508141337 09/26/2023

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

EPAS ID: PAT8188516

SUBMISSION TYPE:

NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT
CONVEYING PARTY DATA
Name Execution Date
ASHISH SURESH GHULE 09/11/2023
PANKAJ MALVIYA 09/14/2023
JAGADISH NARASIMHA GRANDHI 09/10/2023
RECEIVING PARTY DATA
Name: JUNIPER NETWORKS, INC.
Street Address: 1133 INNOVATION WAY
City: SUNNYVALE
State/Country: CALIFORNIA
Postal Code: 94089
PROPERTY NUMBERS Total: 1
Property Type Number
Patent Number: 11736399

CORRESPONDENCE DATA
Fax Number:

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 2:
Address Line 4:

(651)735-1102

6517351100
pairdocketing@ssiplaw.com
SHUMAKER & SIEFFERT, P.A.
1625 RADIO DRIVE

SUITE 100

MINNEAPOLIS, MINNESOTA 55432

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

ATTORNEY DOCKET NUMBER:

2014-012US02

NAME OF SUBMITTER:

JACLYN M. SKIBA

SIGNATURE:

/Jaclyn M. Skiba/

DATE SIGNED:

09/26/2023

Total Attachments: 42

source=JNP2834-US-CON1_Assignment#page1 .tif
source=JNP2834-US-CON1_Assignment#page?2.tif
source=JNP2834-US-CON1_Assignment#page3.tif

508141337

PATENT
REEL: 065031 FRAME: 0348

source=JNP2834-US-CON1_Assignment#page4.tif

source=JNP2834-US-CON1_Assignment#pageb.tif

source=JNP2834-US-CON1_Assignment#page®.tif

source=JNP2834-US-CON1_Assignment#page? .tif

source=JNP2834-US-CON1_Assignment#page8.tif

source=JNP2834-US-CON1_Assignment#page9.tif

source=JNP2834-US-CON1_Assignment#page10.tif
source=JNP2834-US-CON1_Assignment#page11.tif
source=JNP2834-US-CON1_Assignment#page12.tif
source=JNP2834-US-CON1_Assignment#page1 3.tif
source=JNP2834-US-CON1_Assignment#page14.tif
source=JNP2834-US-CON1_Assignment#page15.tif
source=JNP2834-US-CON1_Assignment#page16.tif
source=JNP2834-US-CON1_Assignment#page17.tif
source=JNP2834-US-CON1_Assignment#page18.tif
source=JNP2834-US-CON1_Assignment#page19.tif
source=JNP2834-US-CON1_Assignment#page20.tif
source=JNP2834-US-CON1_Assignment#page21..tif
source=JNP2834-US-CON1_Assignment#page22.tif
source=JNP2834-US-CON1_Assignment#page23.tif
source=JNP2834-US-CON1_Assignment#page24.tif
source=JNP2834-US-CON1_Assignment#page25.tif
source=JNP2834-US-CON1_Assignment#page26.tif
source=JNP2834-US-CON1_Assignment#page27 .tif
source=JNP2834-US-CON1_Assignment#page28.tif
source=JNP2834-US-CON1_Assignment#page29.tif
source=JNP2834-US-CON1_Assignment#page30.tif
source=JNP2834-US-CON1_Assignment#page3d1.tif
source=JNP2834-US-CON1_Assignment#page32.tif
source=JNP2834-US-CON1_Assignment#paged3.tif
source=JNP2834-US-CON1_Assignment#page34.tif
source=JNP2834-US-CON1_Assignment#page35.tif
source=JNP2834-US-CON1_Assignment#page36.tif
source=JNP2834-US-CON1_Assignment#paged7.tif
source=JNP2834-US-CON1_Assignment#page38.tif
source=JNP2834-US-CON1_Assignment#page39.tif
source=JNP2834-US-CON1_Assignment#page40.tif
source=JNP2834-US-CON1_Assignment#page4 1 .tif
source=JNP2834-US-CON1_Assignment#page42.tif

PATENT
REEL: 065031 FRAME: 0349

CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to Juniper
Networks, Inc., having a place of business at 1133 Innovation Way, Sunnyvale, CA 94089-
1206, United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER”™) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
U.S.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 U.S.C. § 371
(“APPLICATION™):

U.S. Patent Application No. 17/247,950, entitled “PACKET
FRAGMENT FORWARDING WITHOUT REASSEMBLY™ filed on
December 31, 2020

2. The entire worldwide right, title, and interest in and to:

(a) the APPLICATION; (b) all applications claiming priority from the APPLICATION;
(c) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (c) above; and (e) all right of
priority in the APPLICATION and in any underlying provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

3. The entire worldwide right, title, and interest in and to (including all
claims of):

U.S. Patent No. 11,736,399 issued August 22, 2023, which is included as an
Appendix to this Assignment.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawtul
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,
assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

Attorney Docket No.: 2014-012US02 1

PATENT
REEL: 065031 FRAME: 0350

Title: PACKET FRAGMENT FORWARDING WITHOUT REASSEMBLY
Date Filed: December 31, 2020
Application No.: 17/247,950

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not
hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,
titles, and interests herein conveyed.

INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature Date of Signature
W Sep 11,2023
Ashish Suresh Ghule
Name and Signature Date of Signature
Sep 14,2023
Pankaj Malviya
Name and Signature Date of Signature
a.N.Jagadish. Sep 10, 2023

Jagadish Narasimha Grandhi

Attorney Docket No.: 2014-012U802 2

PATENT
REEL: 065031 FRAME: 0351

Title: PACKET FRAGMENT FORWARDING WITHOUT REASSEMBLY
Date Filed: December 31, 2020
Application No.: 17/247,950

APPENDIX

Attorney Docket No.: 2014-012U802 3

PATENT
REEL: 065031 FRAME: 0352

az United States Patent

US011736399B2

a0y Patent No.: US 11,736,399 B2

Ghule et al. (45) Date of Patent: Aug. 22,2023
(54) PACKET FRAGMENT FORWARDING (56) References Cited
WITHOUT REASSEMBLY
U.S. PATENT DOCUMENTS
71) Applicant: Juniper Networks, Inc., S 1
(71) Applican C‘leafsr) ChWOrKSs, Tc., Suniyvate, 7,403,542 Bl 7/2008 Thompson
7,568,224 Bl 7/2009 Jennings et al.
(72) Inventors: Ashish Suresh Ghule, Bangalore (IN); (Continued)
Pankaj Malviya, Bangalore (IN);
Jagadish Narasimha Grandhi, FOREIGN PATENT DOCUMENTS
Hyderabad (IN) CN 101399837 A 4/2009
CN 101933290 A 12/2010
(73) Assignee: Juniper Networks, Inc., Sunnyvale, (Continued)
CA (US)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
%atserét llssixlt;,en]fedz;; (aidjusted under 35 Troan, et al., “Mapping of Address and Port with Encapsulation
e (b) by ays. (MAP-E),” Internet Engineering Task Force (IETF), RFC 7597, Jul.
(21) Appl. No.: 17/247,950 2015, 33pp.
(Continued)
(22) Filed: Dec. 31, 2020
Primary Examiner — Atique Ahmed
(65) Prior Publication Data (74) Attorney, Agent, or Firm — Shumaker & Sieffert,
US 2021/0126863 A1 Apr. 29, 2021 PA.
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 15/983,457, filed on A network device may forward fragments of an IPv4 net-
May 18, 2018, now Pat. No. 10,887,231. work packet encapsulated in IPv6 network packets from an
IPv6 network to an [Pv4 network without reassembling the
(51) Int. CL IPv4 network packet. The network device may receive and
HO4L 45/745 (2022.01) buffer the one or more fragments of a fragment flow asso-
HO4L 47/625 (2022.01) ciated with the IPv4 network packet until it receives a
(52) US. CL fragment of the fragment flow that includes an indication of
CPC HO4L 45/745 (201301), HO4L 47/625 the source port of the IPv4 network packet, When the
(2013.01); HO4L 2212/00 (2013.01) network device receives the fragment that includes the
(58) Field of Classification Search indication of the source port of the IPv4 network packet, the

CPC . HO4L 45/745; HO4L 47/625; HO4L 2212/00;
HO4L 12/4633; HO4L 45/00; HO4L 45/52;
HO4L 61/251

See application file for complete search history.

CE DEVICE
8
Y PVe
P NETWORK

8

@ =

CE DEVICE
N

network device may dispatch each fragment of the fragment
flow that it has received to the IPv4 network.

