic engineering
queue.

As a result of the analysis, for messages in which the
protocol portions indicate flow setup, the message classifier
may be configured to enqueue the messages to the at least
one flow setup traffic engineering queue.

As a result of the analysis, for messages in which the
protocol portions indicate routing, the message classifier
may be configured to enqueue the messages to the at least
one routing traffic engineering queue.

The router may also include a plurality of P processors.
The P processors may be coupled to the memory. The at least
one ARP traffic engineering queue may include a number (P)
of ARP traffic engineering queues. Each ARP traffic engi-
neering queue of the P ARP traffic engineering queues may
be associated with a different one of the P processors.

For each traffic engineering queue of the plurality of
traffic engineering queues, only the one processor that is
associated with the traffic engineering queue may enqueue
the unforwardable messages on the traffic engineering
queue.

The plurality of traffic engineering queues may include a
number (P) of BFD traffic engineering queues. Each BFD
traffic engineering queue of the P BFD traffic engineering
queues may be associated with a different one of the P
processors. The plurality of traffic engineering queues may
include a number (P) of flow setup traffic engineering
queues. Fach flow setup traffic engineering queue of the P

10

15

20

25

30

35

40

45

50

55

60

65

4

flow setup traffic engineering queues may be associated with
a different one of the P processors. The plurality of traffic
engineering queues may include a number (P) of routing
traffic engineering queues. Each routing traffic engineering
queue of the P routing traffic engineering queues may be
associated with a different one of the P processors.

For each traffic engineering queue of the plurality of
traffic engineering queues, only the one processor that is
associated with the traffic engineering queue may enqueue
the unforwardable messages on the traffic engineering
queue.

The path controller may include a message classifier. The
message classifier may be configured to analyze protocol
portions of the messages received by the plurality of net-
work interfaces. As a result of the analysis, for messages in
which the protocol portions indicate resolution protocol
(ARP), the message classifier may be configured to enqueue
the messages to the P ARP traffic engineering queues.

As a result of the analysis, for messages in which the
protocol portions indicate bidirectional forwarding detection
(BFD), the message classifier may be configured to enqueue
the messages to the P BFD traffic engineering queues.

As a result of the analysis, for messages in which the
protocol portions indicate flow setup, the message classifier
may be configured to enqueue the messages to the P flow
setup traffic engineering queues.

As a result of the analysis, for messages in which the
protocol portions indicate routing, the message classifier
may be configured to enqueue the messages to the P routing
traffic engineering queues.

The at least one service queue may further include a BFD
service queue, a tflow setup service queue and a routing
service queue. The at least one service process may further
include a BFD service process, a flow setup service process
and a routing service process.

Another embodiment of the present invention provides a
method for automatically protecting resources within a
network router from flooding by a large number of mes-
sages. The network router includes a plurality of network
interfaces. The method includes automatically storing data
in a memory of the router. The data represents several
queues. The queues include a plurality of receive queues, a
plurality of transmit queues, a plurality of traffic engineering
queues and a plurality of service queues.

Each network interface of the plurality of network inter-
faces is automatically associated with at least one receive
queue of the plurality of receive queues and at least one
transmit queue of the plurality of transmit queues.

Each network interface of the plurality of network inter-
faces is configured to automatically enqueue messages
received by the network interface from outside the router to
the at least one receive queue associated with the network
interface. Each network interface of the plurality of network
interfaces is also configured to automatically dequeue mes-
sages from the at least one transmit queue associated with
the network interface for transmission by the network inter-
face to outside the router.

Forwardable messages are dequeued from the plurality of
receive queues. The forwardable messages are enqueued to
the plurality of transmit queues.

Unforwardable messages are dequeued from the plurality
of receive queues. The unforwardable messages are
enqueued to the plurality of traffic engineering queues.
Unforwardable messages are dropped when ones of the
traffic engineering queues are full.

The unforwardable messages are dequeued from the plu-
rality of traffic engineering queues. The unforwardable mes-

PATENT

REEL: 063822 FRAME: 0574

US 10,009,282 B2

5

sages are enqueued to the plurality of service queues. Each
service queue of the plurality of service queues is at most a
predetermined fraction, less than 100%, full.

Internally-generated messages are generate within the
router. The internally-generated messages are enqueued to
the plurality of service queues, without regard to fullness of
the service queues.

The unforwardable messages and the internally-generated
messages are dequeued from the plurality of service queues.
The unforwardable messages and the internally-generated
messages are processed by a plurality of service processes.

The predetermined fraction may be less than 50%.

Dequeuing the unforwardable messages from the plurality
of receive queues and enqueuing the unforwardable mes-
sages to the plurality of traffic engineering queues may
include analyzing protocol portions of the messages
received by the plurality of network interfaces. As a result of
the analyzing, for messages in which the protocol portions
indicate bidirectional forwarding detection (BFD), the mes-
sages may be enqueued to the plurality of traffic engineering
queues.

Dequeuing the unforwardable messages from the plurality
of receive queues and enqueuing the unforwardable mes-
sages to the plurality of traffic engineering queues may
include analyzing protocol portions of the messages
received by the plurality of network interfaces. As a result of
the analyzing, for messages in which the protocol portions
indicate address resolution protocol (ARP), bidirectional
forwarding detection (BFD) or routing, the messages may be
enqueued to the plurality of traffic engineering queues.

Dequeuing the unforwardable messages from the plurality
of receive queues and enqueuing the unforwardable mes-
sages to the plurality of traffic engineering queues may
include analyzing protocol portions of the messages
received by the plurality of network interfaces. As a result of
the analyzing, for messages in which the protocol portions
indicate address resolution protocol (ARP), the messages
may be enqueued to the plurality of traffic engineering
queues.

Dequeuing the forwardable and unforwardable messages
from the plurality of receive queues, enqueuing the forward-
able messages to the plurality of transmit queues and
enqueuing the unforwardable messages to the plurality of
traffic engineering queues may include comparing address
portions of the messages received by the plurality of net-
work interfaces to address data stored in a flow table. As a
result of the comparing, for messages in which the address
portions match the address data, the messages may be
enqueued to the plurality of transmit queues. For messages
in which the address portions do not match the address data,
the messages may be enqueued to the plurality of traffic
engineering queues.

Storing the data in the memory may include storing the
data in the memory such that the plurality of traffic engi-
neering queues includes at least one address resolution
protocol (ARP) traffic engineering queue. Storing the data in
the memory may include storing the data in the memory
such that the plurality of service queues includes an ARP
service queue.

Processing the unforwardable messages and the inter-
nally-generated messages by the plurality of service pro-
cesses may include processing unforwardable messages
dequeued from the ARP service queue by an ARP service
process.

Storing the data in the memory may include storing the
data in the memory such that the plurality of traffic engi-
neering queues includes at least one bidirectional forwarding

5

10

15

20

25

30

35

40

45

50

55

60

65

6

detection (BFD) traffic engineering queue, at least one flow
setup traffic engineering queue and at least one routing traffic
engineering queue. Storing the data in the memory may
include storing the data in the memory such that the plurality
of service queues further includes a BFD service queue, a
flow setup service queue and a routing service queue.

Processing the unforwardable messages and the inter-
nally-generated messages by the plurality of service pro-
cesses may further include processing unforwardable mes-
sages dequeued from the BFD service queue by a BFD
service process, processing unforwardable messages
dequeued from the flow setup service queue by a flow setup
service process and processing unforwardable messages
dequeued from the routing service queue by a routing
service process.

The router may include a plurality of P processors coupled
to the memory. Storing the data in the memory may include
storing the data in the memory such that the plurality of
traffic engineering queues includes a number (P) of ARP
traffic engineering queues The method may further include
associating each ARP traffic engineering queue of the P ARP
traffic engineering queues with a different one of the P
processors.

For each traffic engineering queue of the plurality of
traffic engineering queues, dequeuing the unforwardable
messages from the plurality of receive queues and
enqueuing the unforwardable messages to the traffic engi-
neering queue may include dequeuing the unforwardable
messages and enqueuing the unforwardable messages by
only the one processor associated with the traffic engineer-
ing queue.

The router may include a plurality of P processors coupled
to the memory. Storing the data in the memory may include
storing the data in the memory such that the plurality of
traffic engineering queues includes a number (P) of ARP
traffic engineering queues, a number (P) of BFD traffic
engineering queues, a number (P) of flow setup traffic
engineering queues and a number (P) of routing traffic
engineering queues.

The method may further include associating each ARP
traffic engineering queue of the P ARP traffic engineering
queues with a different one of the P processors. The method
may further include associating each BFD traffic engineer-
ing queue of the P ARP traffic engineering queues with a
different one of the P processors. The method may further
include associating each flow setup traffic engineering queue
of the P ARP traffic engineering queues with a different one
of the P processors. The method may further include asso-
ciating each routing traffic engineering queue of the P ARP
traffic engineering queues with a different one of the P
processors.

For each traffic engineering queue of the plurality of
traffic engineering queues, dequeuing the unforwardable
messages from the plurality of receive queues and
enqueuing the unforwardable messages to the traffic engi-
neering queue may include dequeuing the unforwardable
messages and enqueuing the unforwardable messages by
only the one processor associated with the traffic engineer-
ing queue.

Yet another embodiment of the present invention provides
a non-transitory computer-readable medium. The medium is
encoded with instructions. When executed by a processor,
the instructions establish processes for performing a com-
puter-implemented method. The method automatically pro-
tects resources within a network router from flooding by
large number of messages. The router includes a plurality of
network interfaces.

PATENT

REEL: 063822 FRAME: 0575

US 10,009,282 B2

7

The processes include a process storing data in a memory
of the router. The data represents a plurality of receive
queues, a plurality of transmit queues, a plurality of traffic
engineering queues and a plurality of service queues.

The processes also include a process associating each
network interface of the plurality of network interfaces with
at least one receive queue of the plurality of receive queues
and at least one transmit queue of the plurality of transmit
queues.

The processes also include a process configuring each
network interface of the plurality of network interfaces to
automatically enqueue messages received by the network
interface from outside the router to the at least one receive
queue associated with the network interface. The process
also configures each network interface to dequeue messages
from the at least one transmit queue associated with the
network interface for transmission by the network interface
to outside the router

The processes also include a process dequeuing forward-
able messages from the plurality of receive queues and
enqueuing the forwardable messages to the plurality of
transmit queues.

The processes also include a process dequeuing unfor-
wardable messages from the plurality of receive queues and
enqueuing the unforwardable messages to the plurality of
traffic engineering queues. Unforwardable messages are
dropped when ones of the traffic engineering queues are full.

The processes also include a process dequeuing the unfor-
wardable messages from the plurality of traflic engineering
queues and enqueuing the unforwardable messages to the
plurality of service queues. Each service queue of the
plurality of service queues is at most a predetermined
fraction, less than 100%, full.

The processes also include a process generating, within
the router, internally-generated messages. The internally-
generated messages are to the plurality of service queues,
without regard to fullness of the service queues.

The processes also include a process dequeuing the unfor-
wardable messages and the internally-generated messages
from the plurality of service queues. The process processes
the unforwardable messages and the internally-generated
messages by a plurality of service processes.

BRIEF DESCRIPTION OF THE DRAWINGS

Those skilled in the art should more fully appreciate
advantages of various embodiments of the invention from
the following “Description of Illustrative Embodiments,”
discussed with reference to the drawings summarized imme-
diately below.

FIG. 1 schematically shows a hypothetical prior art net-
work that may implement illustrative embodiments of the
invention.

FIG. 2 schematically illustrates a prior art technique for
fragmenting a message.

FIG. 3 schematically shows a hypothetical internet that
may implement illustrative embodiments of the invention.

FIG. 4 is a schematic block diagram of a computer
network router, according to the prior art.

FIG. 5 is a schematic block diagram of queues, on which
incoming data is enqueued by a network interface of the
router of FIG. 4, as well as an assignment to processors to
the queues, according to the prior art.

FIG. 6 is a schematic block diagram of queues, such as the
queues of FIG. 5, for several network interfaces of the router
of FIG. 4, as well as assignments of processors to the queues,
according to the prior art.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 7 schematically shows a hypothetical internet that
includes conventional routers and augmented IP routers
(AIPRs), in accordance with one exemplary embodiment.

FIG. 8 schematically shows an example of lead packet
processing from a source node to a destination node for
stateful routing, in accordance with one exemplary embodi-
ment.

FIG. 9 is a schematic diagram showing session-related
data associated with an AIPR 1 based on the lead packet
processing of FIG. 8.

FIG. 10 is a schematic diagram showing session-related
data associated with another AIPR based on the lead packet
processing of FIG. 8.

FIG. 11 is a schematic diagram showing session-related
data associated with yet another AIPR based on the lead
packet processing of FIG. 8.

FIG. 12 is a schematic diagram providing an example of
session packet processing for an example packet sent from
the source device to the destination device through the AIPR
devices for the session established in FIG. 8, in accordance
with one exemplary embodiment.

FIG. 13 is a schematic diagram providing an example of
session packet processing for a return packet sent by the
destination device to the source device through the AIPR
devices for the session established in FIG. 8, in accordance
with one exemplary embodiment.

FIG. 14 is a flowchart schematically illustrating some lead
packet processing operations performed by an AIPR, in
accordance with one exemplary embodiment.

FIG. 15 is a flowchart schematically illustrating some
session packet processing operations performed by an AIPR,
in accordance with one exemplary embodiment.

FIG. 16 schematically shows a layout of an Ethernet
header, identifying fields used for identifying a beginning of
a session, in accordance with one exemplary embodiment.

FIG. 17 schematically shows a layout of an IP header,
identifying fields used for identifying a beginning of a
session, in accordance with one exemplary embodiment.

FIG. 18 schematically shows a layout of a TCP header,
identifying fields used for identifying a beginning of a
session, in accordance with one exemplary embodiment.

FIG. 19 schematically shows a block diagram of an AIPR
of FIG. 7, in accordance with one exemplary embodiment.

FIG. 20 shows a schematic illustration of information
stored in an information base by the AIPR of FIGS. 7 and 19,
in accordance with one exemplary embodiment.

FIG. 21 schematically shows a modified lead packet
produced by the AIPR of FIGS. 7 and 19, in accordance with
one exemplary embodiment.

FIG. 22 is a flowchart illustrating some of the operations
performed by the AIPR of FIGS. 7 and 19, in accordance
with one exemplary embodiment.

FIG. 23 is a flowchart illustrating some of the operations
involved with forwarding a lead packet, in accordance with
one exemplary embodiment.

FIG. 24 is a schematic block diagram of a router, accord-
ing to an embodiment of the present invention.

FIGS. 25A and 25B (collectively FIG. 25) is a schematic
block diagram of a self-protecting computer network router,
according to an embodiment of the present invention.

FIG. 26 is a flowchart schematically illustrating opera-
tions performed by the router of FIG. 25, according to an
embodiment of the present invention.

FIGS. 27-32 are flowcharts schematically illustrating the
operations of FIG. 26 in more detail, according to embodi-
ments of the present invention.

PATENT

REEL: 063822 FRAME: 0576

US 10,009,282 B2

9

FIG. 33 is a flowchart schematically illustrating optional
operations performed by the router of FIG. 25.

DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Embodiments of the present invention improve perfor-
mance and reliability of network routers. According to the
present invention, a self-protecting router manages its queue
resources so as to limit an extent to which the queues can be
filled with potentially malicious or otherwise harmful mes-
sages received from outside the router, thereby ensuring the
queues have sufficient room to accept messages generated
internally within the router and are necessary for manage-
ment and operation of the router. Such routers are, therefore,
immune to attack by floods of messages from malicious or
malfunctioning network nodes, such as computers, switches
and other routers.

The queue resources are controlled in a way that main-
tains a relatively constant rate of message processing, with-
out resort to artificial rate-limiting mechanisms. Optionally,
an active queue management (AQM) system may be
included to shape message dropping behavior during a flood,
i.e., control the types of messages that are dropped, and
thereby provide better service to preferred message types.

Networks

Tllustrative embodiments preferably are implemented on a
conventional computer network. Among other things, a
network includes at least two nodes and at least one link
between the nodes. Nodes can include computing devices
(sometimes referred to as hosts or devices) and routers.
Computers include personal computers, smart phones, auto-
matic teller machines (ATMs) and many other types of
equipment that include processors and network interfaces.
Links include wired and wireless connections between pairs
of nodes. In addition, nodes and/or links may be imple-
mented completely in software, such as in a virtual machine,
a software defined network, and using network function
virtualization. For example, nodes in a network may be
within a single device, such as instances of a router inside a
hardware router, and/or nodes in the Internet (e.g., routers)
as discussed below. Many networks also include switches,
which are largely transparent for purposes of this discussion.
However, some switches also perform routing functions. For
the present discussion, such routing switches are considered
routers. Routers are described below.