15 Claims, 15 Drawing Sheets

re

2

iPv4
NETWORK

NETWORK DEVICE | |
0 forie] "

PATENT
REEL: 065031 FRAME: 0353

US 11,736,399 B2

Page 2
(56) References Cited OTHER PUBLICATIONS
U.S. PATENT DOCUMENTS U.S. Appl. No. 16/682,882, filed Nov. 13, 2019, Juniper Networks,
Inc. (inventor: Ghule et al)) entitled “Anti-Spoof Check of IPV4-
7,668,161 B2* 2/2010 Morgan HO4L 69/166 IN-IPV6 Fragments Without Reassembly”.
370/469 Ziemba et al., “Security Considerations for IP Fragment Filtering,”
7,688,727 B1* 3/2010 Ferguson HO4L 67/1001 Network Working Group: RFC 1858, Oct. 1995, 10 pp.
370/230.1 Amante et al., “IPv6 Flow Label Specification,” Internet Engineer-
8,402,540 B2* 3/2013 Kapoor HO4L 67/34 ing Task Force (IETF), RFC 6437, Nov. 2011, 15 pp.
) 709/224 Carpenter et al.,, “Using the IPv6 Flow Label for Equal Cost
8,638,790 B2 1/2014 Mir et al. Multipath Routing and Link Aggregation in Tunnels,” Internet
9,054,987 B2~ 6/2015 Veal et al.) Engineering Task Force (IETF), RFC 6438, Nov. 2011, 9 pp.
10,715,968 B2* 7/2020 KO oo HOAL 4110803 75 Appl. No. 16/836,240, filed Mar. 31, 2020, Juniper Networks,
10,887,231 B2 1/2021 Ghule et al. .) 1y e
2002/0196797 Al 12/2002 Baitin Inc. (11_1vent0r. Ghule et al.) ent_ltled II,’,V6 Flow Label for Stateless
2004/0064688 Al 4/2004 Jacobs Handling of IPV4-Fragments-in-IPV6™. _
2004/0088385 Al 5/2004 Blanchet et al. U.S. Appl. No. 16/947,141, filed Jul. 20, 2020, Juniper Networks,
2004/0107287 Al 6/2004 Ananda et al. Inc. (inventor: Ghule ct al.) entitled “IPV6 Extcension Header for
2006/0039379 Al 2/2006 Abe et al. Stateless Handling of Fragments in IPV6”.
2007/0192863 Al* 8/2007 Kapoor HO04L 67/10 Prosecution History from U.S. Appl. No. 15/983,457, dated Sep. 17,
726/23 2019 through Sep. 2, 2020, 87 pp.
2007/0195761 Al 8/2007 Tatar et al. Extended European Search Report dated Oct. 10, 2019 in counter-
2008/0028467 Al 1/2008 Kommareddy et al. part EP Application No. 19165642.2, 10 pp.
2009/0083366 Al 3/2009 Roantree et al. Response to Extended Furopean Search Report dated Oct. 10, 2019
2009/0110003 Al* 4/2009 Julien ... HO4L 69/16 from counterpart European Application No. 19165642.0, filed May
370/476 20, 2020, 24 pp.
2009/0154348 Al 6/2009 Newman Xu et al., “Encapsulating IP in UDP; drafl-xu-intarea-ip-in-udp-09,”
2010/0014459 Al 1/2010 Mir et al. Intarea Working Group: Internet-Draft, Oct. 17, 2017, 11 pp.
2010/0046522 Al 2/2010 Tatsumi et al. Cui et al., “Public IPv4-over-1Pv6 Access Network,” IETF: RFC
2010/0165991 Al 7/2010 Veal et al. 7040, Nov. 2013, 13 pp.
2010/0287227 Al 11/2010 Goel et al. Savoia, “MTU and Fragmentation Issues with In-the-Network Tun-
2011/0110374 Al 5/2011 Bouca(_iai_r el al. neling,” The Internet Society: RFC 4459, Apr. 2006, 14 pp.
2011/0261822 Al 10/2011 Battestilli et al. First Office Action and Search Report, and translation thereof, from
2012/0246637 Al 9/2012 Kreeger et al. counterpart Chinese Application No. 201910243288.8, dated Mar.
2013/0094376 Al* 4/2013 Reeves HO4L 63/1408 24, 2021, 18 pp.
. . 3701252 Afek et al., “Network Anti-Spoofing with SON Data plane”, IEEE
2013/0246641 Al 9/2013 Vimpari et al. Infocom 2017—IEEE Conference on Computer Communications,
;8}2;828? 4112(7; 1‘:} ;gg}g Isglifeit;l' Aishwarya et al., “Intrusion detection system—An efficient way to
0 A 001E Bk v, s Dy DDos ik e chd s nmen’ 01
2016/0014071 Al 1/2016 Asati et al. Apt. 10. 2014 L6 ’
2016/0050140 Al 2/2016 Chinni et al. pr 9. S804, pp. 20 . . .
5016/0232019 AL* 82016 Shah ... GOGF 9/45558 Bremler-Barr et al., _Spooﬁng Prevention Method”, Proceedings
2017/0012873 Al 12017 Ber IEEE 24t_h A_nnual J(_)ln_t Conference of the [EEE Computer and
g
5017/0324849 AL* 112017 PRStSr .o, HO4L 69/324 Communications Societies, vol. 1, Mar. 13, 2005, pp. 536-547.
Notice of Allowance from U.S. Appl. No. 16/682,882, dated Ma
2019/0081720 Al 3/2019 Barry et al. 2% 88L, 4
2019/0089735 Al 3/2019 Mattila et al. 19, 2022, 24 pp. _ .
2019/0149449 Al 5/2019 Mortis Despr_es et al.,,, 1Pv4 Res1du_al D_eployment via IPv6—A Stateless
2019/0319924 Al 10/2019 Bouvet et al. Solution (4rd)”, Internet Engineering Task Force (IETF), RFC 7600,
2019/0356591 Al 1[1/2019 Ghule et al. Jul. 2015, 45 pp. _ _
2020/0128114 Al 4/2020 Kloberdans et al. Fu et al., “Definitions of Managed Objects for Mapping of Address
and Port with Encapsulation (MAP-E)”, Internet Engineering Task
FOREIGN PATENT DOCUMENTS Force (IETT), RIC 8389, Dec. 2018, 16 pp. .
Troan, Ed. et al., “Mapping of Address and Port with Encapsulation
CN 102067569 A 5/2011 (MAP-E)”, RFC 7597, Jul. 2015, 35 PP, available httpSZ//tOOlS.ietf.
CN 103368853 A 10/2013 org/html/rfc7597.
CN 104145466 A 11/2014
CN 105900518 A 8/2016 * cited by examiner

PATENT

REEL: 065031 FRAME: 0354

U.S. Patent Aug. 22,2023 Sheet 1 of 15 US 11,736,399 B2

w
- 5
= Lo
& E
L
prd

METWORK DEVICE
g

[PV
METWORK
&

& &
i g e
) rat .
& & Q
L
PATENT

REEL: 065031 FRAME: 0355

U.S. Patent Aug. 22,2023 Sheet 2 of 15 US 11,736,399 B2

NETWORK DEVICE 18
CONTROL UNIT
14 12
R A
Il paswon L
| 144 |
e N |
&
" FRAGMENTBUFFER)| b BB
L 284)
Pl ke | o {
on PACKET
Lames B PROCESSOR h :g}
24A i
o
< 24 PACKET FLOW
MODULE TABLE
308 324
.)
FORWARDING UNIT
204
]
& SWITCH
EABRIC
C FRAGMENT BUFFER | 26
28N o
S y
BOFC PACKET ™
] 22N PROCESSOR
24N
E st PACKET FLOW
ey N MODULE TABLE
36N 32N
A\ y
FORWARDING UNIT
208

PATENT
REEL: 065031 FRAME: 0356

U.S. Patent

Aug. 22,2023

Sheet 3 of 15 US 11,736,399 B2

e 49
2 a4
A A
{ CHOA o508 500 8D B - SOF, 506§ C5OH 50 3
TOTAL FRAGMENT | PROTOC | SRC | DST | SRC | DST
LeNgTH | 10 | FLABS | apeapy oL | w | 1 | porT | pORT PAYLOAD
e '
4% 48
L i“v“‘j 848 u
Y
458 458 45N
FRAGMENTS
S~ S0C 50D CHH 50 4A v 528
ME =1 | FRAGMENT OFFSET =0 SRC 1 DST 1 navioap
PORT | PORT
' h'd
42 45
S0 50D 48 Ve 528
ME=1| FRAGMENT OFFSET >0 PAYLOAD
a's 'a
@ 458
e 80C ¢ 500 ¢ 48N 53N
MF=0 | FRAGMENT OFFSET > 0 PAYLOAD
' '
P 45C
FIG. 3A
PATENT

REEL: 065031 FRAME: 0357

U.S. Patent Aug. 22,2023 Sheet 4 of 15 US 11,736,399 B2

{ 504
62 42
Y A~ 3
B4A 504 50C 50D 506
(: <648 <J <5@3 < < (5QE <5ﬁ§: (: Cﬁ@?‘i (43:63
SRC | DST | TOTAL FRAGMENT | PROTO SRC | DST
1 |LENGTH 0 | opeser | coL | oRCWP DSTIP L oo popr PAYLOAD
v
524
G0B
82 42 A‘/
"y A \
COA BB EA 5B oS0C 50D SOE 5OF 438
S EEHE
L v J
528
EON
62 42 e
CBA BB oS0A S0B -S0C 50D SOE SOF 48N
sl o T [000 e e mvion
Y v J
52N
FIG. 3B
PATENT

REEL: 065031 FRAME: 0358

US 11,736,399 B2

Sheet 5 of 15

Aug. 22,2023

U.S. Patent

(7
uonemsdesuy

weiube. i enlosy

Ji-] BABO8Y

N0 BUIY AGLUBSSEEY

N0 oWl Aguussseay

1

S

5]

uelbe)4
110 1wewbei Dl 8nis0ax

04
Anug man

A peleld
no s} AGLUSSSEa)

¥ old

PATENT
REEL: 065031 FRAME: 0359

U.S. Patent Aug. 22,2023 Sheet 6 of 15 US 11,736,399 B2

RECEIVE IPv4 - 82
FRAGMENT

84

First Fragment FRAGMENT Last Fragment
TYPE?

1 Mid Fragment

FIG. 5A

PATENT
REEL: 065031 FRAME: 0360

U.S. Patent Aug. 22,2023 Sheet 7 of 15 US 11,736,399 B2

88

Brop

New Entry " FLOW STATE?

Buffer

MODIFY FLOW o 94
CREATE NEWFLOW |— 88 TABLE ENTRY DROP -~ 102
TABLE ENTRY

ENCAPSULATE EACH | — 96
ENCAPSULATE |~ 90 QUEUED FRAGMENT
PACKET

DISPATCH EACH | — 88

DispATCH PACKET ¥ ¥ QUEUED FRAGMENT

DELETEFLOW

e 100
TABLE ENTRY?

DELETEFLOW v 10!
TABLE ENTRY

FIG. 58

PATENT
REEL: 065031 FRAME: 0361

U.S. Patent Aug. 22,2023 Sheet 8 of 15 US 11,736,399 B2

104

New Enfry FLOW STATE?
Ercap Drop
Buffer
L 4 v + I
CREATENEWFLOW |~ 106 | ENQUEUE | 110 | ENCAPSULATE DROP PACKET
TABLE ENTRY PACKET PACKET

ENQUELE packeT | 108 BiSPATCH packeT K T4

DELETE FLOW

) 116
., TABLEENTRY? .

pELETEFLOW p— 118
TABLE ENTRY

FIG. 5C

PATENT
REEL: 065031 FRAME: 0362

US 11,736,399 B2

Sheet 9 of 15

Aug. 22,2023

U.S. Patent

weiube. i enlosy

743
BieleAy
smels joode

Zeh
Anug man

uelbe)4
1987 10 1wewbeid Dijy 9Ai808N

N0 BUIY AGLUBSSEEY

N0 oWl Aguussseay

1o e Aiguiesseey

9 "Old

PATENT
REEL: 065031 FRAME: 0363

U.S. Patent Aug. 22,2023 Sheet 10 of 15 US 11,736,399 B2

RECEIVEIPve | 130
NETWORK PACKET

'

EXTRACT iPvd - 132
FRAGMENT

134

First Fragment FRAGMENT Last Fragment
N TYPE? A

Mid Fragment
.,

(e

FIG. 7A

PATENT
REEL: 065031 FRAME: 0364

U.S. Patent Aug. 22,2023 Sheet 11 of 15 US 11,736,399 B2

New Entry /?t;w STATE?

Drop
Buffer
¥
CREATE NEW FLOW | __ 43¢ UPDATE FLOW 140 142
TABLEENTRY | TABLEENTRY | DROP ™

() C;’"“y

FIG. 7B

PATENT
REEL: 065031 FRAME: 0365

U.S. Patent

¥

New Entry

FLOW

CREATE NEW

TABLE

ENTRY

o 144

BUFFER
FRAGMENT

L 148

«»

Aug. 22,2023

FLOW STATE?

Buffered i Spoof Status Drop

Sheet 12 of 15 US 11,736,399 B2

Available

BUFFER
FRAGMENT

TABLE

H
! i
{ {
145 | UPDATETOTAL | 150 L~ 152
= | BYTES IN FLOW r
§
; i
i i
i

136

FIG.7C

PATENT
REEL: 065031 FRAME: 0366

U.S. Patent

Aug. 22,2023

154

" PASSED ANT: ™
. SPOOE CHECK? .~

y

DROP THIS AND ALL
BUFFERED
FRAGMENTS

. TABLEENTRY? .~

| DELETEFLOW S~ 153

Sheet 13 of 15

US 11,736,399 B2

¥

FORWARD THIS AND
ALL BUFFERED
FRAGMENTS

BELETE FLOW

' 164
~. TABLE ENTRY?

DELETE FLOW
TABLE ENTRY

FIG. 7D

DELETEFLOW o 188
TABLE ENTRY
PATENT

REEL: 065031 FRAME: 0367

U.S. Patent Aug. 22,2023 Sheet 14 of 15 US 11,736,399 B2

RECEIVE FROM A FIRST NETWORK ONE OR MORE 202
FRAGMENTS OF A FRAGMENT FLOW FROM A FIRST -
NETWORK

BUFEER THE ONE OR MORE FRAGMENTS |~ 204

RECEIVE THE FRAGMENT OF THE FRAGMENT FLOW THAT | 208
INCLUDES AN INDICATION OF THE DESTINATION PORT

ENCAPSULATE THE ONE OR MORE FRAGMENTS AND THE
FRAGMENT WITHIN A PLURALITY OF NETWORK PACKETS

DISPATCH THE PLURALITY OF NETWORK PACKETSTOA | 210
SECOND NETWORK

PATENT
REEL: 065031 FRAME: 0368

U.S. Patent Aug. 22,2023 Sheet 15 of 15 US 11,736,399 B2

RECEIVE FROM A FIRST NETWORK ONE OR MORE NETWORK
PACKETS OF A FIRST NETWORK TYPE THAT ENCAPSULATES | 302
ONE OR MORE FRAGMENTS OF A

FRAGMENT FLOW

BUFEER THE ONE OR MORE FRAGMENTS |~ 304

RECEIVE A NETWORK PACKET OF THE FIRST NETWORK

TYPE THAT ENCAPSULATES THE FRAGMENT OF THE L~ 308

FRAGMENT FLOW THAT INCLUDES AN INDICATION OF THE
SOURCE PORT

PERFORM AN ANTI-SPOOF CHECK ON THE ONE OR MORE
FRAGMENTS AND -~ 308
THE FRAGMENT

DISPATCH THE ONE OR MORE FRAGMENTS AND THE

-~ 310
FRAGMENT TO A
SECOND NETWORK
FIG. 9
PATENT

REEL: 065031 FRAME: 0369

US 11,736,399 B2

1
PACKET FRAGMENT FORWARDING
WITHOUT REASSEMBLY

This application is a continuation of U.S. application Ser.
No. 15/983,457 filed on May 18, 2018, the entire content of
which is incorporated herein by reference.

TECHNICAL FIELD

The disclosure relates to packet-based computer networks
and, more particularly, to processing packets within network
devices.

BACKGROUND

Internet Protocol version 6 (IPv6) is the successor to
Internet Protocol version 4 (IPv4), both of which are ver-
sions of the Internet Protocol used for sending and receiving
data via networks such as the Internet. IPv6 addresses
potential issues with IPv4, such as address exhaustion.
Networks have begun to transition from IPv4 to IPv6, and
1Pv6 networks are being deployed alongside IPv4 networks.
One example mechanism for facilitating the transition from
1Pv4 to IPv6 is Mapping of Address and Port with Encap-
sulation (MAP-E). MAP-E is a mechanism for transporting
1Pv4 network packets across an I[Pv6 network using Internet
Protocol (IP) encapsulation to encapsulate that [Pv4 network
packets within IPv6 network packets.

A network device that connects an 1Pv4 network with an
IPv6 network may be able to forward IPv4 network packets
from an IPv4 network through an IPv6 network using
MAP-E to encapsulate IPv4 network packets within IPv6
network packets. The network device may receive fragments
of an IPv4 network packet, reassemble the full IPv4 network
packet from the fragments, encapsulate the IPv4 network
packet within an IPv6 network packet, and forward the IPv6
network packet to the IPv4 network. The network device
may also be able to forward IPv4 network packets that are
encapsulated within IPv6 network packets from the IPv6
network to the IPV4 network by decapsulating an IPv4
packet from an IPv6 network packet that encapsulates the
1Pv4 packet and forwarding the decapsulated IPv4 network
packet to the IPv4 network.

SUMMARY

This disclosure describes techniques for forwarding 1Pv4
network packets to an IPv6 network by receiving fragments
of IPv4 network packets and encapsulating fragments of
IPv4 network packets within IPv6 network packets without
reassembling the IPv4 network packets. Instead, the desti-
nation devices of the encapsulated fragments may perform
the reassembly of the IPv4 network packets. An IPv4
network packet may use an address plus port technique for
packet routing, where the source address specified by an
1Pv4 network packet can be extended by at least a portion of
the source port specified by the IPv4 network packet, and the
destination addresses specified by an IPv4 network packet
can be extended by at least a portion of the destination port
specified by the IPv4 network packet.

Because performing address mapping in accordance with
MAP-E may include mapping the destination address and
destination port specified by the IPv4 network packet to an
IPv6 destination address, a network device cannot perform
MAP-E until it has received an indication of both the
destination address and destination port. Further, because
not every fragment of an IPv4 network packet may include

15

35

40

45

55

60

2

an indication of the destination port specified by the IPv4
network packet, and fragments may be received out of order,
the network device may receive one or more fragments that
do not include an indication of the destination port before the
network device receives a fragment that does include an
indication of the destination port. MAP-E is a proposed
standard described in Request for Comments (RFC) 7597,
the latest draft of which is located at https://tools.ietf.org/
html/rfc7597, the entire contents of which is incorporated by
reference herein.