A node can be directly connected to one or more other
nodes, each via a distinct link. For example, FIG. 1 sche-
matically shows a Node A directly connected to Node B via
Link 1. In a given network (e.g., within a local area
network), each node has a unique network address to facili-
tate sending and receiving data. A network includes all the
nodes addressable within the network according to the
network’s addressing scheme and all the links that intercon-
nect the nodes for communication according to the net-
work’s addressing scheme. For example, in FIG. 1, Node A,
Node B, Node C . . . Node F and all the links 1-8 together
make up a network 100. For simplicity, a network is depicted
as a cloud or as being enclosed within a cloud.

Nodes initiate communications with other nodes via the
network, and nodes receive communications initiated by
other nodes via the network. For example, a node may
transmit/forward/send data (a message) to a directly con-
nected (adjacent) node by sending the message via the link
that interconnects the adjacent nodes. The message includes

10

15

20

25

30

35

40

45

50

55

60

65

10

the network address of the sending node (the “source
address”) and the network address of the intended receiving
node (the “destination address”). A sending node can send a
message to a non-adjacent node via one or more other nodes.
For example, Node D may send a message to Node F via
Node B. Using well known networking protocols, the node
(s) between the source and the destination forward the
message until the message reaches its destination. Accord-
ingly, to operate properly, network protocols enable nodes to
learn or discover network addresses of non-adjacent nodes
in their network.

Nodes communicate via networks according to protocols,
such as the well-known Internet Protocol (IP) and Trans-
mission Control Protocol (TCP). The protocols are typically
implemented by layered software and/or hardware compo-
nents, such as according to the well-known seven-layer
Open System Interconnect (OSI) model. As an example, IP
operates at OSI Layer 3 (Network Layer), while the TCP
operates largely at OSI Layer 4 (Transport Layer). Each
layer performs a logical function and abstracts the layer
below it, therefore hiding details of the lower layer.

For example, Layer 3 may fragment a large message into
smaller packets if Layer 2 (Data Link Layer) cannot handle
the message as one transmission. FIG. 2 schematically
illustrates a large message 200 divided into several pieces
202, 204, 206, 208, 210 and 212. Each piece 202-212 may
then be sent in a separate packet, exemplified by packet 214.
Each packet includes a payload (body) portion, exemplified
by payload 216, and a header portion, exemplified at 218.
The header portion 218 contains information, such as the
packet’s source address, destination address and packet
sequence number, necessary or desirable for: 1) routing the
packet to its destination, 2) reassembling the packets of a
message, and 3) other functions provided according to the
protocol. In some cases, a trailer portion is also appended to
the payload, such as to carry a checksum of the payload or
of the entire packet. All packets of a message need not be
sent along the same path, i.e., through the same nodes, on
their way to their common destination. It should be noted
that although IP packets are officially called IP datagrams,
they are commonly referred to simply as packets.

Some other protocols also fragment data into packets. For
example, the well-known TCP protocol fragments data into
segments, officially referred to as TCP protocol data units
(PDUs). Nevertheless, in common usage, the term packet is
used to refer to PDUs and datagrams, as well as Fthernet
frames.

Most protocols encapsulate packets of higher level pro-
tocols. For example, IP encapsulates a TCP packet by adding
an IP header to the TCP packet to produce an IP packet.
Thus, packets sent at a lower layer can be thought of as being
made up of packets within packets. Conventionally, a com-
ponent operating according to a protocol examines or modi-
fies only information within a header and/or trailer that was
created by another component, typically within another
node, operating according to the same protocol. That is,
conventionally, components operating according to a proto-
col do not examine or modify portions of packets created by
other protocols.

In another example of abstraction provided by layered
protocols, some layers translate addresses. Some layers
include layer-specific addressing schemes. For example,
each end of a link is connected to a node via a real (e.g.,
electronic) or virtual interface, such as an Ethernet interface.
At Layer 2 (Data Link Layer), each interface has an address,
such as a media access control (MAC) address. On the other

PATENT

REEL: 063822 FRAME: 0577

US 10,009,282 B2

11

hand, at Layer 3 using IP, each interface, or at least each
node, has an IP address. Layer 3 converts IP addresses to
MAC addresses.

A router typically acts as a node that interconnects two or
more distinct networks or two or more sub-networks (sub-
nets) of a single network, thereby creating a “network of
networks” (i.e., an internet). Thus, a router has at least two
interfaces; i.e., one where each interface connects the router
to a different network, as exemplified in FIG. 3. When a
router receives a packet via one interface from one network,
it uses information stored in its routing table to direct the
packet to another network via another interface. The routing
table thus contains network/next hop associations. These
associations tell the router that a particular destination can
optimally be reached by sending the packet to a specific
router that represents a next hop on the way to the final
destination. For example, if Router 1 (300) receives a
packet, via its Interface 1 (304), from Network 1 (302), and
the packet is destined to a node in Network 3 (306), the
Router 1 (300) consults its router table and then forwards the
packet via its Interface 2 (308) to Network 2 (310). Network
2 (310) will then forward the packet to Network 3 (306). The
next hop association can also be indicated in the routing
table as an outgoing (exit) interface to the final destination.

Indeed, the next hop router or node for a given session can
be determined in a variety of different manners. The below
discussion about FIGS. 4-7 addresses improved techniques
for determining next hop routers in accordance with illus-
trative embodiments of the invention.

Large organizations, such as large corporations, commer-
cial data centers and telecommunications providers, often
employ sets of routers in hierarchies to carry internal traffic.
For example, one or more gateway routers may interconnect
each organization’s network to one or more Internet service
providers (ISPs). ISPs also employ routers in hierarchies to
carry traffic between their customers’ gateways, to intercon-
nect with other ISPs, and to interconnect with core routers
in the Internet backbone.

A router is considered a Layer 3 device because its
primary forwarding decision is based on the information in
the Layer 3 IP packet—specifically the destination IP
address. A conventional router does not look into the actual
data contents (i.e., the encapsulated payload) that the packet
carries. Instead, the router only looks at the Layer 3
addresses to make a forwarding decision, plus optionally
other information in the header for hints, such as quality of
service (QoS) requirements. Once a packet is forwarded, a
conventional router does not retain any historical informa-
tion about the packet, although the forwarding action may be
collected to generate statistical data if the router is so
configured.

As noted, when a router receives a packet via one inter-
face from one network, the router uses its routing table to
direct the packet to another network. Table 1 lists informa-
tion typically found in a basic IP routing table (stored in
memory).

TABLE 1
Destination Partial IP address (Expressed as a bit-mask) or Complete IP
address of a packet’s final destination
Next hop IP address to which the packet should be forwarded on its
way to the final destination
Interface Outgoing network interface to use to forward the packet
Cost/Metric Cost of this path, relative to costs of other possible paths
Routes Information about subnets, including how to reach subnets

that are not directly attached to the router, via one or more
hops; default routes to use for certain types of traffic or
when information is lacking

40

55

60

65

12

Routing tables may be filled in manually, such as by a
system administrator, or dynamically by the router. The
router uses routing protocols to exchange information with
other routers and, thereby, dynamically learn about sur-
rounding network or internet topology. For example, routers
announce their presence in the network(s), more specifically,
the range of IP addresses to which the routers can forward
packets. Neighboring routers update their routing tables with
this information and broadcast their ability to forward pack-
ets to the network(s) of the first router. This information
eventually spreads to more distant routers in a network.
Dynamic routing allows a router to respond to changes in a
network or internet, such as increased network congestion,
new routers joining an internet and router or link failures.

A routing table therefore provides a set of rules for routing
packets to their respective destinations. When a packet
arrives, a router examines the packet’s contents, such as its
destination address, and finds the best matching rule in the
routing table. The rule essentially tells the router which
interface to use to forward the packet and the IP address of
anode to which the packet is forwarded on its way to its final
destination IP address.

With hop-by-hop routing, each routing table lists, for all
reachable destinations, the address of the next node along a
path to that destination, i.e., the next hop. Assuming that the
routing tables are consistent, a simple algorithm of each
router relaying packets to their destinations’ respective next
hop suffices to deliver packets anywhere in a network.
Hop-by-hop is a fundamental characteristic of the IP Inter-
network Layer and the OSI Network Layer. As noted above
and discussed below, however, there may be a number of
possible next hop node options. Accordingly, in some
embodiments, the next hop node selected for a given session
can be determined based on a number of factors, such as the
traffic and load on a number of potential next hop nodes.

Thus, each router’s routing table typically merely con-
tains information sufficient to forward a packet to another
router that is “closer” to the packet’s destination, without a
guarantee of the packet ever being delivered to its destina-
tion. In a sense, a packet finds its way to its destination by
visiting a series of routers and, at each router, using then-
current rules to decide which router to visit next, with the
hope that at least most packets ultimately reach their desti-
nations.

Note that the rules may change between two successive
hops of a packet, or between two successive packets of a
message, such as if a router becomes congested or a link
fails. Two packets of a message may, therefore, in some
cases, follow different paths and even arrive out of order. In
other words, when a packet is sent by a source node, there
is no predetermined path the packet will take between the
source node and the packet’s destination. Instead, the path
typically is dynamically determined as the packet traverses
the various routers. This may be referred to as “natural
routing,” i.e., a path is determined dynamically as the packet
traverses the internet.

It should be noted that conventionally, packets sent by the
destination node back to the source node may follow dif-
ferent paths than the packets from the source node to the
destination node.

In many situations, as suggested above, a client computer
node establishes a session with a server computer node, and
the client and server exchange packets within the session.
For example, a client computer executing a browser may
establish a session with a web server. The client may send
one or more packets to request a web page, and the web
server may respond with one or more packets containing

PATENT

REEL: 063822 FRAME: 0578

US 10,009,282 B2

13

contents of the web page. In some types of sessions, this
back-and-forth exchange of packets may continue for sev-
eral cycles. In some types of sessions, packets may be sent
asynchronously between the two nodes.

A session has its conventional meaning; namely, it is a
plurality of packets sent by one node to another node, where
all the packets are related, according to a protocol. A session
may be thought of as including a lead (or initial) packet that
begins the session, and one or more subsequent packets of
the session. A session has a definite beginning and a definite
end. For example, a TCP session is initiated by a SYN
packet. In some cases, the end may be defined by a pre-
scribed packet or series of packets. For example, a TCP
session may be ended with a FIN exchange or an RST. In
other cases, the end may be defined by lack of communi-
cation between the nodes for at least a predetermined
amount of time (a timeout time). For example, a TCP session
may be ended after a defined timeout period. Some sessions
include only packets sent from one node to the other node.
Other sessions include response packets, as in the web
client/server interaction example. A session may include any
number of cycles of back-and-forth communication, or
asynchronous communication, according to the protocol, but
all packets of a session are exchanged between the same
client/server pair of nodes. A session is also referred to
herein as a series of packets.

A computer having a single IP address may provide
several services, such as web services, e-mail services, and
file transter (FIP) services. Hach service is typically
assigned a port number in the range 0-65,535 that is unique
on the computer. A service is, therefore, defined by a
combination of the node’s IP address and the service’s port
number. Note that this combination is unique within the
network the computer is connected to, and it is often unique
within an internet. Similarly, a single node may execute
many clients. Therefore, a client that makes a request to a
service is assigned a unique port number on the client’s
node, so return packets from the service can be uniquely
addressed to the client that made the request.

The term socket means an IP address-port number com-
bination. Thus, each service has a network-unique, and often
internet-unique, service socket, and a client making a
request of a service is assigned a network-unique, and
sometimes internet-unique, client socket. In places, the
terms source client and destination service are used when
referring to a client that sends packets to make requests of
a service and the service being requested, respectively.

Self-Protecting Router

As noted, a router typically acts as a network node that
interconnects two or more distinct networks or two or more
sub-networks (subnets) of a single network. FIG. 4 is a
schematic block diagram of an exemplary conventional
dedicated-function hardware-based computer network
router 400. The router 400 includes a backplane, crossbar
switch, switching fabric or other fast interconnect compo-
nent 402. The router 400 also includes a plurality of network
interfaces 404, 406, 408, 410, 412 and 414, each connected
to the fast interconnect component 402.

Each network interface 404-414 may be electrically
coupled to another network interface in another router or
some other network node, such as a switch or computer, to
establish a network connection between the router 400 and
the other component. For example, network interfaces 410
and 412 are shown connected to respective routers 416 and
418 in respective wide area networks (WANSs) 420 and 422.

10

15

20

25

30

35

40

45

50

55

60

65

14

Similarly, network interface 408 is shown connected to a
switch or computer 424 in a local area network (LAN) 426.

The router 400 includes a routing table 428 and a con-
troller 430. The controller 430 uses information in the
routing table 428 to route packets received by the network
interfaces 404-414 toward their respective destinations. For
example, the controller 430 can use the destination address
in a packet to index into the routing table 428 and thereby
ascertain an outgoing network interface 404-414 that should
be used to forward the packet. The controller 430 then
commands the fast interconnect component 402 to establish
a link between the network interface 404-414 on which the
packet was received and the network interface 404-414 on
which the packet should be sent.

Instead of using dedicated-function routers, router func-
tions have been virtualized by performing some or all of the
functions described with respect to FIG. 4 by one or more
processors in so-called “software routers.” However, regard-
less of whether a router is implemented in dedicated-
function hardware or in a virtual machine, each network
interface 404-414 is typically handled by a device driver that
enqueues incoming packets onto one or more queues for
subsequent processing. The subsequent processing may
involve simply enqueuing the packet for transmission by an
outgoing network interface, or the processing may be more
complex, such as resolving the packet’s destination address
or processing a network management packet.

FIG. 5 is a block diagram schematically illustrating how
an exemplary device driver 500 enqueues packets received
by an exemplary network interface 502 onto a set of queues,
represented by exemplary queues 504, 506 and 508. The
queues 504-508 may be stored in shared memory 510 that is
accessible by a plurality of processors, represented by exem-
plary processors 512, 514 and 516. Each queue 504-510 is
assigned to one of the processors 512-516 for processing.
Distributing the incoming packets across a plurality of
queues 504-508, and therefore a plurality of processors
512-516, enables the incoming packets to be processed more
quickly than if a single processor handled all the packets
received by the network interface 502. Such a scheme is
used in the well-known receive side scaling (RSS) network
driver technology.

With one network interface 502, the number of queues
504-508 is typically determined by the number of available
processors 512-516, and the assignment of queues to pro-
cessors is straight forward. However, as schematically illus-
trated in FIG. 6, with more than one network interface, the
queue-to-processor assignment task becomes complex.

In the example shown in FIG. 6, three network interfaces
600, 602 and 604 are handled by respective device drivers
606, 608 and 610, and the device drivers 606-610 enqueue
packets received by the network interfaces 600-604 on
queues, generally indicated at 612. The number of queues
612 per network interface 600-604 need not be equal for all
the network interfaces 600-604. For example, some of the
network interfaces 600-604 may have only one queue 612
each, whereas other of the network interfaces 600-604 may
have multiple queues 612. A number (P) of processors,
represented by processors 614, 616, 618 and 620, is avail-
able for processing received packets.

The queues 612 are not thread safe. That is, each queue
612 should be accessed by only one processor 614-620.
Although spinlocks or other locking mechanisms could be
used to make the queues 612 thread safe, i.e., provide
one-processor-at-a-time shared access by multiple proces-
sors 614-620 to each queue 612, the performance penalty of
such locking mechanisms typically precludes their use.

PATENT

REEL: 063822 FRAME: 0579

US 10,009,282 B2

15

Therefore, by convention, each queue 612 is assigned to
exactly one processor 614-620.

In FIG. 6, each network interface 600-604 is given a letter
designation (A, B or C), and each queue 612 is numbered (0,
1, 2,3, .. .) and given a designation (A, B or C) that
identifies the network interface 600-604 from which data
packets are enqueued. The letter and number designations
are combined. For example, queue 622 is designated “A.0”
to indicate the queue 622 handles packets enqueued from
network interface 600 (A), and the queue 622 is the Oth
queue that handles packets from the network interface 600
(A). Similarly, queue 624 is designated “A.1” to indicate the
queue 624 handles packets enqueued from network interface
600 (A), and the queue 624 is the 1st queue that handles
packets from the network interface 600 (A). Likewise, queue
626 is designated “C.1” to indicate the queue 626 handles
packets enqueued from network interface 604 (C), and the
queue 624 is the 1st queue that handles packets from the
network interface 604 (C).