In accordance with aspects of this disclosure, a network
device may buffer received fragments of IPv4 network
packets until receiving a fragment of the IPv4 network
packet that includes an indication of the destination port.
When the network device receives the fragment of the [Pv4
network packet that includes an indication of the destination
port, the network device may use MAP-E to map the
destination address and the destination port of the IPv4
network packet to an IPv6 destination address, encapsulate
each of the received fragments of the IPv4 network packet
within an IPv6 network packet, and forward the encapsu-
lated fragments of the IPv4 network packet through the IPv6
network based on the IPv6 destination address. When the
network device subsequently receives additional fragments
of the IPv4 network packet, the network device may also
encapsulate each of the additional fragments of the IPv4
network packet within a respective IPv6 network packet and
forward the respective encapsulated additional fragments of
the IPv4 network packet through the IPv6 network based on
the IPv6 destination address.

The techniques described herein may provide certain
advantages. For example, by encapsulating fragments of an
IPv4 network packet within IPv6 network packets and
forwarding the encapsulated fragments of the IPv4 network
packet to an IPv6 network, the techniques described herein
may allow a network device to avoid reassembling the entire
IPv4 network packet from the fragments of the IPv4 network
packet. Because performing reassembly of IPv4 network
packets uses processor and memory resources, refraining
from reassembling the IPv4 network packet from the frag-
ments of the IPv4 network packet may enable the network
device to forward [Pv4 network packets to an IPv6 network
in a way that uses fewer processor and memory resources.
This improves the performance of the network device in
forwarding IPv4 network packets to an IPv6 network, by
enabling the network device to increase the speed at which
it forwards TPv4 network packets to an IPv6 network while
expending less processing power and using less memory to
perform such forwarding. This also improves the number of
fragments that the network device can process by reducing
the amount of processor and memory resources used to
process fragments, thereby improving the scalability of the
network device.

In addition, by forwarding fragments of an IPv4 network
packet without reassembling the entire IPv4 network packet
from the fragments, the techniques disclosed herein may
avoid having to re-fragment the reassembled IPv4 network
packet, thereby reducing the amount of processing that is
performed by the network device. For example, an IPv6
network packet that encapsulates a reassembled IPv4 net-
work packet will be larger in size than an IPv6 network
packet that encapsulates a fragment of the IPv4 network
packet. Thus, the IPv6 network packet that encapsulates the
reassembled IPv4 network packet may be more likely to
exceeds a maximum transmission unit (MTU) of one or
more links of the IPv6 network. If the IPv6 network packet
that encapsulates the reassembled IPv4 network packet

PATENT

REEL: 065031 FRAME: 0370

US 11,736,399 B2

3

exceeds the MTU of one or more links of the IPv6 network,
it may be necessary to fragment the reassembled IPv4
network packet in order to forward the IPv4 network packet
to the IPv6 network.

This disclosure also describes techniques for forwarding
fragments of IPv4 network packets encapsulated within IPv6
network packets to an IPv4 network and performing anti-
spoofing checks of such network packets without reassem-
bling IPv4 network packets from its fragments encapsulated
within IPv6 network packets. A network device may per-
form an anti-spoof check on fragments of an IPv4 network
encapsulated within an IPv6 network packet based at least in
part on the source address and the source port specified by
the IPv4 network packet. As such, a network device cannot
perform an anti-spoof check of an IPv4 network packet until
the network device has received an indication of both the
source address and source port. Further, because not every
fragment of an IPv4 network packet may include an indi-
cation of the source port specified by the IPv4 network
packet, and because fragments may be received out of order,
the network device may receive one or more fragments
encapsulated within IPv6 network packets that do not
include an indication of the source port before the network
device receives a fragment that includes an indication of the
source port. These techniques provide similar advantages as
discussed above with respect to encapsulating fragments of
1Pv4 network packets without reassembly.

In accordance with aspects of this disclosure, a network
device may receive IPv6 network packets that carry frag-
ments of IPv4 network packets, decapsulate the fragments
from the IPv6 network packets, and buffer the fragments
until the network device receives an IPv6 network packet
carrying a fragment of the IPv4 network packet that includes
an indication of the source port. When the network device
receives the IPv6 network packet that carries the fragment of
the IPv4 network packet that includes an indication of the
source port, the network device may perform an anti-spoof
check of the IPv4 network packet based at least in part on the
source address and the source port of the IPv4 network
packet. If the IPv4 network packet passes the anti-spoof
check, the network device may forward each of the frag-
ments that it has received to the IPv4 network, and may
forward any additional fragments that it subsequently
receives to the IPv4 network. If the IPv4 network packet
fails the anti-spoof check, the network device may drop each
of the received fragments for the IPv4 network packet, and
may also drop any subsequently received fragments for the
1Pv4 network packet.

The techniques described herein may provide certain
advantages. For example, the techniques described herein
may allow a network device to avoid reassembling the entire
1Pv4 network packet from the fragments of the [Pv4 network
packet in order to perform an anti-spoof check on the
network packet. Because performing reassembly of IPv4
network packets uses processor and memory resources,
refraining from reassembling the IPv4 network packet from
the fragments of the IPv4 network packet may enable the
network device to perform anti-spoof checks on IPv4 net-
work packets in a way that uses fewer processor and
memory resources. This improves the performance of the
network device in perform anti-spoof checks on IPv4 net-
work packets, by enabling the network device to increase the
speed at which it performs anti-spoof checks on IPv4
network packets while expending less processing power and
using less memory to perform such anti-spoof checks.

In one example, the disclosure is directed to a method.
The method includes receiving, by a network device from a

10

15

20

25

30

35

40

45

50

55

60

65

4

first network, one or more fragments of a fragment flow
associated with a network packet, wherein the network
packet is a first type of network packet. The method further
includes in response to determining that the network device
has not yet received a fragment of the fragment flow that
includes an indication of a destination port for the network
packet, buffering, by the network device, the one or more
fragments. The method further includes receiving, by the
network device, the fragment of the fragment flow that
includes the indication of the destination port of the network
packet. The method further includes in response to receiving
the fragment of the fragment flow that includes the indica-
tion of the destination port of the network packet, encapsu-
lating, by the network device, the one or more fragments of
the fragment flow and the fragment of the fragment flow
within a plurality of network packets based at least in part on
the destination port of the network packet without reassem-
bling the network packet from the one or more fragments
and the fragment, wherein the plurality of network packets
are each a second type of network packet. The method
further includes dispatching, by the network device to a
second network, the plurality of network packets.

In another example, the disclosure is directed to a network
device. The network device includes one or more network
interfaces configured to receive, from a first network, one or
more fragments of a fragment flow associated with a net-
work packet, wherein the network packet is a first type of
network packet. The network device further includes one or
more processors configured to, in response to determining
that the network device has not yet received a fragment of
the fragment flow that includes an indication of a destination
port for the network packet, buffering the one or more
fragments in a fragment buffer. The one or more network
interfaces are further configured to receive the fragment of
the fragment flow that includes the indication of the desti-
nation port of the network packet from the first network. The
one or more processors are further configured to, in response
to the one or more network interfaces receiving the fragment
of the fragment flow that includes the indication of the
destination port of the network packet, encapsulate the one
or more fragments of the fragment flow and the fragment of
the fragment flow within a plurality of network packets
based at least in part on the destination port of the network
packet without reassembling the network packet from the
one or more fragments and the fragment, wherein the
plurality of network packets are each a second type of
network packet. The one or more network interfaces are
further configured to dispatch the plurality of network
packets to a second network.

In another example, the disclosure is directed to a method.
The method includes receiving, by a network device from a
first network, one or more network packets of a first network
packet type, wherein each of the one or more network
packets encapsulate a respective one of one or more frag-
ments of a fragment flow associated with a network packet
of a second network packet type. The method further
includes in response to determining that the one or more
network packets of the fragment flow does not include a
fragment of the fragment flow that includes an indication of
a source port of the network packet, buffering, by the
network device, the one or more fragments of the fragment
flow. The method further includes receiving, by the network
device, a network packet of the first network type that
encapsulates the fragment of the fragment flow that includes
the indication of the source port of the network packet. The
method further includes in response to receiving the network
packet of the first network type that encapsulates the frag-

PATENT

REEL: 065031 FRAME: 0371

US 11,736,399 B2

5

ment of the fragment flow that includes the indication of the
source port of the network packet, performing, by the
network device, an anti-spoof check on the one or more
fragments of the fragment flow and the fragment of the
fragment flow based at least in part on the source port of the
network packet of the second network packet type without
reassembling the network packet of the second network
packet type from the one or more fragments of the fragment
flow and the fragment of the fragment flow. The method
further includes in response to the one or more fragments of
the fragment flow and the fragment of the fragment flow
passing the anti-spoof check, dispatching, by the network
device to a second network, the one or more fragments of the
fragment flow and the fragment of the fragment flow.

In another example, the disclosure is directed to a network
device. The network device includes one or more network
interfaces configured to receive, from a first network, one or
more network packets of a first network packet type,
wherein each of the one or more network packets encapsu-
late a respective one of one or more fragments of a fragment
flow associated with a network packet of a second network
packet type. The network device further includes one or
more processors configured to, in response to determining
that the one or more network packets of the fragment flow
does not include a fragment of the fragment flow that
includes an indication of a source port of the network packet,
buffer the one or more fragments of the fragment flow in a
fragment buffer. The one or more network interfaces are
further configured to receive a network packet of the first
network type that encapsulates the fragment of the fragment
flow that includes the indication of the source port of the
network packet. The one or more processors are further
configured to, in response to the one or more network
interfaces receiving the network packet of the first network
type that encapsulates the fragment of the fragment flow that
includes the indication of the source port of the network
packet, perform an anti-spoof check on the one or more
fragments of the fragment flow and the fragment of the
fragment flow based at least in part on the source port of the
network packet of the second network packet type without
reassembling the network packet of the second network
packet type from the one or more fragments of the fragment
flow and the fragment of the fragment flow. The one or more
network interfaces are further configured to, in response to
the one or more fragments of the fragment flow and the
fragment of the fragment flow passing the anti-spoof check,
dispatch the one or more fragments of the fragment flow and
the fragment of the fragment flow to a second network.