Unlike the simple case of a single network interface
discussed with respect to FIG. 5, assigning processors
614-620 to queues 612 of multiple network interfaces 600-
604 poses problems. Typically, fewer processors 614-620
are available than queues 612. Therefore, most or all of the
processors 614-620 handle multiple queues. However,
assigning a given processor 614-620 to handle two or more
queues associated with one network interface 600-604 pro-
vides no advantage and can decrease performance.
Unequally distributing the processors 600-604 to the queues
612 can cause delays of packets, or dropping of packets,
received by network interfaces 600-604 that are underserved
by the processors 614-620. Assigning excessive numbers of
processors 600-604 to some of the queues 612, at the
expense of other queues 612, wastes valuable processor
resources.

FIG. 24 is a schematic block diagram of a router 2400,
according to an embodiment of the present invention. The
router 2400 is implemented as a combination of hardware
components 2402 and software modules. The hardware
components 2402 include a memory 2404 and a plurality of
processors, exemplified by processors 2406, 2408 and 2410.
The hardware components 2402 may also include one or
more network interfaces, exemplified by network interfaces
2412, 2414 and 2416, by which the router 2400 may be
connected via one or more physical links to other network
routers, etc.

Using well-known techniques, a hypervisor 2418 makes
one or more of the processors 2406-2410, and at least a
portion of the memory 2404, available to each of a plurality
of virtual machines, exemplified by virtual machines 2420,
2422 and 2424. Also by well-known techniques, the hyper-
visor 2418 may make available ones of the network inter-
faces 2412-2416 to ones of the virtual machines 2420-2424.
Optionally, a respective operating system, exemplified by
operating system 2426, is executed by each virtual machine
2420-2424 in a conventional manner.

One virtual machine 2420 executes a router controller
module 2428, and other virtual machines 2422, 2424, etc.
execute respective router “line card” modules, exemplified
by router line card modules 2430, 2432 and 2434. The router
line card modules perform at least some of the functions that
are performed by conventional hardware-based router line
cards. It should be noted that the configuration of the
hardware components 2402, i.e., the number of processors
2406-2410 and the number of network interfaces 2412-
2416, as well as the number of router line card modules

10

15

20

25

30

35

40

45

50

55

60

65

16

2430-2434, is exemplary for a hypothetical router, and other
embodiments may include other numbers of these compo-
nents.

Referring momentarily back to FIG. 4, in some conven-
tional routers, each network interface 404-414 is constructed
on a separate plug-in circuit board often referred to as a “line
card.” A hardware line card includes circuitry to send and
receive electrical or optical signals over network links,
modulate and demodulate these signals, accumulate
received data into packets, serialize data in packets that are
to be transmitted, in some cases buffer received data, transfer
received data to memory, such as via direct memory access
(DMA), generate interrupt signals to indicate to a processor
when a DMA transfer has been completed, in some cases
perform protocol analysis, such as on headers of packets,
and the like. Essentially, each hardware line card provides
send and receive capability over a single network link.

Returning to FIG. 24, the router line card modules 2430-
2434 provide capabilities analogous to at least some of the
capabilities of the hardware line cards in a conventional
router. That is, each router line card module 2430-2434
provides send and receive capability over a single network
link. The link may extend via one of the network interfaces
2412-2416 to a node external to the router 2400 or, via a bus
(not shown) that interconnects the hardware components
2402, between pairs of the router line card modules 2430-
2434. The well-known Data Plane Development Kit
(DPDK) may be used to implement portions of the line card
modules 2430-2434.

Device drivers being executed by the virtual machines
2420-2424 manipulate data in the memory 2404 that repre-
sent a plurality of queues 2436. These device drivers and
queues 2436 are analogous to the device drivers 606-610
and queues 612 described with reference to FIG. 6. Thus,
packets received by the network interfaces 2412-2416 are
represented by entries in the queues 2436, also referred to
herein as “receive queues.” Similarly, packets enqueued by
the router line card modules 2430-2434 for transmission by
the network interfaces 2412-2416 are represented by entries
in the queues 2436, also referred to herein as “transmit
queues.” The queues 2436 may also be used for packets that
are transmitted between pairs of the router line card modules
2430-2434.

Commonly-owned, co-pending U.S. patent application
Ser. No. 15/168,495, filed May 31, 2016, titled “Self-
Configuring Computer Network Router,” the entire contents
of which are hereby incorporated herein by reference, dis-
closes a resource allocator 2438 that automatically assigns
processors to queues, such that queue workload is distrib-
uted as evenly as possible among the processors and the
processors are as fully utilized as possible. Consequently,
packets do not remain on queues longer than necessary,
thereby decreasing latency of packets traversing a router,
fewer packets are dropped and available and expensive
resources, namely the processors, are kept busy.

Nevertheless, a flood of network management packets,
malformed packets or packets that cannot be forwarded
without first processing them can overwhelm a router and
prevent the router performing management functions, such
as resolving addresses. FIG. 25 is a schematic block diagram
of a self-protecting computer network router 2500 that
prevents floods of network management packets over-
whelming the router. The router 2500 includes service
queues, indicated generally at 2501, that are managed so
they are never filled more than a predetermined fraction,
such as one-half; full with packets received from outside the
router 2500. Limiting the extent to which the service queues

PATENT

REEL: 063822 FRAME: 0580

US 10,009,282 B2

17

2501 are filled with packets received from outside the router
ensures the service queues 2501 have room for packets that
are generated internally by the router 2500, such as inter-
nally-generated ARD packets.

The router 2500 may be implemented in the context
described with respect to FIG. 25. An embodiment of a
self-protecting network router that manages its queue
resources and protects the route from network management
packet floods is described in the context of a software router.
However, principles described herein are equally applicable
to dedicated-function hardware-based routers.

The router 2500 includes a plurality of incoming network
interfaces, exemplified by network interfaces 2502, 2504
and 2506, by which the router 2500 receives messages
(packets) from outside the router, such as from computers,
switches and other routers. Each incoming network interface
2502-2506 is associated with at least one receive queue,
exemplified by receive queues 2508, 2510 and 2512. Device
drivers (not shown in FIG. 6) enqueue the messages received
by the network interfaces 2502-2506 on the receive queues
2508-2512.

The router 2500 may include a number (P) of processors
available to handle messages. As used herein, a “processor”
is an independent processing unit, sometimes commonly
referred to as a “core,” that reads and executes program
instructions. A single processor may be housed in a single
integrated circuit (IC) die or chip package. However, manu-
facturers typically integrate multiple cores onto a single
integrated circuit die, known as a chip multiprocessor or
CMP, exemplified by the well-known 18-core Intel Xeon ES
2699v3 multiprocessor IC, or onto multiple dies in a single
chip package.

In some embodiments, each incoming network interface
2502-2506 has as many receive queues 2508-2512 as there
are processors (P) available in the router 2500, to the extent
that individual network interfaces 2502-2506 support mul-
tiple receive queues. The processors may be assigned to
handle the messages by the resource allocator described in
the above-referenced U.S. patent application Ser. No.
15/168,495.

The router 2500 also includes a plurality of outgoing
network interfaces, exemplified by network interfaces 2514,
2516 and 2518, by which the router 2500 transmits messages
to outside the router. Each outgoing network interface 2514-
2518 has an associated transmit queue, exemplified by
transmit queues 2520, 2522 and 2522. Messages enqueued
on the transmit queues 2520-2522 are automatically trans-
mitted by the network interfaces 2514-2518. As used herein,
the term network interface includes a device driver that
enqueues and/or dequeues packets to and from the receive
queues 2508-2512 and/or the transmit queues 2520-2524.

The router 2500 includes a classifier 2526. The classifier
2526 may be implemented as a software process, i.e., by a
processor executing instructions stored in a memory. Alter-
natively, part or all of the classifier 2526 may be imple-
mented in firmware or in hardware, such as combinatorial
logic, a field-programmable gate array (FPGA), an applica-
tion-specific integrated circuit (ASIC) or another suitable
electronic or photonic circuit.

The classifier 2526 dequeues messages from the receive
queues 2508-2512 and analyzes portions of the messages to
automatically ascertain whether the messages are data mes-
sages or network management messages. In some embodi-
ments, the classifier 2526 analyzes header portions of the
messages, such as portions of the headers that identify
protocols, flags, etc., according to which the messages were

10

15

25

30

35

40

45

50

55

60

65

18

constructed and/or sent. An exemplary message header,
including a protocol field and flags, is described herein with
reference to FIG. 17.

Messages the classifier 2526 identifies as being network
management messages are enqueued to appropriate traffic
engineering queues, generally indicated at 2528, as dis-
cussed in more detail herein.

On the other hand, most data messages are forwarded
toward their respective destinations. The classifier 2526
identifies data messages by their protocols, flags, etc. For
example, TCP messages are generally data messages. The
router 2500 also maintains a flow table 2530. Optionally, in
addition to information about sessions (flows), the flow table
2530 may include information similar to information stored
in a routing table described herein. As described herein, a
session is signaled by a lead message (lead packet). After a
lead message has been forwarded, the flow table 2530 stores
information about a path along which, or a next Augmented
IP Router (AIPR) toward which, subsequent messages of the
session should be forwarded. Data messages dequeued from
the receive queues 2508-2512, and for which adequate
routing information exists in the flow table 2530 to ascertain
over which network interface 2514-2518 the messages
should be forwarded, are deemed to be “forwardable mes-
sages,” and the classifier enqueues these forwardable mes-
sages to the transmit queues 2520-2524.

The router 2500 may automatically ascertain whether a
data message is forwardable by analyzing portions of the
data message and referencing the flow table 2530. For
example, all or a part of the destination address field of a
data message may be compared to address data stored in the
flow table 2530. If an appropriate amount of the destination
address matches an appropriate amount of the address data
in the flow table 2530, the data message may be enqueued
to one of the transmit queues 2520-2524 that corresponds to
the network interface 2514-2518 identified by the flow table
2530 as the network interface over which the message
should be transmitted.

On the other hand, if no matching flow table 2530 entry
is found, the data message is enqueued to an appropriate one
of the traffic engineering queues 2528, specifically to per-
form address translation and possibly to store data in the
flow table 2530 for a new session (flow), as described herein.
Data messages dequeued from the receive queues 2508-
2512, and for which no or insufficient routing information
exists in the flow table 2530, are deemed to be “unforward-
able message.”

Network management messages are also deemed to be
unforwardable messages and, as noted, are dequeued from
the receive queues 2508-2512 and enqueued to the traffic
engineering queues 2528.

Thus, forwardable messages may be thought of as tra-
versing a “fast path” 2532 between the receive queues
2508-2512 and the transmit queues 2520-2524. The for-
wardable messages do not require processing, as that term is
used herein, to be analyzed or moved from the receive
queues 2508-2512 to the transmit queues 2520-2524. On the
other hand, unforwardable messages may be thought of as
being detoured to a “service path” 2532 for processing, as
that term is used herein. The classifier 2526 and any addi-
tional logic necessary to dequeue forwardable and unfor-
wardable messages from the receive queues 2508-2512 and
enqueue the messages on the transmit queues 2520-2524 or
the traffic engineering queues 2528, as the case may be, are
collectively referred to herein as a path controller 2536.

The traffic engineering queues 2528 help protect the
router 2500 from floods of incoming messages. Each of the

PATENT

REEL: 063822 FRAME: 0581

US 10,009,282 B2

19

traffic engineering queues 2528 has a finite size. The traffic
engineering queues 2528 are configured such that, if a
message is attempted to be enqueued to a full queue, the
message is dropped. Thus, during a flood, excess unforward-
able messages are simply dropped.

Optionally or alternatively, an active queue management
(AQM) system, such as random early detection (RED),
explicit congestion notification (ECN) or controlled delay
(CoDel), may be used to “shape” the types of messages that
are dropped during a flood or to implement a desired
“fairness” doctrine.

The traffic engineering queues 2528 may include one or
more traffic engineering queues for each type of processing
that may be performed on a message. Types of processing
may include, but are not limited to, processing ARP mes-
sages, processing BFD messages, setting up flows (sessions)
and routing. In other embodiments, different or additional
types of processing may be performed on unforwardable
messages, and those embodiments include corresponding
traffic engineering queues.

Some embodiments include as many traffic engineering
queues for each type of processing as the router 2500 has
available processors. For example, assume the router 2500
has P processors available to process the queues. In such an
exemplary embodiment, the router 2500 has P ARP traffic
engineering queues 2538, P BFD traffic engineering queues
2540, P flow (session) setup queues 2542 and P routing
queues 2544. Each traffic engineering queue within each
group of processing-type-specific traffic engineering queues,
i.e., groups 2538, 2540, 2542 and 2544, may be associated
with a unique one of the P available processors, and the
associated processor may dequeue and process messages in
that traffic engineering queue.

As noted, each receive queue 2508-2510 is handled by a
specific one of the P processors. Each message dequeued
from one of the receive queues 2508-2512 and enqueued to
one of the traffic engineering queues 2528 is enqueued to the
traffic engineering queue that is handled by the same pro-
cessor as handles the receive queue 2508-2510 from which
the message was dequeued.

The router 2500 includes one service queue 2501 for each
type of processing the router 2500 may perform on unfor-
wardable messages. For example, the embodiment shown in
FIG. 25 includes one ARP service queue 2546, one BFD
service queue 2548, one session (flow) setup service queue
2550 and one routing service queue 2552.

For each type of processing the router 2500 may perform
on unforwardable messages, the router 2500 also includes a
component that performs the processing. Each of these
components may be implemented as a process, thread or
other form of execution, or as a hardware component or a
combination thereof. For example, each of these compo-
nents may be implemented as a software process, i.e., by a
processor executing instructions stored in a memory. Alter-
natively, part or all of each component may be implemented
in firmware or in hardware, such as combinatorial logic, a
field-programmable gate array (FPGA), an application-spe-
cific integrated circuit (ASIC) or another suitable electronic
or photonic circuit.

For example, the embodiment shown in FIG. 25 includes
one ARP service process 2554, one BFD service process
2556, one session (flow) setup service process 2558 and one
routing service process 2560. FEach service process 2554-
2560 dequeues messages from its respective service queue
2546-2552 and processes the dequeued messages. As noted,
each service process may be implemented as a thread. As

10

15

20

25

30

35

40

45

50

55

60

65

20

used in the claims, the term “service process” includes
process, thread, hardware implementation and a combina-
tion thereof.

A service processes 2554-2560 may generate one or more
messages and enqueue the message(s) on one or more
transmit queue(s) 2520-2524 for transmission outside the
router 2500. For example, the ARP service process 2554
may broadcast an ARP request for the hardware address
(target hardware address or THA) that corresponds to an IP
address in a destination address of an unforwardable mes-
sage.

Similarly, a service process 2554-2560 may process and
then enqueue an unforwardable message on a transmit queue
2520-2524. For example, once a hardware address of a
previously unknown IP address is learned, the routing ser-
vice process 2552 may modify, if necessary, a previously
unforwardable message, making the message now forward-
able, and then enqueue the now-forwardable message to an
appropriate one of the transmit queues 2520-2524.

As noted, the service queues 2546-2552 are managed so
they are never filled more than a predetermined fraction,
such as one-half, full with packets received from outside the
router 2500. Limiting the extent to which the service queues
2546-2552 are filled with packets received from outside the
router 2500 ensures the service queues 2546-2552 have
room for packets that are generated internally by the router
2500. A service controller 2562 dequeues the unforwardable
messages from the traffic engineering queues 2538-2544 and
enqueues the unforwardable messages on the service queues
2546-2552, such that each service queue 2546-2552 is at
most the predetermined fraction full.

The predetermined fraction may be defined when the
router 2500 is built, via a parameter file, via an administra-
tion interface or otherwise. Regardless of the value of the
predetermined fraction, no unforwardable message is
enqueued to a service queue 2546-2552 if the service queue
has room for fewer than one message.

The router 2500 includes one or more internal processes
2564 that generate messages, such as ARP messages and/or
BFD messages, in support of management and/or operation
of the router 2500. These internal processes 2562 are trusted
not to flood the router 2500, as opposed to external com-
puters, switches, routers, etc., which may malfunction or be
operated by malicious users and, consequently, flood the
router 2500 with messages. Messages generated by the
internal processes 2564 are enqueued to the service queues
2546-2552 without regard to fullness of the service queues
2546-2552. Thus, even if a service queue 2546-2552 is more
than the predetermined fraction full, the service queue
accepts and enqueues messages from the internal processes
2564.