The details of one or more techniques of the disclosure are
set forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the tech-
niques will be apparent from the description and drawings,
and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating a system in which
a network device may connect an IPv4 network to an IPv6
network, according to techniques described herein.

FIG. 2 is a block diagram illustrating an example network
device 10 that is configured to encapsulate fragments of
1Pv4 network packets in IPv6 packets without reassembling
the IPv4 network packets, and to perform anti-spoofing
checks on fragments of IPv4 network packets without reas-
sembling the IPv4 network packets from its fragments,
according to techniques described herein.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIGS. 3A and 3B are block diagrams illustrating an
example IPv4 network packet that is fragmented into
example fragments and example IPv6 network packets that
encapsulate the example fragments of the example IPv4
network packet, according to the techniques described
herein.

FIG. 4 is a block diagram illustrating the state transitions
of an example fragment flow, according to the techniques
described herein.

FIGS. 5A-5C depict a flowchart illustrating an example
process for encapsulate IPv4 packets in [Pv6 packets with-
out reassembling the IPv4 packets, according to techniques
described herein.

FIG. 6 is a block diagram illustrating the state transitions
of an example fragment flow for performing anti-spoof
checks on fragments of the fragment flow, according to the
techniques described herein.

FIGS. 7A-7D depict a flowchart illustrating an example
process for decapsulating fragments of an IPv4 packet from
IPv6 packets and performing anti-spoof checks on the
fragments without reassembling the IPv4 packet, according
to techniques described herein.

FIG. 8 is a flowchart illustrating an example process for
encapsulate IPv4 packets in IPv6 packets without reassem-
bling the IPv4 packets, according to techniques described
herein.

FIG. 9 is a flowchart illustrating an example process for
decapsulating fragments of an IPv4 packet from IPv6 pack-
ets and performing anti-spoof checks on the fragments
without reassembling the IPv4 packet, according to tech-
niques described herein.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating a system 2 in which
a network device 10 may connect an [Pv4 network 4 to an
IPv6 network 6, according to techniques described herein.
Network device 10 may be, for example, a MAP-E enabled
router (e.g., a MAP border relay) managed by a service
provider at the edge of a MAP domain, having at least one
IPv6 enabled interface connecting network device 10 to
IPv6 network 6, and at least one IPv4 interface connecting
network device to IPv4 network 4. In some examples, some
or all of system 2 may be part of a service provider network
(not shown).

As shown in FIG. 1, network device 10 may receive [Pv4
network packets from 1Pv4 network 4, encapsulate the [Pv4
network packets into IPv6 network packets, and may for-
ward the encapsulated IPv6 network packets through IPv6
network 6. In this example, IPv6 network 6 may also include
customer edge (CE) devices 8A-8N (“CE devices 8”) to
which the encapsulated IPv6 network packets are forwarded.
CE devices 8 may be devices that function as customer edge
routers in a MAP deployment. For example, one or more of
CE devices 8 may serve a residential site with one wide area
network-side interface and one or more local area network-
side interfaces. In some examples, IPv6 network 6 may be
a private network or a service provider network while [Pv4
network 4 may be a public network (e.g., the Internet). In
some examples, network device 10, IPv6 network 6, and CE
devices 8 may form a MAP domain. In some examples,
network device 10 may also receive IPv6 network packets
that encapsulate IPv4 network packets from IPv6 network 6,
such as from CE devices 8, perform anti-spoofing checks on
the IPv6 network packets, and, if the IPv6 network packets
pass the anti-spoofing checks, forward the IPv4 network
packets encapsulated within the IPv6 network packets to

PATENT

REEL: 065031 FRAME: 0372

US 11,736,399 B2

7

1Pv4 network 4. In some examples, network device 10 and
CE devices 8 may each be dual stacked devices in that they
can interoperate equally with IPv4 devices, IPv6 devices,
and other dual stacked devices. For example, CE devices 8
may interact with network device 10 via IPv6 network 6, but
may also be operably connected to an IPv4 network to
forward IPv4 network packets to IPv4 devices.

An IPv4 network packet may use an address plus port
technique for packet routing, where the IPv4 destination
address specified by an IPv4 network packet can be
extended by at least a portion of the destination port speci-
fied by the IPv4 network packet. To route an IPv4 network
packet through IPv6 network 6 to its intended destination,
network device 10 may encapsulate an IPv4 network packet
that it receives from IPv4 network 4 within an IPv6 network
packet. Network device 10 may perform Mapping of
Address and Port with Encapsulation (MAP-E) to map the
IPv4 destination address and destination port specified by
the IPv4 network packet to an IPv6 destination address, and
to encapsulate the [Pv4 network packet within an IPv6
network packet that specifies the IPv6 destination address,
so that the IPv6 network packet may be routed through IPv6
network 6 to its intended destination.

Network device 10 may receive an [Pv4 network packet
in the form of fragments, where each fragment includes a
portion of the IPv4 network packet. To forward the frag-
ments of the [Pv4 network packet through IPv6 network 6 to
its intended destination specified by the IPv4 destination
address and at least a portion of the destination port specified
by the IPv4 network packet, network device 10 may perform
MAP-E to determine the corresponding IPv6 destination
address based at least in part on the IPv4 destination address
and the destination port specified by the IPv4 network
packet, encapsulate each of the fragments in an IPv6 net-
work packet, based at least in part on the IPv6 network
address, and forward each of the encapsulated fragments
through IPv6 network 6 to the intended destination specified
by the IPv6 network address.

Because performing MAP-E includes mapping the IPv4
destination address and destination port specified by the
IPv4 network packet to an IPv6 destination address, network
device 10 may not be able to encapsulate the IPv4 network
packet into IPv6 network packets and forward the IPv6
network packets until it receives indications of the destina-
tion address and the destination port specified by the IPv4
network packet. While each fragment of the IPv4 network
packet includes an indication of the destination address of
the IPv4 network packet, not every fragment of the IPv4
network packet may include an indication of the destination
port of the IPv4 network packet. In some examples, only a
single fragment of the IPv4 network packet may include an
indication of the destination port of the IPv4 network packet.

In accordance with some aspects of the present disclosure,
network device 10 may receive fragments of an IPv4 net-
work packet that do not include an indication of the desti-
nation port, and may buffer the received fragments of the
IPv4 network packet in a buffer until network device 10
receives a fragment of the IPv4 network packet that includes
an indication of the destination port specified by the IPv4
network packet. When network device 10 receives the
fragment of the IPv4 network packet that includes the
indication of the destination port, network device 10 may
encapsulate each of the fragments that have been received
by network device 10 in an IPv6 network packet based at
least in part on the IPv4 destination address and the desti-
nation port specified by the IPv4 network packet, and may
forward the encapsulated network packets through IPv6

10

15

20

25

30

35

40

45

50

55

60

65

8

network 6. When network device 10 receives additional
fragments of the IPv4 network packet after receiving the
fragment of the IPv4 network packet that includes the
indication of the destination port, network device 10 may
encapsulate those fragments in IPv6 network packets, and
may forward the encapsulated network packets through IPv6
network 6 without buffering the additional fragments in the
buffer or reassembling the IPv4 network packet based at
least in part on the additional fragments.

Network device 10 may also forward IPv4 network pack-
ets that have been encapsulated in IPv6 network packets
from IPv6 network 6 to IPv4 network 4 and route the IPv4
network packets through IPv4 network 4 to its intended
destination. In particular, network device 10 may receive,
from IPv6 network 6, IPv6 network packets that encapsulate
fragments of an IPv4 network packet that is to be forwarded
to IPv4 network 4. To prevent spoofing of IPv4 addresses,
network device 10 may perform an anti-spoof check on the
fragments of the IPv4 network packet that it receives in the
form of IPv6 network packets that encapsulate fragments of
the 1Pv4 network packet. Network device 10 may buffer
fragments of the IPv4 network packet until it has received
information associated with the IPv4 network packet that
enables it to perform the anti-spoofing check on fragments
of the IPv4 network packet.

Network device 10 may perform the anti-spoof check on
fragments of an IPv4 network packet that are embedded
within IPv6 network packets based at least in part on the
IPv4 source address and the source port specified by the
fragments of the IPv4 network packet. However, not every
fragment of the IPv4 network packet may include an indi-
cation of the source port of the IPv4 network packet. In some
examples, only a single fragment of the IPv4 network packet
may include an indication of the source port of the IPv4
network packet.

In accordance with some aspects of the present disclosure,
network device 10 may receive one or more IPv6 network
packets that encapsulate a respective one or more fragments
of an IPv4 network packet that do not include an indication
of the source port of the IPv4 network packet, and may
decapsulate and buffer the received fragments of the IPv4
network packet until network device 10 receives an IPv6
network packet that encapsulates a fragment of the IPv4
network packet that does include an indication of the source
port of the IPv4 network packet. When network device 10
receives the fragment of the IPv4 network packet that
includes the indication of the source port, network device 10
is able perform an anti-spoof check of the fragments of the
IPv4 network packet received by network device 10 based at
least in part on the source address and the source port
without reassembling the IPv4 network packet from its
fragments.

If the fragments IPv4 network packet received by network
device 10 passes the anti-spoof check, network device 10
may forward the IPv4 network packet fragments it has
received to IPv4 network 4, and may forward any remaining
fragments of the IPv4 network packet that it receives to IPv4
network 4. Conversely, if the fragments of the [Pv4 network
packet do not pass the anti-spoof check, network device 10
may drop the fragments of the IPv4 network packet it has
received, and may drop any remaining fragments of the IPv4
network packet that it receives.

FIG. 2 is a block diagram illustrating an example network
device 10 that is configured to encapsulate fragments of
IPv4 network packets in IPv6 packets without reassembling
the IPv4 network packets, and to perform anti-spoofing
checks on fragments of IPv4 network packets without reas-

PATENT

REEL: 065031 FRAME: 0373

US 11,736,399 B2

9

sembling the IPv4 network packets from its fragments,
according to techniques described herein. Network device
10 may include a router such as a provider edge or customer
edge router, a core router, or another type of network device,
such as a switch. In some examples, network device is a
MAP border relay router. In this example, network device 10
includes a control unit 12 that provides control plane func-
tionality for the device. Network device 10 also includes a
plurality of forwarding units 20A-20N (“forwarding units
20”) and a switch fabric 26 that together provide a data plane
for processing network traffic.

Forwarding units 20 receive and send data packets via
interfaces of interface cards 22A-22N (“IFCs 22”) each
associated with a respective one of forwarding units 20.
Each of forwarding units 20 and its associated ones of IFCs
22 may represent a separate line card insertable within a
chassis (not shown) of network device 10. IFCs 22 may be
referred to throughout this disclosure as one or more net-
work interfaces. Example line cards include flexible pro-
grammable integrated circuit (PIC) concentrators (FPCs),
dense port concentrators (DPCs), and modular port concen-
trators (MPCs). Each of IFCs 22 may include interfaces for
various combinations of layer two (I.2) technologies, includ-
ing Ethernet, Gigabit Ethernet (GigE), and Synchronous
Optical Networking (SONET) interfaces, that provide an .2
interface for transporting network packets. In various
aspects, each of forwarding units 20 may include more or
fewer IFCs. Switch fabric 26 provides a high-speed inter-
connect among forwarding units 20 for forwarding incoming
data packets to an egress forwarding unit of forwarding units
20 for output over a network that includes network device
10.

Control unit 12 is connected to each of forwarding units
20 by internal communication links 18. Internal communi-
cation links 18 may include a 100 Mbps Ethernet connec-
tion, for instance. Control unit 12 configures, by sending
instructions and other configuration data via internal com-
munication link 18, forwarding units 20 to define control
processing operations applied to packets received by for-
warding units 20.

Control unit 12 executes a plurality of applications,
including daemons 14A-14K (“daemons 14”). Each of the
applications may represent a separate process managed by a
control unit operating system. Daemons 14 may represent
user-level processes that are developed and deployed by the
manufacturer of the network device 10. As such, daemons
14 are “native” to the network device 10 in that the devel-
opment of the applications is carefully managed by the
manufacturer to facilitate secure, robust, and predictable
operation of the network device 10, such operation defined
at least in part according to a configuration specified by an
operator (e.g., a service provider, enterprise, or other cus-
tomer of the network device 10 manufacturer). Daemons 14
may run network management software, execute routing
protocols to communicate with peer routing devices, main-
tain and update one or more routing tables, and create one
or more forwarding tables for installation to forwarding
units 20, among other functions.

Control unit 12 may include one or more processors (not
shown in FIG. 2) that execute software instructions, such as
those used to define a software or computer program, stored
to a computer-readable storage medium (again, not shown in
FIG. 2), such as non-transitory computer-readable mediums
including a storage device (e.g., a disk drive, or an optical
drive) and/or a memory such as random-access memory
(RAM) (including various forms of dynamic RAM
(DRAM), e.g., DDR2 SDRAM, or static RAM (SRAM)),

10

15

20

25

30

35

40

45

55

60

65

10

Flash memory, another form of fixed or removable storage
medium that can be used to carry or store desired program
code and program data in the form of instructions or data
structures and that can be accessed by a processor, or any
other type of volatile or non-volatile memory that stores
instructions to cause the one or more processors to perform
techniques described herein. Alternatively, or in addition,
control unit 12 may include dedicated hardware, such as one
or more integrated circuits, one or more Application Specific
Integrated Circuits (ASICs), one or more Application Spe-
cific Special Processors (ASSPs), one or more Field Pro-
grammable Gate Arrays (FPGAs), or any combination of
one or more of the foregoing examples of dedicated hard-
ware, for performing the techniques described herein.
Each forwarding unit of forwarding units 20 includes at
least one fragment buffer 28 that stores fragments of network
packets, such as fragments of IPv4 network packets on
which network device 10 may perform one or more opera-
tions. Fragment buffer 28 may be any appropriate data store
for storing fragments of network packets, and may be
embodied upon any appropriate computer readable storage
medium, such as memory, storage disks, and the like. For
example, fragment buffer 28A of forwarding unit 20A may
be memory that stores fragments received via IFC 22A.
Packet processor 24 A of forwarding unit 20A may perform
one or more operations on the fragments stored in fragment
buffer 28A and may output the fragments stored in fragment
buffer 28 A via IFC 22A. In some examples, fragment buffer
28 may be reassembly buffers of network device 10 that has
typically been used by network device 10 to store fragments
of IPv4 network packets that it is to reassemble to form a
whole IPv4 network packet that network device 10 may
encapsulate within an IPv6 network to send to IPv6 network
6, or to reassemble the IPv4 network packet to perform an
anti-spoof check on the IPv4 network packet. However, the
techniques disclosed in this disclosure may be able to
perform one or more operations on the fragments stored in
fragment buffer 28 without reassembling an IPv4 network
packet from the fragments stored in fragment buffer 28.
Each forwarding unit of forwarding units 20 includes at
least one packet processor 24 that processes packets by
performing a series of operations on each packet over
respective internal packet forwarding paths as the packets
traverse the internal architecture of network device 10.
Packet processor 24A of forwarding unit 20A, for instance,
includes one or more configurable hardware chips (e.g., a
chipset) that, when configured by applications executing on
control unit 12, define the operations to be performed by
packets received by forwarding unit 20. Each chipset may in
some examples represent a “packet forwarding engine”
(PFE). Each chipset may include different chips each having
a specialized function, such as queuing, buffering, interfac-
ing, and lookup/packet processing. Each of the chips may
represent application specific integrated circuit (ASIC)-
based, field programmable gate array (FPGA)-based, or
other programmable hardware logic. A single forwarding
unit 20 may include one or more packet processors 24.
Operations may be performed, for example, on each
packet by any of a corresponding ingress interface, an
ingress forwarding unit 20, an egress forwarding unit 20, an
egress interface or other components of network device 10
to which the packet is directed prior to egress, such as one
or more service cards. Packet processors 24 process packets
to identify packet properties and perform actions bound to
the properties. Each of packet processors 24 includes for-
warding path elements that, when executed, cause the packet
processor to examine the contents of each packet (or another

PATENT

REEL: 065031 FRAME: 0374

US 11,736,399 B2

11

packet property, e.g., incoming interface) and on that basis
make forwarding decisions, apply filters, and/or perform
accounting, management, traffic analysis, and load balanc-
ing, for example. The result of packet processing determines
the manner in which a packet is forwarded or otherwise
processed by packet processors 24 of forwarding units 20
from its input interface on one of IFCs 22 to, at least in some
cases, its output interface on one of IFCs 22.

Packet processors 24 include respective packet modules
30A-30N (“packet module 30”) that execute at packet
processors 24 to receive fragments of IPv4 network packets
from IPv4 network 4 via IFCs 22, encapsulate individual
fragments of an IPv4 network packet within individual IPv6
network packets according to MAP-E, and forward each the
IPv6 network packets via IFCs 22 to IPv6 network 6 without
reassembling the IPv4 network packet from its fragments.

The set of fragments of an IPv4 network packet that is
received by network device 10, via IFCs 22, is referred to
herein as a fragment flow, where every fragment of a
particular IPv4 network packet is part of the same fragment
flow associated with the IPv4 network packet. Packet mod-
ule 30 may forward the fragments of an IPv4 network packet
that network device 10 receives from IPv4 network 4 to IPv6
network 6 by performing MAP-E to determine an IPv6
destination address and to create an IPv6 network packets
based at least in part on the IPv6 destination address to
encapsulate each fragment of the fragment flow. Packet
module 30 may forward the IPv6 network packets that
encapsulate the fragments of the fragment flow to IPv6
network 6 via IFCs 22.

Packet module 30 may determine the IPv6 destination
address based at least in part on the IPv4 destination address
and destination port specified by the fragments of the
fragment flow. However, only a single fragment of the
fragment flow for an IPv4 network packet may include an
indication the destination port of the IPv4 network packet.
Thus, when packet module 30 encounters fragments of the
fragment flow that do not include an indication of the
destination port of the IPv4 network packet, packet module
30 is unable to perform MAP-E to determine the IPv6
destination address from the IPv4 destination address and
the destination port of the IPv4 network packet, and packet
module 30 is thus also unable to create IPv6 network packets
to encapsulate the fragments of the fragment flow.