As noted, the router 2500 may be implemented as
described with respect to FIG. 24. For example, the receive
queues 2508-2512, the transmit queues 2520-2524, the
traffic engineering queues 2538-2544 and the service queues
2546-2552 may be stored in the memory 2404 shown in
FIG. 24. The classifier 2526, the internal processes 2564 and
the service processes 2554-2560 may be executed by the
virtual machines 2420-2424, such as by the router controller
2428 and/or the router line card modules 2430-2434.

FIG. 26 is a flowchart schematically illustrating operation
of a method for automatically protecting resources within
the router 2400 from flooding by a large number of mes-
sages. At 2600, data is stored in a memory of the router
2500. The data represents: a plurality of receive queues
2508-2512, a plurality of transmit queues 2520-2524, a
plurality of traffic engineering queues 2538-2544 and a

PATENT

REEL: 063822 FRAME: 0582

US 10,009,282 B2

21

plurality of service queues 2546-2552. At 2602, each incom-
ing network interface 2502-2506 is associated with at least
one of the receive queues 2508-2512, and each outgoing
network interface 2514-2518 is associated with at least one
of the transmit queues 2520-2524.

At 2604, cach incoming network interface 2502-2506 is
configured to enqueue message received over the network
interface on one of the receive queues 2508-2512 associated
with the network interface. In addition, each outgoing net-
work interface 2514-2518 is configured to dequeue message
from its associated transmit queue 2520-2524 for transmis-
sion by the network interface.

At 2606, forwardable messages are dequeued from the
receive queues 2508-2512 and enqueued to the transmit
queues 2520-2524. At 2608, unforwardable messages are
dequeued from the receive queues 2508-2512 and enqueued
to the traffic engineering queues 2538-2544. If a traffic
engineering queue 2538-2544, to which a message is
attempted to be enqueued, is full, the message is dropped.

At 2610, unforwardable messages are dequeued from the
traffic engineering queues 2538-2544 and enqueued to the
service queues 2546-2552, to the extent possible, such that
each service queue 2546-2552 is at most a predetermined
fraction, less than 100%, full. “Less than 100% full” means
a queue can accommodate at least one additional message.
In some embodiments, the predetermined fraction is one-
half (50%).

At 2612, internally-generated messages are generated by
one or more internal processes 2564. The internally-gener-
ated messages are enqueued to the service queues 2546-
2552, regardless of the fullness of the service queues.

At 2614, unforwardable messages and internally-gener-
ated messages are dequeued from the service queues 2546-
2552 and processed by respective service processes 2554-
2560. As messages are dequeued from the service queues
2546-2552, if a service queue becomes less than the prede-
termined fraction full, the service controller 2562 dequeues
an additional one or more messages from the corresponding
traffic engineering queue 2538-2544 to “top up” the service
queue, up to the predetermined fraction of full.

The service processes 2554-2560 operate at rates deter-
mined by available processing power and number of avail-
able processors. Thus, the service queues 2546-2552 are
“topped up” at a rate naturally determined by the rate at
which the service processes 2554-2560 operate, without
requiring any rate-limiting mechanism, which might be set
too strictly or too loosely. Consequently, the service pro-
cesses 2554-2560 are provided a steady flow of messages,
assuming there is work to do, without being starved or
overflowed.

FIG. 27 is a flowchart schematically illustrating opera-
tions performed as part of operation 2608 (FIG. 26), where
unforwardable messages are dequeued from the receive
queues 2508-2512 and enqueued to the traffic engineering
queues 2538-2544. At 2700, protocol portions of the mes-
sage are analyzed. At 2702, if, as a result of the analysis, the
message is found to be an ARP message, control passes to
2704, where the message is enqueued to one of the ARP
traffic engineering queues 2538. The particular ARP traffic
engineering queue 2538 to which the ARP message is
enqueued may be selected based the processor associated
with the receive queue 2508-2512, from which the message
was dequeued.

At 2706, if, as a result of the analysis, the message is
found to be a BFD message, control passes to 2708, where
the message is enqueued to one of the BFD traffic engineer-
ing queues 2540. The particular BFD traffic engineering

10

15

20

25

30

35

40

45

50

55

60

65

22

queue 2540 to which the BFD message is enqueued may be
selected based the processor associated with the receive
queue 2508-2512, from which the message was dequeued.

At 2710, if, as a result of the analysis, the message is
found to be a routing message, control passes to 2712, where
the message is enqueued to one of the routing traffic engi-
neering queues 2552. The particular routing traffic engineer-
ing queue 2552 to which the routing message is enqueued
may be selected based the processor associated with the
receive queue 2508-2512, from which the message was
dequeued.

As noted, other protocols may be similarly processes, as
exemplified at 2714 where, as a result of the analysis, the
message is found to be a of another protocol, and control
passes to 2712, where the message is enqueued to another
traffic engineering queue. The particular routing traffic engi-
neering queue to which the message is enqueued may be
selected based the processor associated with the receive
queue 2508-2512, from which the message was dequeued.

FIG. 28 is a flowchart schematically illustrating opera-
tions performed as part of operation 2606 (FIG. 26), where
forwardable messages are dequeued from the receive queues
2508-2512 and enqueued to the transmit queues 2520-2524.
At 2800, an address portion of a received message is
compared to data stored in the flow table 2530. At 2802, if
the compared portion matches an entry in the flow table
2530, control passes to 2804, where the message is deemed
to be forwardable and is enqueued to one of the transmit
queues 2520-2524. Otherwise, control passes to 2806, where
the message is deemed to be unforwardable, at least without
processing, and the message is enqueued to a flow setup
traffic engineering queue 2542.

FIGS. 29, 30, 31 and 32 are flowcharts schematically
illustrating operations performed as part of operation 2614
(FIG. 26), where unforwardable messages and internally-
generated messages are dequeued from the service queues
2546-2552 and processed by respective service processes
2554-2560. At 2900, 3000, 3100 and 3200, a message is
dequeued from a respective service queue, i.e., the ARP
service queue 2546, the BFD service queue 2548, the flow
setup service queue 2550 or the routing service queue 2552.
At 2902, 3002, 3102 and 3202, the message is processed by
the respective service process, i.e., the ARD service process
2554, the BFD service process 2556, the flow setup service
process 2558 or the routing service process 2560.

FIG. 32 is a flowchart schematically illustrating optional
operations performed by the router 2500. At 3300, each ARP
traffic engineering queue may be associated with a different
one of the P processors. At 3302, each BFD traffic engi-
neering queue may be associated with a different one of the
P processors. At 3304, each flow setup traffic engineering
queue may be associated with a different one of the P
processors. At 3306, each routing traffic engineering queue
may be associated with a different one of the P processors.

The self-protecting router described herein may be stored
on a suitable computer storage medium, such as a disk drive,
as a complete operating system and application program
image and executed by a virtual machine, as described with
respect to FIG. 24, or natively on “bare metal” commercial
off-the-shelf (COTS) hardware. Similarly, the self-protect-
ing router may be implemented on dedicated-function hard-
ware.

Embodiments of the present invention may be deployed in
a stateful router, which is described herein.

Stateful Routing

In certain exemplary embodiments, at least some of the
routers in the communication system are specially config-

PATENT

REEL: 063822 FRAME: 0583

US 10,009,282 B2

23

ured to perform “stateful” routing on packets associated with
a given session between a source node and destination node,
as discussed herein. For convenience, such routers are
referred to above and below as Augmented IP Routers
(AIPRs) or waypoint routers. AIPRs and stateful routing
also are discussed in related incorporated patent applica-
tions, which are incorporated by reference above. For con-
venience, packets being routed from the source node toward
the destination node may be referred to herein as “forward”
packets or the “forward” direction or path, and packets being
routed from the destination node toward the source node
may be referred to herein as “reverse” packets or the
“reverse” direction or path.

Generally speaking, stateful routing is a way to ensure
that subsequent packets of a session follow the same path as
the lead packet of the session through a particular set of
AIPRs in the forward and/or reverse direction. The lead
packet of the session may pass through one or more AIPRs,
either due to traditional routing, or by having each succes-
sive AIPR through which the lead packet passes expressly
select a next hop AIPR if possible. For example, illustrative
embodiments permit an AIPR or similarly enabled router to
use the noted lead session balancer 550 to select an appro-
priate next hop router/AIPR.

The AIPRs through which the lead packet passes insert
special metadata into the lead packet and optionally also into
return packets as needed to allow each AIPR on the path to
determine whether there is a prior node or AIPR on the path
and whether there is a next hop node or AIPR on the path.
To force session packets to traverse the same set of AIPRs,
each successive AIPR typically changes the destination
address field in each session packet to be the address of the
next hop AIPR, and changes the source address field in each
session packet to be its own network address. The last AIPR
prior to the destination node then will change the source and
destination address fields back to the original source and
destination addresses used by the source node. In this way,
session packets can be forwarded, hop by hop, from the
source node through the set of AIPRs to the destination
node, and vice versa.

It should be noted that discussion of an AIPR is but one
embodiment. Other embodiments may perform the process
of FIG. 5 using routers without all the described function-
ality of an AIPR.

Certain aspects of one exemplary stateful routing embodi-
ment are now described with reference to FIGS. 7-15. FIG.
7 schematically shows a hypothetical internet that includes
conventional routers and AIPRs, according to one exem-
plary embodiment of the present invention. Among other
things, FIG. 7 illustrates a hypothetical set of interconnected
networks 700, 702, 704 and 706, ie., an internet. Each
network 700-706 includes a number of routers and AIPRs,
not all of which are necessarily shown. Network 700
includes AIPR 1 708 and router 710. Network 700 may be,
for example, a network of a telecommunications carrier.
Network 702 includes a router 712 and AIPR 2 714. Net-
work 702 may be, for example, a network of a first ISP.
Network 704 includes a router 716 and AIPR 3 718. Net-
work 704 may be, for example, the Internet backbone or a
portion thereof. Network 706 includes a router 720, AIPR 4
722 and another router 724. Network 706 may be, for
example, a network of a second ISP. For the sake of this
discussion, the source client node 726 is associated with
fictitious network address 1.1.1.1; AIPR 1 708 is associated
with fictitious network address 2.2.2.2; AIPR 2 714 is
associated with fictitious network address 3.3.3.3; APIR 3
718 is associated with fictitious network address 6.6.6.6;

10

15

20

25

30

35

40

45

50

55

60

65

24

AIPR 4 722 is associated with fictitious network address
4.4.4.4; and destination service node 728 is associated with
fictitious network address 5.5.5.5. It should be noted that the
present invention is not limited to the network shown in FIG.
7 or to any particular network.

FIG. 8 schematically shows an example of lead packet
processing from a source node to a destination node for
stateful routing, in accordance with illustrative embodiments
of the invention. FIG. 9 is a schematic diagram showing
session-related data associated with AIPR 1 708 based on
the lead packet processing of FIG. 8. FIG. 10 is a schematic
diagram showing session-related data associated with AIPR
2 714 based on the lead packet processing of FIG. 8. FIG.
11 is a schematic diagram showing session-related data
associated with AIPR 4 722 based on the lead packet
processing of FIG. 8. FIG. 12 is a schematic diagram
providing an example of session packet processing for an
example packet sent from the source device to the destina-
tion device through the AIPR devices for the session estab-
lished in FIG. 8. FIG. 13 is a schematic diagram providing
an example of session packet processing for a return packet
sent by the destination device to the source device through
the AIPR devices for the session established in FIG. 8.

In this example, each AIPR is presumed to have a priori
knowledge of the other AIPRs in the network in relation to
the network/next hop associations contained in its routing
information base, such that, for example, a particular AIPR
knows not only the outgoing port for a particular destination
network address, but also the next waypoint AIPR (if any)
to use for that destination network address.

As noted above, in stateful routing, all forward packets
associated with a particular session are made to follow the
same path through a given set of AIPRs on their way from
the source client node 726 to the destination service node
728. In a similar manner, all return packets associated with
the session typically (but not necessarily, are made to
traverse the same set of AIPRs in reverse order on their way
from the destination service node 728 to the source client
node 726.

Assume the source client node 726 initiates a session with
the destination service node 728. For example, the source
client node 726 may request a web page, and the destination
service node 728 may include a web server. The source
client node 726 may, for example, be part of a first local area
network (LAN) (not shown) within a first corporation, and
the LAN may be connected to the telecommunications
carrier network 700 via a gateway router 730 operated by the
corporation. Similarly, the destination service node 728 may
be operated by a second corporation, and it may be part of
a second LAN (not shown) coupled to the network 706 of
the second ISP via a gateway router 732 operated by the
second corporation.

To establish a communication session between the source
client node 726 and the destination service node 728, the
source client node 726 typically transmits a lead packet for
the session, which generally initiates a communication
exchange between the source client node 726 and the
destination service node 728. This allows subsequent ses-
sion-related packets to be exchanged by the two nodes. The
type of lead packet will depend on the protocol(s) being used
by the source and destination nodes. For the example used
herein, TCP/IP-based communications are assumed, in
which case the lead packet may include a TCP SYN message
carried in an IP datagram. This lead packet typically will
include a source address equal to the IP address of the source
client node 726 (i.e., 1.1.1.1), a destination address equal to
the IP address of the destination service node 728 (i.e.,

PATENT

REEL: 063822 FRAME: 0584

US 10,009,282 B2

25

5.5.5.5), and various types of Transport Layer information
including a source port number, a destination port number,
and a protocol identifier. For convenience, the combination
of source address, source port number, destination address,
destination port number, and protocol identifier in a packet
is referred to hereinafter collectively as a “S-tuple” and is
used in various exemplary embodiments as a session iden-
tifier for “stateful” routing, as discussed below.

FIG. 8 shows an exemplary lead packet 801 transmitted
by the source client node 726. In this example, the lead
packet 801 includes a source address (SA) of 1.1.1.1; a
source port number (SP) of 10; a destination address (DA)
of 5.5.5.5; a destination port number (DP) of 20; and a
protocol identifier (PR) of 100.

The lead packet 801 may be routed naturally and there-
fore, depending on various factors, the lead packet may or
may not reach an AIPR on its way from the source node to
the destination node. Thus, waypoints are not necessarily
predetermined before the lead packet is transmitted by the
source node. However, in some exemplary embodiments, a
particular AIPR (e.g., AIPR 1 708 in FIG. 7) may be
configured as the default router/gateway for the source node,
in which case the lead packet is virtually assured to reach an
AIPR.

Assume the lead packet 801 reaches AIPR 1 708 before it
reaches network 702, 704 or 706. AIPR 1 708 automatically
identifies the lead packet as being an initial packet of a new
session (in this example, referred to as “Session X”’). AIPR
1 708 may use various techniques to identify the beginning
of a session, as discussed in more detail below. For example
AIPR 1 708 may identify the beginning of the session based
on the 5-tuple of information in the lead packet. AIPR 1 708
also determines that the lead packet 801 is not a modified
lead packet containing session metadata. Therefore, AIPR 1
708 determines that it is the first waypoint AIPR for Session
X and stores an indicator so that it will process subsequent
packets associated with the session as the first waypoint
AIPR. This is represented in FIG. 9 as “Flag=First Waypoint
AIPR.”

AIPR 1 708 stores 5-tuple information from the received
lead packet 801 as the Return Association (RA) for Session
X. This is represented in FIG. 9 as “Return Association”
information. For convenience, the source address, source
port number, destination address, destination port number,
and protocol identifier information associated with a par-
ticular session is referred to in FIGS. 9-11 as session source
address (8SA), session source port number (SSP), session
destination address (SDA), session destination port number
(SDP), and session protocol identifier (SPR), respectively.

To forward a modified lead packet (i.e., Modified Lead
Packet 802) over an outgoing interface, AIPR 1 708 accesses
its routing information base to look up routing information
based on the original destination address of 5.5.5.5 (e.g.,
outgoing interface and next node information). In this
example, AIPR 1 708 identifies AIPR 2 714 as the next
waypoint AIPR based on the original destination address of
5.5.5.5. In certain exemplary embodiments, AIPR 1 708 then
assigns a source port number and a destination port number
for outgoing packets associated with the session to permit
more than 65,535 sessions to be supported concurrently (in
this example, source port number 30 and destination port
number 40) and stores the resulting S-tuple as the Forward
Association (FA) for outgoing packets associated with the
session. This is shown in FIG. 9 as “Forward Association”
information. Implicitly, the network address of AIPR 1 708
(i.e., 2.2.2.2) will be the source address for session-related
packets forwarded over an outgoing interface.