Instead, in accordance with the techniques of this disclo-
sure, packet module 30 may buffer the fragments of a
fragment flow for an TPv4 network packet it receives in
fragment buffer 28 in the order in which the fragments were
received at network device 10 until packet module 30
receives, via IFCs 22, the fragment of the fragment flow that
includes an indication of the destination port of the IPv4
network packet. When packet module 30 receives, via IFCs
22, the fragment of the fragment flow for the IPv4 network
packet that includes an indication of the destination port for
the IPv4 network packet, packet module 30 may be able to
perform MAP-E to encapsulate the fragments of the frag-
ment flow within IPv6 network packets based at least in part
on the destination address of the IPv4 network packet and to
dispatch the IPv6 network packets to IPv6 network 6,
without requiring network device 10 to reassemble the IPv4
network packet.

As part of performing MAP-E, packet module 30 deter-
mines the IPv6 destination address from the IPv4 destination
address and the destination port. Packet module 30 may also
create IPv6 network packets based at least in part on the
IPv6 destination address and encapsulate each fragment of
the fragment flow it has received (i.e., the fragments of the

30

35

40

45

12

fragment flow currently being buffered in fragment buffer 28
and the fragment of the fragment flow that includes an
indication of the destination port) within a respective IPv6
network packet it has created. Packet module 30 may
forward the IPv6 network packets to IPv6 network 6 for
routing to an intended destination according to the IPv6
destination address.

When packet module 30 receives one or more additional
fragments of the fragment flow for the IPv4 network packet
after it has received the fragment of the fragment flow that
includes an indication of the destination port for the IPv4
network packet, packet module 30 is able to perform MAP-E
to encapsulate the one or more additional fragments of the
fragment flow within respective one or more IPv6 network
packets without buffering the one or more additional frag-
ments of the fragment flow in fragment buffer 28, and to
forward the one or more IPv6 network packets to IPv6
network 6. In this way, packet module 30 is able to forward
fragments of an IPv4 network packet from IPv4 network 4
to IPv6 network 6 without reassembling the IPv4 network
packet from its fragments.

Packet processor 24 may also include or otherwise be able
to access flow tables 32A-32N (“flow table 32”) that
includes entries associated with fragment flows encountered
by packet module 30. Flow table may be any suitable data
structures or data stores that stores information associated
with fragment flows processed by packet module 30, and
may be embodied upon any suitable computer readable
storage medium.

When packet module 30 initially encounters a fragment of
a fragment flow from an IPv4 network 4 for forwarding to
IPv6 network 6, packet module 30 may create an entry for
the fragment flow in flow table 32. When packet module 30
has finished processing all fragments of the fragment flow,
packet module 30 may delete the entry for the fragment flow
from flow table 32. The entry for the fragment flow may
store various information associated with the fragment flow
that may be used by packet module 30 to process fragments
of the fragment flow. In particular, packet module 30 may
use the information stored in the entry for the fragment flow
to determine whether to buffer fragments of the fragment
flow received by network device 10 in to fragment buffer 28,
or whether to encapsulate and forward fragments of the
fragment flow received by network device 10.

The entry for a fragment flow in flow table 32 may include
or otherwise be associated with a key that may be used to
index into flow table 32 to look up and locate the entry in
flow table 32 for a particular fragment flow entry. The key
for an entry in flow table 32 for a fragment flow associated
with an IPv4 network packet may be generated, such as via
hashing, based at least in part on the following values
specified by an IPv4 network packet header included in each
fragment of the fragment flow: a fragment identifier, an IPv4
source address, an IPv4 destination address, and a protocol
identifier.

The fragment identifier is a value, such as an integer, that
is the same for each fragment of the fragment flow, and
uniquely identifies the fragment flow out of all fragment
flows having the same IPv4 source address, IPv4 destination
address, and protocol identifier. The IPv4 source address and
the IPv4 destination address are IPv4 network addresses that
indicate the source and intended destinations, respectively,
of'the fragments of the fragment flow. The protocol identifier
is a value that identifies the transport protocol (e.g., TCP,
UDP, etc.) of the fragments of the fragment flow. Each of
these values are the same for each fragment of the fragment
flow, thereby allowing network device 10 to identify frag-

PATENT

REEL: 065031 FRAME: 0375

US 11,736,399 B2

13

ments that are part of the fragment flow. Flow table 32 may
store an association of the key with an entry of flow table 32,
or otherwise associate the key with the entry, so that flow
table 32 may use the key to index into the appropriate entry
of flow table 32 for the fragment flow.

An entry in flow table 32 for a fragment flow associated
with an IPv4 network packet may include a state field
(“State”), a destination port field (“DPORT™), a sent bytes
field (“SNT_BYTS”), a queued bytes field (“QUED-
_BYTS”), a total length field (“TOTAL_BYTS”), and a
timer field (“Timer”). The state field may store a value that
indicates the state of the fragment flow. In some example
aspects, a fragment flow associated with an IPv4 network
packet may be in one of the following states: a new entry
state, a buffer state, an encapsulation state, and a drop state.

A fragment flow is in a new entry state when flow table
32 does not include an entry for the fragment flow. Thus, the
value of the state field may only indicate whether the
fragment flow is in a buffer state, an encapsulation state, or
a drop state. The buffer state indicates that packet module 30
will buffer fragments of the fragment flow received by
packet module 30 in fragment buffer 28 because packet
module 30 has yet to receive a fragment of the fragment flow
that includes an indication of the destination port. The
encapsulation state indicates that packet module 30 has
received a fragment of the fragment flow that includes an
indication of the destination port and therefore will encap-
sulate and forward fragments of the fragment flow. The drop
state indicates that packet module 30 will drop fragments of
the fragment flow and refrain from buffering, encapsulating,
or forwarding fragments of the fragment flow.

The destination port field may store a value that indicates
the destination port. As discussed above, only one fragment
of a fragment flow may include an indication of the desti-
nation port. As such, packet module 30 may update the
destination port field when network device 10 has received
the fragment of the fragment flow that includes an indication
of the destination port.

The sent bytes field may store a value indicative of the
total size of the fragments of the fragment flow that network
device 10 has dispatched. Each time network device 10
dispatches, via IFCs 22, an encapsulated fragment of the
fragment flow, packet module 30 may increment the value of
the sent bytes field by the size of the dispatched fragment.
The queued bytes field may store a value indicative of the
total size of the fragments of the fragment flow currently
being huffered by network device 10 in fragment buffer 28.
Each time network device 10 receives and buffers a fragment
of the fragment flow in fragment buffer 28, packet module
30 may increment the value of the queued bytes field by the
size of the buffered fragment. The total length field may
store a value indicative of the total size of all of the
fragments of the fragment flow. When network device 10
receives the last fragment of the fragment flow, packet
module 30 may be able to determine the total size of all of
the fragments of the fragment flow based on the offset of the
last fragment and the size of the last fragment.

The sizes of the fragments indicated by the values of the
sent bytes field, queued bytes field, and total bytes field may
not include the size of the IPv4 headers included in the
fragments. As will be further discussed below, each frag-
ment of an IPv4 packet may include a respective IPv4 header
and data section. As such, the values of the sent bytes field,
queued bytes field, and total bytes field may indicate the size
of the data sections of the fragments that have been sent by
network device 10, the size of the data sections of the
fragments buffered by network device 10, and the size of the

40

45

14

data sections of all fragments making up the fragment flow,
respectively. Packet module 30 may determine the size of
the data section of a fragment by subtracting the size of the
IPv4 header from the size of the fragment.

The timer field may store a value indicative of the amount
of time that has elapsed during processing of the fragment
flow. As network device 10 receives fragments of the
fragment flow, packet module 30 may update the value of
the timer field with the amount of time that has elapsed
during processing of the fragment flow. If the amount of
time that has elapsed during processing of the fragment flow
exceeds a reassembly time out value, network device 10 may
cease forwarding of the fragments of the fragment flow. In
this way, packet module 30 may utilize flow table 32 during
its processing of fragments of a fragment flow.

Packet module 30 may also execute at packet processors
24 to receive [Pv6 network packets from IPv6 network 6, via
IFCs 22, that encapsulate fragments of an IPv4 network
packet that are to be forwarded to IPv4 network 4. Packet
module 30 may decapsulate the fragments of the IPv4
network packet from the IPv6 network packets, perform an
anti-spoof check on the decapsulated fragments, and, if the
fragments pass the anti-spoof checks, forward the fragments
to IPv4 network 4 without reassembling an IPv4 network
packet from its fragments. Packet module 30 may perform
the anti-spoof checks when anti-spoof check is enabled in
packet module 30. If anti-spoof check is not enabled, packet
module 30 may forward the fragments to IPv4 network 4
without performing the anti-spoof checks.

The set of fragments of an IPv4 network packet encap-
sulated within the IPv6 network packets that are received by
network device 10 is also referred to herein as a fragment
flow, where every fragment of a particular IPv4 network
packet is part of the same fragment flow. Each fragment of
the fragment flow may be encapsulated within a respective
IPv6 network packet, and network device 10 may receive
IPv6 network packets that encapsulate fragments of the
fragment flow from IPv6 network 6.