10

15

20

25

30

35

40

45

50

55

60

65

26

Iustrative embodiments may identify the next AIPR in
any of a variety of manners. For example, the AIPR may
have a local session balancer 550 that identifies a plurality
of next nodes (i.e., potential next hop node), which may
include all AIPRs, both AIPRs and routers, or in some cases
justrouters without AIPR functionality. The session balancer
550 then may select the next hop node, whether it is an AIPR
or a router without AIPR functionality (preferably leading to
an AIPR though), in accordance with the process of FIG. 5.

To force the lead packet to reach next waypoint AIPR 2
714 (as opposed to being randomly routed by the routers in
the network), AIPR 1 708 modifies the destination address
in the lead packet to the IP address of AIPR 2 714 (i.e.,
3.3.3.3). In this example, AIPR 1 708 also modifies the
source address in the lead packet to its own IP address (i.e.,
2.2.2.2) so that AIPR 2 714 can route return packets back to
AIPR 1 708. Also in this example, AIPR 1 708 modifies the
source port and destination port fields to the assigned values.
Importantly, AIPR 1 708 also modifies the lead packet to
include a section of metadata including the original source
address, destination address, source port, destination port,
and protocol identifier from the original lead packet 801. As
discussed below, this metadata is propagated to each suc-
cessive AIPR on the path to allow each AIPR to maintain
session information and also to allow the final AIPR on the
path to restore the lead packet to its original form. AIPR 1
708 establishes and maintains various session parameters so
that it can identify subsequent session packets and forward
such session packets to AIPR 2 714 for stateful routing.
AIPR 1708 then transmits the modified lead packet 802 into
the network toward AIPR 2 714 via the selected outgoing
interface. In certain exemplary embodiments, AIPR 1 708
may establish a flow that associates the session with the
incoming interface over which the lead packet 801 was
received and the outgoing interface over which the modified
lead packet 802 is forwarded.

FIG. 8 shows an exemplary modified lead packet 802
transmitted by AIPR 1 708. The modified lead packet 802
includes the network address of AIPR 1 708 (i.e., 2.2.2.2) as
the source address (SA), the assigned session source port
number (SSP) of 30 as the source port number (SP), the
network address of AIPR 2 714 (i.e., 3.3.3.3) as the desti-
nation address (DA), the assigned session destination port
number (SDP) of 40 as the destination port number (DP),
and the received protocol identifier of 100 as the protocol
identifier (PR). AIPR 1 708 also includes the original source
address (OSA) of 1.1.1.1, the original source port number
(OSP) of 10, the original destination address (ODA) of
5.5.5.5, and the original destination port number (ODP) of
20 from the original lead packet 801 as metadata in the
modified lead packet 802. This information is shown in
parentheses to represent that it is metadata that has been
added to the lead packet.

In this example, AIPR 1 708 forwards the modified lead
packet 802 to AIPR 2 714 via router 710. The modified lead
packet 802 packet may traverse other routers between AIPR
1 708 and AIPR 2 714. Because the destination address in
the modified lead packet 802 is set to the IP address of AIPR
2 714 (i.e., 3.3.3.3), the modified lead packet should even-
tually reach AIPR 2 714.

AIPR 2 714 automatically identifies the modified lead
packet 802 as being an initial packet of the session, but also
identifies that AIPR 2 714 is not the first waypoint for the
session because the modified lead packet already contains
metadata inserted by AIPR 1 708. AIPR 2 714 therefore
becomes the second waypoint along the path the lead packet
eventually follows.

PATENT

REEL: 063822 FRAME: 0585

US 10,009,282 B2

27

AIPR 2 714 stores 5-tuple information from the received
modified lead packet 802 as the Return Association (RA) for
Session X. This is represented in FIG. 10 as “Return
Association” information.

To forward a modified lead packet (i.e., Modified Lead
Packet 803) over an outgoing interface, AIPR 2 714 accesses
its routing information base to look up routing information
based on the original destination address of 5.5.5.5 (e.g.,
outgoing interface and next node information). In this
example, AIPR 2 714 identifies two possible next hop AIPRs
for the lead packet to reach destination service node 728,
namely AIPR 3 718 and AIPR 4 722. Assume AIPR 2 714
selects AIPR 4 722 as the next hop AIPR for the path (e.g.,
using the process of FIG. 5). AIPR 2 714 therefore deter-
mines that it is an intermediate waypoint AIPR for the
session, i.e., it is neither the first waypoint AIPR nor the last
waypoint AIPR. AIPR 2 714 stores an indicator so that it will
process subsequent packets associated with the session as an
intermediate waypoint AIPR. This is represented in FIG. 10
as “Flag=Intermediate Waypoint AIPR.” In this example,
AIPR 2 714 then assigns a source port number and a
destination port number for outgoing packets associated
with the session (in this example, source port number 50 and
destination port number 60) and stores the resulting 5-tuple
as the Forward Association (FA) for outgoing packets asso-
ciated with the session. This is shown in FIG. 10 as
“Forward Association” information. Implicitly, the network
address of AIPR 2 714 (i.e., 3.3.3.3) will be the source
address for session-related packets forwarded over an out-
going interface.

To force the modified lead packet 803 to reach AIPR 4
722 (as opposed to being randomly routed by the routers in
the network), AIPR 2 714 modifies the destination address
in the lead packet to the IP address of AIPR 4 722 (i.e.,
4.44.4). In this example, AIPR 2 714 also modifies the
source address in the lead packet to its own IP address (i.e.,
3.3.3.3) so that AIPR 4 722 can route return packets back to
AIPR 2 714. Also in this example, AIPR 2 714 modifies the
source port and destination port fields to the assigned values.
Importantly, AIPR 2 714 leaves the section of metadata
including the original source address, destination address,
source port, destination port, and protocol identifier. AIPR 2
714 establishes and maintains various session parameters so
that it can identify subsequent session packets and forward
such session packets to AIPR 4 722 for stateful routing.
ATPR 2 714 then transmits the modified lead packet 803 into
the network toward AIPR 4 722 via the selected outgoing
interface. In certain exemplary embodiments, AIPR 2 714
may establish a flow that associates the session with the
incoming interface over which the modified lead packet 802
was received and the outgoing interface over which the
modified lead packet 803 is forwarded.

FIG. 8 shows an exemplary modified lead packet 803
transmitted by AIPR 2 714. The modified lead packet 803
includes the network address of AIPR 2 714 (i.e., 3.3.3.3) as
the source address (SA), the assigned session source port
number (SSP) of 50 as the source port number (SP), the
network address of AIPR 4 722 (i.e., 4.4.4.4) as the desti-
nation address (DA), the assigned session destination port
number (SDP) of 60 as the destination port number (DP),
and the received protocol identifier of 100 as the protocol
identifier (PR). AIPR 2 714 also includes the original source
address (OSA) of 1.1.1.1, the original source port number
(OSP) of 10, the original destination address (ODA) of
5.5.5.5, and the original destination port number (ODP) of
20 from the modified lead packet 802 as metadata in the

20

30

40

45

28

modified lead packet 803. This information is shown in
parentheses to represent that it is metadata that has been
added to the lead packet.

In this example, AIPR 2 714 forwards the modified lead
packet 803 to AIPR 4 722 via router 720. The modified lead
packet 803 may traverse other routers between AIPR 2 714
and AIPR 4 722. Because the destination address in the
modified lead packet 803 is set to the IP address of AIPR 4
722 (ie., 4.4.4.4), the modified lead packet should eventu-
ally reach AIPR 4 722.

AIPR 4 722 automatically identifies the modified lead
packet as being an initial packet of the session, but also
identifies that AIPR 4 722 is not the first waypoint for the
session because the modified lead packet already contains
metadata inserted by AIPR 2 714. AIPR 4 722 therefore
becomes the third waypoint along the path the lead packet
eventually follows.

AIPR 4 722 stores 5-tuple information from the received
modified lead packet 803 as the Return Association (RA) for
Session X. This is represented in FIG. 11 as “Return
Association” information.

To forward a modified lead packet (i.e., Modified Lead
Packet 804) over an outgoing interface, AIPR 4 722 accesses
its routing information base to look up routing information
based on the original destination address of 5.5.5.5 (e.g.,
outgoing interface and next node information). AIPR 4 722
determines that there is no next hop AIPR for the lead packet
to reach destination service node 728. AIPR 4 722 therefore
determines that it is the last waypoint AIPR on the path.
AIPR 4 722 stores an indicator so that it will process
subsequent packets associated with the session as a final
waypoint AIPR. This is represented in FIG. 11 as
“Flag=Final Waypoint AIPR.” AIPR 4 722 then stores the
original 5-tuple information as the Forward Association
(FA) for outgoing packets associated with the session. This
is shown in FIG. 11 as “Forward Association” information.

As the last waypoint AIPR, AIPR 4 722 performs special
processing on the lead packet. Specifically, AIPR 4 722
removes the metadata section from the lead packet and
restores the source address, destination address, source port,
destination port, and protocol identifier fields in the lead
packet back to the original values transmitted by source
client node 726, which it obtains from the metadata in
modified lead packet 803. AIPR 4 722 establishes and
maintains various session parameters so that it can identify
subsequent session packets and forward such session pack-
ets to destination service node 728 for stateful routing. ATPR
4 722 then transmits the restored lead packet 804 into the
network toward destination service node 728 via the selected
outgoing interface. In certain exemplary embodiments,
AIPR 4 722 may establish a flow that associates the session
with the incoming interface over which the lead packet 803
was received and the outgoing interface over which the
restored lead packet 804 is forwarded.

FIG. 8 shows an exemplary restored lead packet 804
transmitted by AIPR 4 722. The restored lead packet 804
includes the original source address of 1.1.1.1 as the source
address (SA), the original source port number (SSP) of 10 as
the source port number (SP), the original destination device
address of 5.5.5.5 as the destination address (DA), the
original destination port number of 20 as the destination port
number (DP), and the received/original protocol identifier of
100 as the protocol identifier (PR).

In this example, AIPR 4 722 forwards the restored lead
packet 804 to destination service node 728 via routers 724
and 732. The restored lead packet 804 may traverse other
routers between AIPR 4 722 and destination service node

PATENT

REEL: 063822 FRAME: 0586

US 10,009,282 B2

29

728. Because the destination address in the restored lead
packet 804 is set to the IP address of destination service node
728 (i.e., 5.5.5.5), the restored lead packet should eventually
reach destination service node 728.

Thus, as a lead packet of the session traverses the internet
when the session is established, each AIPR (waypoint) that
the packet traverses records information that eventually
enables the waypoint to be able to identify its immediately
previous waypoint and its immediately next waypoint, with
respect to the session.

While all AIPRs in this example establish the session
using the process of FIG. 5, some embodiments may have
AIPRs that do not use that process. For example, some
AIPRs may use the process of FIG. 5, while others may use
other techniques to determine the next hop node (e.g.,
natural routing or a round robin technique).

It should be noted that each node can store information for
multiple sessions. For example, FIGS. 9-11 schematically
show information stored for additional Sessions Y and Z. As
for Session X, the information stored for Sessions Y and Z
includes Return Association (RA) information, Forward
Association (FA) information, and a Flag. It should be noted
that the AIPRs may have different roles in different sessions,
e.g., whereas AIPR 1 708 is the first waypoint AIPR and
AIPR 4 722 is the final waypoint AIPR in the example of
FIG. 8, AIPR 1 708 could be the final waypoint AIPR for
Session Y and could be an intermediate waypoint AIPR for
Session Z.

After the lead packet has been processed and the session-
related information has been established by the waypoint
AIPRs hop-by-hop from the source client node 726 to the
destination service node 728, additional session packets may
be exchanged between the source client node 726 and the
destination service node 728 to establish an end-to-end
communication session between the source client node 726
and the destination service node 728.

FIG. 12 is a schematic diagram providing an example of
session packet processing for an example session packet sent
from the source client node 726 to the destination service
node 728 through the AIPR devices for the session estab-
lished in FIG. 8. Here, the source client node 726 sends a
session packet 1201 having a source address (SA) of 1.1.1.1;
a source port number of 10 (i.e., the original SP); a desti-
nation address of 5.5.5.5; a destination port number of 20
(i.e., the original DP); and a protocol identifier of 100.
Because AIPR 1 708 is the default router/gateway for source
1.1.1.1, the session packet 1201 is routed by the network to
AIPR 1 708.

Based on the S5-tuple information contained in the
received session packet 1201 and the Return Association
stored in memory by AIPR 1 708, AIPR 1 708 is able to
determine that the received session packet 1201 is associated
with Session X. AIPR 1 708 forwards the packet according
to the Forward Association information associated with
Session X as shown in FIG. 9. Specifically, the forwarded
session packet 1202 transmitted by AIPR 1 708 has a source
address (SA) 0f 2.2.2.2; a source port number of 30 (i.e., the
SSP assigned by AIPR 1 708); a destination address of
3.33.3; a destination port number of 40 (i.e., the SDP
assigned by AIPR 1 708); and a protocol identifier of 100.

Since the forwarded session packet 1202 has a destination
address of 3.3.3.3 (i.e., the network address of AIPR 2 714),
the session packet 1202 is routed to AIPR 2 714. Based on
the 5-tuple information contained in the received session
packet 1202 and the Return Association stored in memory
by AIPR 2 714, AIPR 2 714 is able to determine that the
received session packet 1202 is associated with Session X.

10

15

20

25

30

35

40

45

50

55

60

65

30

AIPR 2 714 forwards the packet according to the Forward
Association information associated with Session X as shown
in FIG. 10. Specifically, the forwarded session packet 1203
transmitted by AIPR 2 714 has a source address (SA) of
3.3.3.3; a source port number of 50 (i.e., the SSP assigned
by AIPR 2 714); a destination address of 4.4.4.4; a destina-
tion port number of 60 (i.e., the SDP assigned by AIPR 2
714); and a protocol identifier of 100.

Since the forwarded session packet 1203 has a destination
address of 4.4.4.4 (i.e., the network address of AIPR 4 722),
the session packet 1203 is routed to AIPR 4 722. Based on
the S-tuple information contained in the received session
packet 1203 and the Return Association stored in memory
by AIPR 4 722, AIPR 4 722 is able to determine that the
received session packet 1203 is associated with Session X.
AIPR 4 722 forwards the packet according to the Forward
Association information associated with Session X as shown
in FIG. 11.

Specifically, the forwarded session packet 1204 transmit-
ted by AIPR 4 722 has a source address (SA) of 1.1.1.1 (i.e.,
the original source address); a source port number of 10 (i.e.,
the original SP); a destination address of 5.5.5.5 (i.e., the
original destination address); a destination port number of
20 (i.e., the original DP); and a protocol identifier of 100.

Since the forwarded session packet 1204 has a destination
address of 5.5.5.5 (i.e., the network address of destination
service node 728), the forwarded session packet 1204 is
routed to the destination service node 728, which processes
the packet.

FIG. 13 is a schematic diagram providing an example of
session packet processing for a return packet sent by the
destination device to the source device through the AIPR
devices for the session established in FIG. 8.

Here, the destination service node 728 sends a return
packet 1301 having a source address (SA) of 5.5.5.5; a
source port number of 20 (i.e., the original DP); a destination
address of 1.1.1.1 (i.e., the original source address); a
destination port number of 10 (i.e., the original SP); and a
protocol identifier of 100. In this example, AIPR 4 722 is the
default router/gateway for destination 5.5.5.5, so the return
packet 1301 is routed by the network to AIPR 4 722.

Based on the 5-tuple information contained in the
received return packet 1301 and the Forward Association
stored in memory by AIPR 4 722, AIPR 4 722 is able to
determine that the received return packet 1301 is associated
with Session X. ATPR 4 722 forwards the packet according
to the Return Association information associated with Ses-
sion X as shown in FIG. 11. Specifically, the to forwarded
return packet 1302 transmitted by AIPR 4 722 has a source
address (SA) of 4.4.4.4; a source port number of 60 (i.e., the
SDP assigned by AIPR 2 714); a destination address of
3.3.3.3; a destination port number of 50 (i.e., the SSP
assigned by AIPR 2 714); and a protocol identifier of 100.

Since the forwarded return packet 1302 has a destination
address of 3.3.3.3 (i.e., the network address of AIPR 2 714),
the return packet 1302 is routed to AIPR 2 714. Based on the
S-tuple information contained in the received return packet
1302 and the Forward Association stored in memory by
AIPR 2 714, AIPR 2 714 is able to determine that the
received return packet 1302 is associated with Session X.
AIPR 2 714 forwards the packet according to the Return
Association information associated with Session X as shown
in FIG. 10. Specifically, the forwarded return packet 1303
transmitted by AIPR 2 714 has a source address (SA) of
3.3.3.3; a source port number of 40 (i.e., the SDP assigned
by AIPR 1 708); a destination address of 2.2.2.2; a destina-

PATENT

REEL: 063822 FRAME: 0587

US 10,009,282 B2

31
tion port number of 30 (i.e., the SSP assigned by AIPR 1
708); and a protocol identifier of 100.

Since the forwarded return packet 1303 has a destination
address of 2.2.2.2 (i.e., the network address of AIPR 1 708),
the return packet 1303 is routed to AIPR 1 708. Based on the
S-tuple information contained in the received return packet
1303 and the Forward Association stored in memory by
AIPR 1 708, AIPR 1 708 is able to determine that the
received return packet 1303 is associated with Session X.
AIPR 1 708 forwards the packet according to the Return
Association information associated with Session X as shown
in FIG. 9. Specifically, the forwarded return packet 1304
transmitted by AIPR 1 708 has a source address (SA) of
5.5.5.5; a source port number of 20 (i.e., the original DP); a
destination address of 1.1.1.1; a destination port number of
10 (i.e., the original SP); and a protocol identifier of 100.

Since the forwarded return packet 1304 has a destination
address of 1.1.1.1 (i.e., the network address of source client
node 726), the forwarded return packet 1304 is routed to the
source client node 726, which processes the packet.

It should be noted that an AIPR can assign source and
destination port numbers in any of a variety of ways (e.g.,
sequentially, non-sequentially, and randomly).

FIG. 14 is a flowchart schematically illustrating some lead
packet processing operations performed by an intermediate
AIPR, in accordance with one exemplary embodiment.

In block 1402, an intermediate AIPR obtains the lead
packet of a session. In block 1404, the AIPR stores 5-tuple
information from the received packet as Return Association
information for the session.

In block 1405, the AIPR determines the next node/
waypoint AIPR based on the original destination address.
This typically involves accessing the AIPR’s routing infor-
mation base from which the AIPR can determine the out-
going port and next waypoint AIPR (if any) for the original
destination address. As noted above, this preferably involves
use of the session balancer 550 and the process of FIG. 5.

In block 1406, the AIPR assigns a session source port
number and a session destination port number.

In block 1407, the AIPR stores 5-tuple information for a
Forward Association. The Forward Association includes the
AIPR’s network address as the source address, the next node
address as the destination address, the assigned session
source and destination port numbers, and the original pro-
tocol identifier.

In block 1408, the AIPR creates a modified lead packet
including the ATPR network address as the source address,
the next node address as the destination address, the
assigned session source and destination port numbers, and
the original protocol identifier, and also including the origi-
nal source and destination addresses and the original source
and destination port numbers as metadata. In block 1410, the
AIPR forwards the modified lead packet.

It should be noted that the flowchart of FIG. 14 applies to
intermediate AIPRs other than the final waypoint AIPR,
which performs slightly different processing as discussed
above (e.g., the final waypoint AIPR uses the original source
address, original source port number, original destination
address, and original destination port number contained in
the metadata of the received packet for its Forward Asso-
ciation information).

FIG. 15 is a flowchart schematically illustrating some
packet processing operations performed by an AIPR, in
accordance with one exemplary embodiment. In block 1502,
the AIPR receives a session-related packet. In block 1504,
the AIPR determines if the session-related packet is being
routed to or from the destination device. If the session-

10

20

25

30

35

40

45

50

55

60

65

32

related packet is being routed to the destination device in
block 1506, then the AIPR uses the Final Forward Associa-
tion information to produce a modified session packet, in
block 1508. If, however, the session-related packet is being
routed from the destination device in block 1506, then the
AIPR uses the Final Return Association information to
produce a modified session packet, in block 1510. In either
case, the AIPR forwards the modified session packet based
on the modified destination address, in block 1512.

Stateful routing can be accomplished without presuming
that each AIPR has a priori knowledge of the other AIPRs in
the network in relation to the network/next hop associations
contained in its routing information base. For example, a
particular AIPR may not know the next waypoint AIPR (if
any) to use for the destination network address. Rather, each
waypoint AIPR can determine the presence or absence of a
next waypoint AIPR after forwarding a modified lead
packet.

By way of example with reference to FIG. 8, assuming
AIPR 1 708 receives the original lead packet 801 from
source client node 726, AIPR 1 708 identifies the lead packet
801 as the lead packet for a new session as discussed above,
and also determines that the lead packet 801 is not a
modified lead packet containing session metadata. There-
fore, AIPR 1 708 determines that it is the first waypoint
AIPR for the session. AIPR 1 708 stores information from
the received lead packet 801, such as the source address, the
source port number, the destination port number, and the
protocol identifier.

Since AIPR 1 708 is the first waypoint AIPR, AIPR 1 708
is able to determine that future session-related packets
received from the source client node 726 will have a source
address (SA) of 1.1.1.1; a source port number of 10; a
destination address of 5.5.5.5; a destination port number of
20; and a protocol identifier of 100.

To forward a modified lead packet, AIPR 1 708 does not
know whether or not there is a next hop AIPR through which
the modified lead packet will traverse. Therefore, rather than
changing both the source address field and the destination
address field in the lead packet, AIPR 1 708 may change just
the source address field to be the network address of AIPR
1708 (i.e., 2.2.2.2) and may insert any assigned source and
destination port numbers as metadata rather than inserting
the assigned source and destination port numbers in the
source and destination port number fields of the modified
lead packet and carrying the original source and destination
port numbers as metadata as in the exemplary embodiment
discussed above. Thus, for example, the modified lead
packet transmitted by AIPR 1 708 may include the following
information:

SA 2222

SP 10

DA 5555

DP 20

PR 100

SSP 30 (session source port number assigned by AIPR 1 708)
SDp 40 (session destination port number assigned by AIPR 1 708)

In this way, the modified lead packet transmitted by AIPR
1 708 will be routed based on the destination address of
5.5.5.5 and therefore may or may not traverse another AIPR
on its way to destination service node 728. At this point,
AIPR 1 708 does not know the destination address that will
be used for session-related packets forwarded over an out-
going interface (since AIPR 1 708 does not determine until

PATENT

REEL: 063822 FRAME: 0588

US 10,009,282 B2

33

later whether or not it is the final waypoint AIPR between
the source client node 726 and the destination service node
728).

Assume that the modified lead packet transmitted by
AIPR 1 708 reaches AIPR 2 714. AIPR 2 714 identifies the
modified lead packet as a lead packet for a new session as
discussed above, and also determines that the modified lead
packet is a modified lead packet containing session meta-
data. Therefore, AIPR 2 714 determines that it is not the first
waypoint AIPR for the session. At this time, AIPR 2 714 is
unable to determine whether or not it is the final waypoint
AIPR for the session. AIPR 2 714 stores information from
the received modified lead packet, such as the source
address, the source port number, the destination port num-
ber, and the protocol identifier.

Since AIPR 2 714 is not the first waypoint AIPR, AIPR 2
714 is able to determine that future session-related packets
received from AIPR 1 708 will have a source address (SA)
01'2.2.2.2; a source port number of 30 (i.e., the SSP assigned
by AIPR 1 708); destination address of 3.3.3.3; a destination
port number of 40 (i.e., the SDP assigned by AIPR 1 708);
and a protocol identifier of 100.

To forward a modified lead packet, AIPR 2 714 does not
know whether or not there is a next hop AIPR through which
the modified lead packet will traverse. Therefore, rather than
changing both the source address field and the destination
address field in the lead packet, AIPR 2 714 may change just
the source address field to be the network address of AIPR
2714 (i.e., 3.3.3.3) and may insert any assigned source and
destination port numbers as metadata rather than inserting
the assigned source and destination port numbers in the
source and destination port number fields of the modified
lead packet and carrying the original source and destination
port numbers as metadata as in the exemplary embodiment
discussed above. Thus, for example, the modified lead
packet transmitted by AIPR 2 714 may include the following
information:

10

15

20

25

30

34
a destination port number of 40 (i.e., the SDP assigned by
AIPR 1 708); and a protocol identifier of 100.

Assume that the modified lead packet transmitted by
AIPR 2 714 reaches AIPR 4 722. AIPR 4 722 identifies the
modified lead packet as a lead packet for a new session as
discussed above, and also determines that the modified lead
packet is a modified lead packet containing session meta-
data. Therefore, AIPR 4 722 determines that it is not the first
waypoint AIPR for the session. At this time, AIPR 4 722 is
unable to determine whether or not it is the final waypoint
AIPR for the session. AIPR 4 722 stores information from
the received modified lead packet, such as the source
address, the source port number, the destination port num-
ber, and the protocol identifier.

Since AIPR 4 722 is not the first waypoint AIPR, AIPR 4
722 is able to determine that future session-related packets
received from AIPR 2 714 will have a source address (SA)
01'3.3.3.3; a source port number of 50 (i.e., the SSP assigned
by AIPR 2 714); destination address of 4.4.4.4; a destination
port number of 60 (i.e., the SDP assigned by AIPR 2 714);
and a protocol identifier of 100.

To forward a modified lead packet, AIPR 4 722 does not
know whether or not there is a next hop AIPR through which
the modified lead packet will traverse. Therefore, rather than
changing both the source address field and the destination
address field in the lead packet, AIPR 4 722 may change just
the source address field to be the network address of AIPR
4722 (i.e., 4.4.4.4) and may insert any assigned source and
destination port numbers as metadata rather than inserting
the assigned source and destination port numbers in the
source and destination port number fields of the modified
lead packet and carrying the original source and destination
port numbers as metadata as in the exemplary embodiment
discussed above. Thus, for example, the modified lead
packet transmitted by AIPR 4 722 may include the following
information:

SA 3333

SP 10

DA 5555

DP 20

PR 100

SSP 50 (session source port number assigned by AIPR 2 714)
SDp 60 (session destination port number assigned by AIPR 2 714)

40

45

SA 4444

SP 10

DA 5555

DP 20

PR 100

SSP 70 (session source port number assigned by AIPR 4 722)
SDp 80 (session destination port number assigned by AIPR 4 722)

In this way, the modified lead packet transmitted by ATPR
2 714 will be routed based on the destination address of
5.5.5.5 and therefore may or may not traverse another AIPR
on its way to destination service node 728. At this point,
AIPR 2 714 does not know the destination address that will
be used for session-related packets forwarded over an out-
going interface (since AIPR 2 714 does not determine until
later whether or not it is the final waypoint AIPR between
the source client node 726 and the destination service node
728).

At some point, AIPR 2 714 identifies itself to AIPR 1 708
as a waypoint AIPR for the session (e.g., upon receipt of the
modified lead packet from AIPR 1 708 or in a return packet
associated with the session). This allows AIPR 1 708 to
determine that it is not the final waypoint AIPR and therefore
also allows AIPR 1 708 to determine the forward association
parameters to use for forwarding session-related packets,
i.e., AIPR 1 708 is able to determine that future session-
related packets sent to AIPR 2 714 will have a source
address (SA) of 2.2.2.2; a source port number of 30 (i.e., the
SSP assigned by AIPR 1 708); destination address 0f3.3.3.3;

50

55

In this way, the modified lead packet transmitted by AIPR
4 722 will be routed based on the destination address of
5.5.5.5 and therefore may or may not traverse another AIPR
on its way to destination service node 728. At this point,
AIPR 4 722 does not know the destination address that will
be used for session-related packets forwarded over an out-
going interface (since AIPR 4 722 does not determine until
later whether or not it is the final waypoint AIPR between
the source client node 726 and the destination service node
728).

At some point, AIPR 4 722 identifies itself to AIPR 2 714
as a waypoint AIPR for the session (e.g., upon receipt of the
modified lead packet from AIPR 2 714 or in a return packet
associated with the session). This allows AIPR 2 714 to
determine that it is not the final waypoint AIPR and therefore
also allows AIPR 2 714 to determine the forward association
parameters to use for forwarding session-related packets,
i.e., AIPR 2 714 is able to determine that future session-
related packets sent to AIPR 4 722 will have a source
address (SA) of 3.3.3.3; a source port number of 50 (i.e., the
SSP assigned by AIPR 2 714); destination address of 4.4.4.4;

PATENT

REEL: 063822 FRAME: 0589

US 10,009,282 B2

35
a destination port number of 60 (i.e., the SDP assigned by
AIPR 2 714); and a protocol identifier of 100.

Assume that the modified lead packet transmitted by
AIPR 4 722 reaches the destination service node 728, which
processes the modified lead packet without reference to the
session metadata contained in the packet. Typically, this
includes the destination device sending a reply packet back
toward the source client node 726.

Since AIPR 4 722 receives a packet from the destination
service node 728, as opposed to another waypoint AIPR,
AIPR 4 722 is able to determine that it is the final waypoint
AIPR and therefore also is able to determine the forward
association parameters to use for forwarding session-related
packets, i.e., AIPR 4 722 is able to determine that future
session-related packets sent to the destination service node
728 will have a source address (SA) of 4.4.4.4; a source port
number of 10 (i.e., the original SP); a destination address of
5.5.5.5; a destination port number of 20 (i.e., the original
DP); and a protocol identifier of 100.

After the lead packet has been processed and the session-
related information has been established by the waypoint
AIPRs hop-by-hop from the source client node 726 to the
destination service node 728, additional packets may be
exchanged between the source client node 726 and the
destination service node 728 to establish an end-to-end
communication session between the source client node 726
and the destination service node 728.

Lead Packet Identification in Stateful Session

As noted above, a waypoint should be able to identify a
lead packet of a session. Various techniques may be used to
identify lead packets. Some of these techniques are protocol-

25

30

36

specific. For example, a TCP session is initiated according to
a well-known three-part handshake involving a SYN packet,
a SYN-ACK packet and an ACK packet. By statefully
following packet exchanges between pairs of nodes, a way-
point can identify a beginning of a session and, in many
cases, an end of the session. For example, a TCP session may
be ended by including a FIN flag in a packet and having the
other node send an ACK, or by simply including an RST flag
in a packet. Because each waypoint stores information about
each session, such as the source/destination network address
and port number pairs, the waypoint can identify the session
with which each received packet is associated. The waypoint
can follow the protocol state of each session by monitoring
the messages and flags, such as SYN and FIN, sent by the
endpoints of the session and storing state information about
each session in its database.

It should be noted that a SYN packet may be re-trans-
mitted—each SYN packet does not necessarily initiate a
separate session. However, the waypoint can differentiate
between SYN packets that initiate a session and re-trans-
mitted SYN packets based on, for example, the response
packets.

Where a protocol does not define a packet sequence to end
a session, the waypoint may use a timer. After a predeter-
mined amount of time, during which no packet is handled
for a session, the waypoint may assume the session is ended.
Such a timeout period may also be applied to sessions using
protocols that deline end sequences.

The following table describes exemplary techniques for
identifying the beginning and end of a session, according to
various protocols. Similar techniques may be developed for
other protocols, based on the definitions of the protocols.

TABLE 3

Protocol

Destination Port Technique for Start/End Determination

TCP

UDP-TFTP

UDP-SNMP

UDP-

SYSLOG
UDP-RTP

UDP-RTCP

Any Detect start on the first SYN packet from a new
address/port unique within the TCP protocol’s
guard time between address/port reuse.
Following the TCP state machine to determine
an end (FIN exchange, RS'1, or guard timeout).
Trap on the first RRQ or WRQ message to define
a new session, trap on an undersized DAT
packet for an end of session.

Trap on the message type, including

GetRequest, SetRequest, GetNextRequest,
GetBulkRequest, InformRequest for a start of
session, and monitor the Response for end of
session. For SNMP traps, port 162 is used, and
the flow of data generally travels in the
“reverse” direction.

A single message protocol, thus each message is
a start of session, and end of session.

RTP has a unique header structure, which can be
reviewed/analyzed to identify a start of a
session. This is not always accurate, but if used
in combination with a guard timer on the exact
same five-tuple address, it should work well
enough. The end of session is detected through a
guard timer on the five-tuple session, or a major
change in the RTP header.

RTCP also has a unique header, which can be
reviewed, analyzed, and harvested for analytics.
Each RTCP packet is sent periodically and can
be considered a “start of session” with the
corresponding RTCP response ending the
session. This provides a very high quality way of
getting analytics for RTCP at a network middle
point, without using a Session Border

Controller.

69

161, 162

514

PATENT

REEL: 063822 FRAME: 0590

US 10,009,282 B2

37
TABLE 3-continued

38

Protocol Destination Port Technique for Start/End Determination
UDP-DNS 53 Each DNS query is a single UDP message and
(Nameserver) response. By establishing a forward session (and
subsequent backward session) the Augmented
router gets the entire transaction. This allows
analytics to be gathered and manipulations that
are appropriate at the Augmented router.
UDP-NTP 123 Each DNS query/response is a full session. So,

each query is a start, and each response is an

end.

FIG. 16 is a schematic layout of an Ethernet header 1600,

TABLE 4-continued

including a Destination MAC Address 1602 and an 802.1q 15
VLAN Tag 1604. Data Item Where From Description
FIG. 17 is a schematic layout of an IPv4 header 1700, Sequence TCP Header This is a random number assigned by the client.
including a Protocol field 1702, a Source IP Address 1704 Number It may be updated by a firewall or carrier grade
and a Destlnatlgn IP Address 1706. Th,ere are two com- SYN Bit TCP Header &?ﬁcﬂn the SYN bit is on, and no others, this is
monly-used versions of IP, namely IP version 4 (“IPv4”)and 20 o an initial packet of a session. It may be
1P version 6 (“IPv6”). IPv4 is described in IETF RFC 791, retransmitted if there is no response to the first
which is hereby incorporated herein by reference in its SYN message.
entirety. IPv6 is described in IETF RFC 2460, which is
hereby incorporated herein by reference in its entirety. The 5 The lead packet, and hence the session identifying infor-
main purpose of both versions is to provide unique global mation, can include information from a single field or can
computer addressing to ensure that communicating devices include information from multiple fields. In certain exem-
can identify one another. One of the main distinctions plary embodiments, sessions are based on a “S-tuple” of
between IPv4 and IPv6 is that IPv4 uses 32-bit IP addresses, information including the source IP address, source port
whereas IPv6 utilizes 128 bit IP addresses. In addition, IPv6 5, number, destination IP address, destination port number, and
can support larger datagram sizes. protocol from the IP and TCP headers.
FIG. 18 is a schematic layout of a TCP header 1800,
including a Source Port 1802, a Destination Port 1804, a Augmented IP Router (AIPR)
Sequence Number 1806, a SYN flag 1808 and a FIN flag
1810. TCP is described generally in IETF RFC 793, which 35 FIG. 19 is a schematic block diagram of an exemplary
is hereby incorporated herein by reference in its entirety. AIPR (waypoint) 1900 configured in accordance with illus-
Similar to TCP, the UDP header includes a Source Port field trative embodiments of the invention. The AIPR 1900
and a Destination Port field. UDP is described generally in includes at least two network interfaces 1902 and 1904,
IETF RFC 768, which is hereby incorporated herein by through which the AIPR 1900 may be coupled to two
reference in its entirety. 40 networks. The interfaces 1902 and 1904 may be, for
These packets and the identified fields may be used to example, Ethernet interfaces. The AIPR 1900 may send and
identify the beginning of a session, as summarized in the receive packets via the interfaces 1902 and 1904.
following table. A lead packet identifier 1906 automatically identifies lead
packets, as discussed herein. In general, the lead packet
TABLE 4 45 identifier 1906 identifies a lead packet when the lead packet
identifier 1906 receives a packet related to a session that is
Data Item Where From Description not already represented in the AIPR’s information base
Physical Ethernet This is the actual port that the message was 191(,)’ S]',ICh as a.packet that identifies a new source C,hent/
Interface Header received on, which can be associated or destination service network address/, port number pair. As
discerned by the Destination MAC Address 50 noted, each lead packet is an initial, non-dropped, packet of
Tenant ~ Ethemnet Logical association with a group of computers. a series of packets (session). Each session includes a lead
?:If:er S&D packet and at least one subsequent packet. The lead packet
Address & and all the subsequent packets are sent by the same source
Previous client toward the same destination service, for forward flow
Advertise- 55 control. For forward and backward flow control, all the
Protocol ?Ij’e;teader This defines the protocol in use and, for the packets ,Of the SeSSiO,n are sent by either the source client or
TCP case, it must be set to a value that the destination service toward the other.
corresponds to TCP A session (packet series) manager 1908 is coupled to the
Source IP TP Header Defines the source IP Address of the initial lead packet identifier 1906. For each session, the session
Address packet of a flow. ... 60 manager assigns a unique identifier. The unique identifier
Destina- IP Header Defines the destination IP Address of the initial A "
tion IP packet of a flow, may be, for example, a combination of the network address
Address of the AIPR 1900 or of the interface 1902, in combination
Source TCP or UDP Defines the ﬁov&l/ instance fromlthe source. This with a first port number assigned by the session manager
Port Header may reflect a client, a firewall in front of the 1908 for receiving subsequent packets of this session. The
client, or a carrier grade NAT. . ! A 2 q | p
Destina- TCP or UDP This defines the desired service requested, such 65 umque identifier may further include the network address of
tion Port Header as 80 for HTTP. the AIPR 1900 or of the other interface 1904, in combination

with a second port number assigned by the session manager

PATENT

REEL: 063822 FRAME: 0591

US 10,009,282 B2

39

1908 for transmitting the lead packet and subsequent pack-
ets. This unique identifier is associated with the session. The
session manager 1908 stores information about the session
in an information base 1910. This information may include
the unique identifier, in association with the original source
client/destination service network address/port number
pairs.

FIG. 20 is a schematic layout of an exemplary waypoint
information base 2000. Each row represents a session. A
session identification column 2002 includes sub-columns for
the source client 2004 and the destination service 2006. For
each client 2004, its network address 2008 and port number
2010 are stored. For each destination service 2006, its
network address 2012 and port number 2014 are stored. This
information is extracted from the lead packet.

State information about the session may be stored in a
state column 2015. This information may be used to state-
fully follow a series of packets, such as when a session is
being initiated or ended.

A backward column includes sub-columns for storing
information 2016 about a portion of the backward path,
specifically to the previous AIPR. The backward path infor-
mation 2016 includes information 2018 about the previous
AIPR and information 2020 about the present AIPR 1900.
The information 2018 about the previous AIPR includes the
AIPR’s network address 2022 and port number 2024. The
session manager 1908 extracts this information from the
lead packet, assuming the lead packet was forwarded by an
AIPR. If, however, the present AIPR 1900 is the first AIPR
to process the lead packet, the information 2018 is left blank
as a flag. The information 2020 about the present AIPR 1900
includes the network address 2026 of the interface 1902 over
which the lead packet was received, as well as the first port
number 2028 assigned by session manager 1908.

The waypoint information base 2000 is also configured to
store information 2030 about a portion of the forward path
(of a session), specifically to the next AIPR. This informa-
tion 2030 includes information 2032 about the present AIPR
1900 and information 2034 about the next AIPR along the
path, assuming there is a next AIPR. The information 2032
includes the network address 2036 of the interface over
which the present AIPR will send the lead packet and
subsequent packets, as well as the second port number 2038
assigned by the session manager 1908. The information
2034 about the next AIPR along the path may not yet be
available, unless the AIPR is provisioned with information
about the forward path. The information 2034 ahout the next
AIPR includes its network address 2040 and port number
2042. If the information 2034 about the next AIPR is not yet
available, the information 2034 may be filled in when the
AIPR 1900 processes a return packet, as described below, or
as when determined using the process of FIG. 5.

Some embodiments of the waypoint information base
2000 may include the forward information 2030 without the
backward information 2016. Other embodiments of the
waypoint information base 2000 may include the backward
information 2016 without the forward information 2030.
Statistical information may be gathered and/or calculated
using either or both forward and backward information
2016.

Returning to FIG. 19, a lead packet modifier 1912 is
coupled to the session manager 1908. The lead packet
modifier 1912 modifies the lead packet to store the unique
identifier associated with the session. The original source
client network address/port number pair, and the original
destination service network address/port number pair, are
stored in the modified lead packet, if necessary. The lead

10

15

20

25

30

35

40

45

50

55

60

65

40

packet may be enlarged to accommodate the additional
information stored therein, or existing space within the lead
packet, such a vendor specific attribute field, may be used.
Other techniques for transmitting additional information are
protocol specific, for example with TCP, the additional
information could be transmitted as a TCP Option field, or
added to the SYN packet as data. In either case, the term
session data block is used to refer to the information added
to the modified lead packet.

FIG. 21 is a schematic diagram of an exemplary modified
lead packet 2100 showing the original source and destina-
tion IP addresses 2102 and 2104, respectively, and the
original source and destination port numbers 2106 and 2108,
respectively. FIG. 21 also shows a session data block 2110
in the modified lead packet 2100. Although the session data
block 2110 is shown as being contiguous, it may instead
have its contents distributed throughout the modified lead
packet 2100. The session data block 2110 may store an
identification of the sending AIPR, i.e., an intermediate node
identifier 2112, such as the network address of the second
network interface 2104 and the second port number.

Returning to FIG. 21, the lead packet modifier 2112
updates the packet length, if necessary, to reflect any
enlargement of the packet. The lead packet modifier 2112
updates the checksum of the packet to reflect the modifica-
tions made to the packet. The modified lead packet is then
transmitted by a packet router 1914, via the second network
interface 1904. The modified lead packet is naturally routed,
unless the AIPR 1900 has been provisioned with forward
path information.

Eventually, the destination service sends a return packet.
The AIPR 1900 receives the return packet via the second
interface 1904. If another AIPR (downstream AIPR)
between the present AIPR 1900 and the destination service
handles the lead packet and the return packet, the down-
stream AIPR modifies the return packet to include the
downstream AIPR’s network address and a port number. A
downstream controller 1916 identifier uses stateful inspec-
tion, as described herein, to identify the return packet. The
downstream controller 1916 stores information 2034 (FIG.
20), specifically the network address and port number, about
the next AIPR in the waypoint information base 2000.

The present AIPR 1900 may use this information to
address subsequent packets to the next AIPR. Specifically, a
subsequent packet modifier 1918 may set the destination
address of the subsequent packets to the network address
and port number 2040 and 2042 (FIG. 20) of the next
waypoint, instead of directly to the destination service. The
packet router 1914 sends the subsequent packets, according
to their modified destination addresses. Thus, for each series
of packets, subsequent packets flow through the same down-
stream packet flow controllers as the lead packet of the series
of packets.

A last packet identifier 1920 statefully follows each
session, so as to identify an end of each stream, as discussed
above. As noted, in some cases, the end is signified by a final
packet, such as a TCP packet with the RST flag set or a TCP
ACK packet in return to a TCP packet with the FIN flag set.
In other cases, the end may be signified by a timer expiring.
When the end of a session is detected, the packet series
manager 1908 disassociates the unique identifier from the
session and deletes information about the session from the
waypoint information base 2000.

Where the AIPR 1900 is provisioned to be a last AIPR
before a destination service, the lead packet modifier 1906
restores the lead packet to the state the lead packet was in
when the source client sent the lead packet, or as the lead

PATENT

REEL: 063822 FRAME: 0592

US 10,009,282 B2

41

packet was modified, such as a result of network address
translation (NAT). Similarly, the subsequent packet modifier
1918 restores subsequent packets.

Similarly, if the destination address of the lead packet is
the same as the network address of the AIPR 1900, or its
network interface 1902 over which it receives the lead
packets, the lead packet modifier 1906 and the subsequent
packet modifier 1918 restore the packet and subsequent
packets.

As noted, in some protocols, several packets are required
to initiate a session, as with the SYN-SYN/ACK-ACK
handshake of the TCP. Thus, the downstream controller
identifier 1916 may wait until a second return packet is
received from the destination service before considering a
session as having started.

As noted, some embodiments of the waypoint 1900 also
manage return packet paths. The lead packet identifier 1906
automatically ascertains whether a lead packet was for-
warded to the waypoint 1900 by an upstream waypoint. If
the lead packet includes a session data block, an upstream
waypoint forwarded the lead packet. The packet series
manager 1908 stores information about the upstream way-
point in the waypoint information base 1910. A return packet
identifier 1922 receives return packets from the second
network interface 1904 and automatically identifies return
packets of the session. These return packets may be identi-
fied by destination address and port number being equal to
the information 2032 (FIG. 20) in the waypoint information
base corresponding to the session. A return packet modifier
modifies the return packets to address them to the upstream
waypoint for the session, as identified by the information
2018 in the waypoint information base 2000.

FIG. 22 shows a flowchart schematically illustrating some
operations performed by the AIPR 1900 (FIG. 19) in accor-
dance with illustrative embodiments of the invention. The
flowchart illustrates a packet routing method for directing
packets of a session from an originating node toward a
destination node in an IP network. At 2202, an intermediate
node obtains a lead packet of a plurality of packets in a
session. The intermediate node may include a routing device
or a switching device that performs a routing function.

The packets in the session have a unique session identifier.
At 2204, a prior node, through which the lead packet
traversed, is determined. The prior node has a prior node
identifier. At 2206, a return association is formed between
the prior node identifier and the session identifier. At 2208,
the return association is stored in memory to maintain state
information for the session.

At 2210, the lead packet is modified to identify at least the
intermediate node. At 2212, the lead packet is forwarded
toward the destination node though an intermediate node
electronic output interface to the IP network. The next hop
node may be determined any number of ways, including
using the process of FIG. 5. The electronic output interface
is in communication with the IP network. At 2214, a
backward message (e.g., a packet, referred to as a “backward
packet”) is received through an electronic input interface of
the intermediate node. The backward message is received
from a next node having a next node identifier. The back-
ward message includes the next node identifier and the
session identifier. The electronic input interface is in com-
munication with the IP network.

At 2216, a forward association is formed between the next
node identifier and the session identifier. At 2218, the
forward association is stored in memory, to maintain state
information for the session. At 2220, additional packets of
the session are obtained. At 2222, substantially all of the

15

20

30

40

45

42

additional packets in the session are forwarded toward the
next node, using the stored forward association. The addi-
tional packets are forwarded through the electronic output
interface of the intermediate node.

At 2224, a plurality of packets is received in a return
session, or a return portion of the session, from the desti-
nation. The return session is addressed toward the originat-
ing node. At 2226, substantially all the packets in the return
session are forwarded toward the prior node, using the stored
return association. The packets are forwarded through the
electronic output interface.

FIG. 23 shows a high-level alternative process of man-
aging the lead packet when establishing a session. As shown
at 2300, forwarding the lead packet 2212 toward the desti-
nation node may include accessing a routing information
base having routing information for the next hop node and
other potential next nodes. As shown at 2302, the interme-
diate node may have a routing table, and forwarding the lead
packet 2212 toward the destination node may include using
the routing table to forward the lead packet toward the
destination node and next hop node. As shown at 2304,
forwarding the lead packet 2212 toward the destination node
may include using the next node identifier to address the lead
packet toward the next hop node. The lead packet may be
addressed so that a plurality of network devices receives the
lead packet after it is forwarded and before the next hop
node receives the lead packet.

In a manner similar to other components discussed above,
the AIPR 1900 and all or a portion of its components
1902-1924, as well as the resource allocator 2500, may be
implemented by a processor executing instructions stored in
a memory, hardware (such as combinatorial logic, Applica-
tion Specific Integrated Circuits (ASICs), Field-Program-
mable Gate Arrays (FPGAs) or other hardware, firmware or
combinations thereof.

While the invention is described through the above-
described exemplary embodiments, modifications to, and
variations of, the illustrated embodiments may be made
without departing from the inventive concepts disclosed
herein. Furthermore, disclosed aspects, or portions thereof,
may be combined in ways not listed above and/or not
explicitly claimed. Furthermore, embodiments disclosed
herein may be suitably practiced, absent any element that is
not specifically disclosed herein. Accordingly, the invention
should not be viewed as being limited to the disclosed
embodiments.

Although aspects of embodiments may be described with
reference to flowcharts and/or block diagrams, functions,
operations, decisions, etc. of all or a portion of each block,
or a combination of blocks, may be combined, separated into
separate operations or performed in other orders. All or a
portion of each block, or a combination of blocks, may be
implemented as computer program instructions (such as
software), hardware (such as combinatorial logic, Applica-
tion Specific Integrated Circuits (ASICs), Field-Program-
mable Gate Arrays (FPGAs) or other hardware), firmware or
combinations thereof. Embodiments may be implemented
by a processor executing, or controlled by, instructions
stored in a memory. The memory may be random access
memory (RAM), read-only memory (ROM), flash memory
or any other memory, or combination thereof, suitable for
storing control software or other instructions and data.
Instructions defining the functions of the present invention
may be delivered to a processor in many forms, including,
but not limited to, information permanently stored on tan-
gible non-writable storage media (e.g., read-only memory
devices within a computer, such as ROM, or devices read-

PATENT

REEL: 063822 FRAME: 0593

US 10,009,282 B2

43

able by a computer /O attachment, such as CD-ROM or
DVD disks), information alterably stored on tangible writ-
able storage media (e.g., floppy disks, removable flash
memory and hard drives) or information conveyed to a
computer through a communication medium, including
wired or wireless computer networks. Some embodiments
may be implemented in a software-as-a-service (“SAAS”)
model or cloud computing model. Moreover, while embodi-
ments may be described in connection with various illus-
trative data structures, systems may be embodied using a
variety of data structures.
What is claimed is:
1. A self-protecting network router, comprising:
a memory storing data representing: a plurality of receive
queues, a plurality of transmit queues, a plurality of
traffic engineering queues and at least one service
queue;
a plurality of network interfaces, each network interface
of the plurality of network interfaces being: (a) asso-
ciated with at least one receive queue of the plurality of
receive queues and at least one transmit queue of the
plurality of transmit queues and (b) configured to
automatically enqueue messages received thereby from
outside the self-protecting network router to the at least
one receive queue associated therewith and dequeue
messages from the at least one transmit queue associ-
ated therewith for transmission thereby to outside the
self-protecting network router;
a path controller configured to: (a) dequeue forwardable
messages from the plurality of receive queues and
enqueue the forwardable messages to the plurality of
transmit queues; and (b) dequeue unforwardable mes-
sages from the plurality of receive queues and enqueue
the unforwardable messages to the plurality of traffic
engineering queues, wherein each traffic engineering
queue of the plurality of traffic engineering queues is
configured to drop, rather than accept, messages being
enqueued thereto when the traffic engineering queue is
full;
a service controller configured to dequeue the unforward-
able messages from the plurality of traffic engineering
queues and enqueue the unforwardable messages to the
at least one service queue, such that each service queue
of the at least one service queue is at most a predeter-
mined fraction, less than 100%, full;
at least one process configured to generate internally-
generated messages and enqueue the internally-gener-
ated messages to the at least one service queue, without
regard to fullness of the at least one service queue; and
at least one service process configured to dequeue and
process the unforwardable messages and the internally-
generated messages from the at least one service queue.
2. The self-protecting network router according to claim
1, wherein the predetermined fraction is less than 50%.

3. The self-protecting network router according to claim
1, wherein the path controller comprises a message classifier
configured to analyze protocol portions of the messages
received by the plurality of network interfaces and, as a
result of the analysis, for messages in which the protocol
portions indicate bidirectional forwarding detection (BFD),
enqueue the messages to the plurality of traffic engineering
queues.

4. The self-protecting network router according to claim

1, wherein the path controller comprises a message classifier
configured to analyze protocol portions of the messages
received by the plurality of network interfaces and, as a
result of the analysis, for messages in which the protocol

10

15

20

25

30

35

40

45

50

55

60

65

44

portions indicate address resolution protocol (ARP), bidi-
rectional forwarding detection (BFD) or routing, enqueue
the messages to the plurality of traffic engineering queues.
5. The self-protecting network router according to claim
1, wherein the path controller comprises a message classifier
configured to analyze protocol portions of the messages
received by the plurality of network interfaces and, as a
result of the analysis, for messages in which the protocol
portions indicate address resolution protocol (ARP),
enqueue the messages to the plurality of traffic engineering
queues.
6. The self-protecting network router according to claim
5, further comprising:
a flow table stored in the memory; and wherein:
the path controller is configured to compare address
portions of the messages received by the plurality of
network interfaces to address data stored in the flow
table and, as a result of the comparison:
for messages in which the address portions match the
address data, enqueue the messages to the plurality
of transmit queues; and
for messages in which the address portions do not
match the address data, enqueue the messages to the
plurality of traffic engineering queues.
7. The self-protecting network router according to claim
6, wherein:
the plurality of traffic engineering queues comprises:
at least one ARP traffic engineering queue;
the at least one service queue comprises:
an ARP service queue; and
the at least one service process comprises:
an ARP service process.
8. The self-protecting network router according to claim
7, wherein
the plurality of traffic engineering queues further com-
prises:
at least one BFD traffic engineering queue;
at least one flow setup traffic engineering queue; and
at least one routing traffic engineering queue;
the at least one service queue further comprises:
a BFD service queue;
a flow setup service queue; and
a routing service queue; and
the at least one service process further comprises:
a BFD service process;
a flow setup service process; and
a routing service process.
9. The self-protecting network router according to claim
8, wherein:
the path controller comprises a message classifier config-
ured to analyze protocol portions of the messages
received by the plurality of network interfaces and, as
a result of the analysis, for messages in which the
protocol portions indicate:
resolution protocol (ARP), enqueue the messages to the
at least one ARP traffic engineering queue;
bidirectional forwarding detection (BFD) enqueue the
messages to the at least one BFD traffic engineering
queue;
flow setup, enqueue the messages to the at least one
flow setup traffic engineering queue; and
routing, enqueue the messages to the at least one
routing traffic engineering queue.
10. The self-protecting network router according to claim
7, further comprising:
a plurality of P processors coupled to the memory; and
wherein:

PATENT

REEL: 063822 FRAME: 0594

US 10,009,282 B2

45

the at least one ARP traffic engineering queue comprises:

a number (P) of ARP traffic engineering queues, each
ARP traffic engineering queue of the P ARP traffic
engineering queues being associated with a different
one of the P processors.

11. The self-protecting network router according to claim
10 wherein, for each traffic engineering queue of the plu-
rality of traffic engineering queues, only the one processor
associated with the traffic engineering queue enqueues the
unforwardable messages on the traffic engineering queue.

12. The self-protecting network router according to claim
10, wherein:

the plurality of traffic engineering queues comprises:

a number (P) of BFD traffic engineering queues, each
BFD traffic engineering queue of the P BFD traffic
engineering queues being associated with a different
one of the P processors;

a number (P) of flow setup traffic engineering queues,
each flow setup traffic engineering queue of the P
flow setup traffic engineering queues being associ-
ated with a different one of the P processors; and

anumber (P) of routing traffic engineering queues, each
routing traffic engineering queue of the P routing
traffic engineering queues being associated with a
different one of the P processors.

13. The self-protecting network router according to claim
12 wherein, for each traffic engineering queue of the plu-
rality of traffic engineering queues, only the one processor
associated with the traffic engineering queue enqueues the
unforwardable messages on the traffic engineering queue.

14. The self-protecting network router according to claim
12, wherein:

the path controller comprises a message classifier config-

ured to analyze protocol portions of the messages

received by the plurality of network interfaces and, as

a result of the analysis, for messages in which the

protocol portions indicate:

resolution protocol (ARP), enqueue the messages to the
P ARP traffic engineering queues;

bidirectional forwarding detection (BFD) enqueue the
messages to the P BFD traffic engineering queues;

flow setup, enqueue the messages to the P flow setup
traffic engineering queues; and

routing, enqueue the messages to the P routing traffic
engineering queues;

the at least one service queue further comprises:

a BFD service queue;

a flow setup service queue; and

a routing service queue; and

the at least one service process further comprises:

a BFD service process;

a flow setup service process; and

a routing service process.

15. A method for automatically protecting resources
within a network router from flooding by a large number of
messages, the network router comprising a plurality of
network interfaces, the method comprising automatically:

storing data in a memory of the network router, the data

representing: a plurality of receive queues, a plurality
of transmit queues, a plurality of traffic engineering
queues and a plurality of service queues;

associating each network interface of the plurality of

network interfaces with at least one receive queue of

the plurality of receive queues and at least one transmit
queue of the plurality of transmit queues;

configuring each network interface of the plurality of

network interfaces to automatically enqueue messages

10

15

20

30

35

40

45

50

55

60

65

46

received thereby from outside the network router to the
at least one receive queue associated therewith and
dequeue messages from the at least one transmit queue
associated therewith for transmission thereby to outside
the network router,;

dequeuing forwardable messages from the plurality of

receive queues and enqueuing the forwardable mes-
sages to the plurality of transmit queues;
dequeuing unforwardable messages from the plurality of
receive queues and enqueuing the unforwardable mes-
sages to the plurality of traffic engineering queues,
including dropping unforwardable messages when ones
of the traffic engineering queues are full;
dequeuing the unforwardable messages from the plurality
of traffic engineering queues and enqueuing the unfor-
wardable messages to the plurality of service queues,
such that each service queue of the plurality of service
queues is at most a predetermined fraction, less than
100%, full;

generating, within the network router, internally-gener-
ated messages and enqueuing the internally-generated
messages to the plurality of service queues, without
regard to fullness of the service queues; and

dequeuing the unforwardable messages and the inter-
nally-generated messages from the plurality of service
queues and processing the unforwardable messages and
the internally-generated messages by a plurality of
service processes.

16. The method according to claim 15, wherein the
predetermined fraction is less than 50%.

17. The method according to claim 15, wherein dequeuing
the unforwardable messages from the plurality of receive
queues and enqueuing the unforwardable messages to the
plurality of traffic engineering queues comprises analyzing
protocol portions of the messages received by the plurality
of network interfaces and, as a result of the analyzing, for
messages in which the protocol portions indicate bidirec-
tional forwarding detection (BFD), enqueuing the messages
to the plurality of traffic engineering queues.

18. The method according to claim 15, wherein dequeuing
the unforwardable messages from the plurality of receive
queues and enqueuing the unforwardable messages to the
plurality of traffic engineering queues comprises analyzing
protocol portions of the messages received by the plurality
of network interfaces and, as a result of the analyzing, for
messages in which the protocol portions indicate address
resolution protocol (ARP), bidirectional forwarding detec-
tion (BFD) or routing, enqueuing the messages to the
plurality of traffic engineering queues.

19. The method according to claim 15, wherein dequeuing
the unforwardable messages from the plurality of receive
queues and enqueuing the unforwardable messages to the
plurality of traffic engineering queues comprises analyzing
protocol portions of the messages received by the plurality
of network interfaces and, as a result of the analyzing, for
messages in which the protocol portions indicate address
resolution protocol (ARP), enqueuing the messages to the
plurality of traffic engineering queues.

20. The method according to claim 19, wherein dequeuing
the forwardable and unforwardable messages from the plu-
rality of receive queues, enqueuing the forwardable mes-
sages to the plurality of transmit queues and enqueuing the
unforwardable messages to the plurality of traffic engineer-
ing queues comprises:

comparing address portions of the messages received by

the plurality of network interfaces to address data
stored in a flow table and, as a result of the comparing:

PATENT

REEL: 063822 FRAME: 0595

US 10,009,282 B2

47

for messages in which the address portions match the
address data, enqueuing the messages to the plurality
of transmit queues; and

for messages in which the address portions do not
match the address data, enqueuing the messages to
the plurality of traffic engineering queues.

21. The method according to claim 20, wherein:

storing the data in the memory comprises storing the data

in the memory such that the plurality of traffic engi-

neering queues comprises:

at least one address resolution protocol (ARP) traffic
engineering queue;

and such that the plurality of service queues comprises:

an ARP service queue; and

processing the unforwardable messages and the inter-

nally-generated messages by the plurality of service
processes comprises:
processing unforwardable messages dequeued from the
ARP service queue by an ARP service process.
22. The method according to claim 21, wherein:
storing the data in the memory comprises storing the data
in the memory such that the plurality of traffic engi-
neering queues comprises:
at least one bidirectional forwarding detection (BFD)
traffic engineering queue;
at least one flow setup traffic engineering queue; and
at least one routing traffic engineering queue;

and such that the plurality of service queues further

comprises:

a BFD service queue;

a flow setup service queue; and

a routing service queue; and

processing the unforwardable messages and the inter-

nally-generated messages by the plurality of service

processes further comprises:

processing unforwardable messages dequeued from the
BFD service queue by a BFD service process;

processing unforwardable messages dequeued from the
flow setup service queue by a flow setup service
process; and

processing unforwardable messages dequeued from the
routing service queue by a routing service process.

23. The method according to claim 21, wherein:

the network router comprises a plurality of P processors

coupled to the memory; and

storing the data in the memory comprises storing the data

in the memory such that the plurality of traffic engi-

neering queues comprises:

a number (P) of ARP traffic engineering queues; the
method further comprising:

associating each ARP traffic engineering queue of the P

ARP traffic engineering queues with a different one of
the P processors.

24. The method according to claim 23, wherein, for each
traffic engineering queue of the plurality of traffic engineer-
ing queues, dequeuing the unforwardable messages from the
plurality of receive queues and enqueuing the unforwardable
messages to the ftraffic engineering queue comprises
dequeuing the unforwardable messages and enqueuing the
unforwardable messages by only the one processor associ-
ated with the traffic engineering queue.

25. The method according to claim 21, wherein:

the network router comprises a plurality of P processors

coupled to the memory; and

storing the data in the memory comprises storing the data

in the memory such that the plurality of traffic engi-
neering queues comprises:

10

15

20

25

30

40

45

50

55

60

65

48

a number (P) of ARP traffic engineering queues;

a number (P) of BFD traffic engineering queues;

a number (P) of flow setup traffic engineering queues;
and

a number (P) of routing traffic engineering queues; the
method further comprising:

associating each ARP traffic engineering queue of the P
ARP traffic engineering queues with a different one of
the P processors;

associating each BFD traffic engineering queue of the P
ARP traffic engineering queues with a different one of
the P processors;

associating each flow setup traffic engineering queue of
the P ARP traffic engineering queues with a different
one of the P processors; and

associating each routing traffic engineering queue of the P
ARP traffic engineering queues with a different one of
the P processors.

26. The method according to claim 25, wherein, for each
traffic engineering queue of the plurality of traffic engineer-
ing queues, dequeuing the unforwardable messages from the
plurality of receive queues and enqueuing the unforwardable
messages to the traffic engineering queue comprises
dequeuing the unforwardable messages and enqueuing the
unforwardable messages by only the one processor associ-
ated with the traffic engineering queue.

27. A non-transitory computer-readable medium encoded
with instructions that, when executed by a processor, estab-
lish processes for performing a computer-implemented
method of automatically protecting resources within a net-
work router from flooding by large number of messages, the
network router comprising a plurality of network interfaces,
the processes comprising:

a process storing data in a memory of the network router,
the data representing: a plurality of receive queues, a
plurality of transmit queues, a plurality of traffic engi-
neering queues and a plurality of service queues;

a process associating each network interface of the plu-
rality of network interfaces with at least one receive
queue of the plurality of receive queues and at least one
transmit queue of the plurality of transmit queues;

a process configuring each network interface of the plu-
rality of network interfaces to automatically enqueue
messages received thereby from outside the network
router to the at least one receive queue associated
therewith and dequeue messages from the at least one
transmit queue associated therewith for transmission
thereby to outside the network router;

a process dequeuing forwardable messages from the plu-
rality of receive queues and enqueuing the forwardable
messages to the plurality of transmit queues;

a process dequeuing unforwardable messages from the
plurality of receive queues and enqueuing the unfor-
wardable messages to the plurality of traffic engineer-
ing queues, including dropping unforwardable mes-
sages when ones of the traffic engineering queues are
full;

aprocess dequeuing the unforwardable messages from the
plurality of traffic engineering queues and enqueuing
the unforwardable messages to the plurality of service
queues, such that each service queue of the plurality of
service queues is at most a predetermined fraction, less
than 100%, full;

a process generating, within the network router, inter-
nally-generated messages and enqueuing the internally-
generated messages to the plurality of service queues,
without regard to fullness of the service queues; and

PATENT

REEL: 063822 FRAME: 0596

US 10,009,282 B2
49 50

a process dequeuing the unforwardable messages and the
internally-generated messages from the plurality of
service queues and processing the unforwardable mes-
sages and the internally-generated messages by a plu-
rality of service processes. 5

#* #* #* #* #*

PATENT
RECORDED: 06/01/2023 REEL: 063822 FRAME: 0597