Packet module 30 may perform an anti-spoof check on
each fragment of such a fragment flow. When packet module
30 receives an IPv6 network packet that encapsulates a
fragment of a fragment flow, packet module 30 may decap-
sulate the fragment from the IPv6 network packet. Upon
decapsulating the packet, packet module 30 may perform an
anti-spoof check on the decapsulated fragment. If the frag-
ment passes the anti-spoof check, packet module 30 may
forward the fragment to IPv4 network 4. If the fragment fails
the anti-spoof check, packet module 30 may drop the packet.

Packet module 30 may perform an anti-spoof packet on
fragments of a fragment flow associated with an IPv4
network packet by determining whether the IPv4 source
address and the source port of the IPv4 network packet are
each within a respective acceptable range. If the IPv4 source
address and the source port are each within a respective
acceptable range, then the fragment passes the anti-spoof
check. However, if at least one of the IPv4 source address or
the source port is not within a respective acceptable range,
then the fragment fails the anti-spoof check.

However, only a single fragment of the fragment flow for
an [Pv4 network packet may include an indication the source
port of the IPv4 network packet. Thus, when packet module
30 encounters fragments of the fragment flow that do not
include an indication of the source port of the IPv4 network
packet, packet module 30 is unable to perform the anti-spoof
check for any fragments of the fragment flow.

Instead, packet module 30 may decapsulate, from IPv6
network packets that network device 10 has received via

PATENT

REEL: 065031 FRAME: 0376

US 11,736,399 B2

15

IFCs 22 from IPv6 network 6, fragments of a fragment flow
for an IPv4 network packet. Packet module 30 may buffer
the decapsulated fragments of the fragment flow in fragment
buffer 28 in the order in which they were received at network
device 10 until network device 10 receives and decapsulates
the fragment of the fragment flow that includes an indication
of'the source port of the IPv4 network packet. When network
device 10 receives the fragment of the fragment flow that
includes an indication of the source port of the IPv4 network
packet, packet module 30 may be able to perform anti-spoof
checks on each of the fragments of the fragment flow. When
network device 10 receives one or more additional frag-
ments of the fragment flow for the IPv4 network packet after
it has received the fragment of the fragment flow that
includes an indication of the source port of the IPv4 network
packet, packet module 30 is able to perform anti-spoof
checks on the one or more additional fragments of the
fragment flow without buffering the one or more additional
fragments of the fragment flow in fragment buffer 28.

When packet module 30 encounters fragments of a frag-
ment flow for which packet module 30 is to perform
anti-spoof checks, packet module 30 may add entries asso-
ciated with fragment flows encountered by packet module
30 to flow table 32, where the fragments of the fragment
flow are encapsulated within IPv6 network packets received
by network device 10. When packet module 30 has per-
formed anti-spoof checks on all of the fragments of a
fragment flow, packet module 30 may delete the entry for the
fragment flow from flow table 32.

The entry for the fragment flow may store various infor-
mation associated with the fragment flow that may be used
by packet module 30 to process fragments of the fragment
flow in order to perform anti-spoof checks on the fragments
of the fragment flow. In particular, packet module 30 may
use the information stored in the entry for the fragment flow
to determine whether to buffer fragments of the fragment
flow received by network device 10 in to fragment buffer 28,
or whether to perform anti-spoof checks on the fragments of
the fragment flow received by network device 10.

The entry for a fragment flow in flow table 32 may include
or otherwise be associated with a key that may be used to
index into flow table 32 to look up and locate the entry in
flow table 32 for a particular fragment flow entry. The key
for an entry in flow table 32 for a fragment flow associated
with an IPv4 network packet, where the fragments of the
fragment flow are encapsulated in IPv6 network packets,
may be generated, such as via hashing, based at least in part
on the following values specified by an IPv6 network packet
header and an IPv4 network packet header that are each
included in each IPv6 network packet: an IPv6 source
address, an IPv6 destination address, a fragment identifier,
an IPv4 source address, an IPv6 destination address, and a
protocol identifier.

The IPv6 source address and the IPv6 destination address
are IPv6 network addresses that indicate the source and
intended destinations, respectively, of the IPv6 network
packet. The IPv4 source address and the IPv4 destination
address are IPv4 network addresses that indicate the source
and intended destinations, respectively, of the fragment
encapsulated by the IPv6 network packet.

The fragment identifier is a value that is the same for each
fragment of the fragment flow, and uniquely identifies the
fragment flow out of all fragment flows having the same
source address, destination address, and protocol identifier.
The protocol identifier is a value that identifies the transport
protocol (e.g., TCP, UDP, etc.) of the fragments of the
fragment flow. Each of these values are the same for each

15

20

25

30

35

40

45

50

55

60

65

16

fragment of the fragment flow, thereby allowing network
device 10 to identify IPv6 network packets that encapsulate
fragments that are part of the fragment flow.

An entry in flow table 32 for a fragment flow associated
with an IPv4 network packet may include a state field
(“State”), a source port field (“SPORT”) a sent bytes field
(“SNY_BYTS”), a queued bytes field (“QUED_BYTS”), a
dropped bytes field (“DROPPED_BYTS”), a total length
field (“TOTAL_BYTS”), and a timer field (“Timer”). The
state field may store a value that indicates the state of the
fragment flow. A fragment flow associated with an IPv4
network packet may be in one of the following states: a
device entry state, a buffer state, a spoof status available
state, and a drop state. As network device 10 receives
fragments of a fragment flow, network device 10 may create
an entry in flow table 32 and populate the fields of the entry
with values based at least in part on the fragments of the
fragment flow that it has received.

Because a fragment flow is in a new entry state when flow
table 32 does not include an entry for the fragment flow, the
value of the state field may only indicate whether the
fragment flow is in a buffer state, a spoof status available
state, or a drop state. The source port field may store a value
that indicates the source port. As discussed above, only one
fragment of the fragment flow may include an indication of
the source port. As such, network device 10 may only update
the source port field when it has received the fragment of the
fragment flow that includes an indication of the source port.

The sent bytes field may store a value indicative of the
total size of the fragments of the fragment flow that has
passed the anti-spoof check and has been dispatched. Each
time a fragment of the fragment flow passes the anti-spoof
check and is dispatched by packet module 30 to IPv4
network 4, packet module 30 may increment the value of the
sent bytes field in the fragment flow’s entry in flow table 32
by the size of the dispatched fragment. The queued bytes
field may store a value indicative of the total size of the
fragments of the fragment flow currently being buffered by
packet module 30 in fragment buffer 28. Each time packet
module 30 receives and buffers a fragment of the fragment
flow in fragment buffer 28, packet module 30 may increment
the value of the queued bytes field by the size of the buffered
fragment.

The dropped bytes field may store a value indicative of the
total size of the fragments of the fragment flow that packet
module 30 has dropped. Packet module 30 may drop frag-
ments of the fragment flow if they fail the anti-spoof check
or if the amount of time that has elapsed during processing
of the fragment flow exceeds a reassembly timeout. Each
time a fragment of the fragment flow fails the anti-spoof
check and is dropped, packet module 30 may increment the
value of the sent bytes field by the size of the dropped
fragment.

The total length field may store a value indicative of the
total size of all of the fragments of the fragment flow. When
packet module 30 receives the last fragment of the fragment
flow, packet module 30 may be able to determine the total
size of all of the fragments of the fragment flow based on the
offset of the last fragment and the size of the last fragment.
The sizes of the fragments indicated by the values of the sent
bytes field, queued bytes field, dropped bytes field, and total
bytes field may not include the size of the IPv4 headers
included in the fragments. As will be further discussed
below, each fragment of an IPv4 packet may include a
respective IPv4 header and data section. As such, the values
of the sent bytes field, queued bytes field, dropped bytes
field, and total bytes field may indicate the size of the data

PATENT

REEL: 065031 FRAME: 0377

US 11,736,399 B2

17

sections of the fragments that have been sent by network
device 10, the size of the data sections of the fragments
buffered by network device 10, the size of the data sections
of the fragments dropped by network device 10, and the size
of the data sections of all fragments making up the fragment
flow, respectively. Packet module 30 may determine the size
of the data section of a fragment by subtracting the size of
the IPv4 header from the size of the fragment.

The timer field may store a value indicative of the amount
of time that has elapsed during processing of the fragment
flow. As packet module 30 receives fragments of the frag-
ment flow, packet module 30 may update the value of the
timer field with the amount of that that has elapsed during
processing of the fragment flow. If the amount of time that
has elapsed during processing of the fragment flow exceeds
a reassembly time out value, packet module 30 may cease
forwarding of the fragments of the fragment flow.

FIGS. 3A and 3B are block diagrams illustrating an
example IPv4 network packet that is fragmented into
example fragments and example IPv6 network packets that
encapsulate the example fragments of the example IPv4
network packet, according to the techniques described
herein. A network device, such as network device 10, may
receive fragments of IPv4 network packets from an IPv4
network, such as IPv4 network 4, and may encapsulate the
fragments within IPv6 network packets for transmission to
an IPv6 network, such as IPv6 network 6. Network device
10 may also receive from an IPv6 network, such as IPv6
network 6, IPv6 network packets that encapsulate fragments
of IPv4 network packets. Network device 10 may decapsu-
late the fragments of IPv4 network packets from the IPv6
network packets and may perform anti-spoof checks on the
decapsulated fragments of IPv4 networks.

As shown in FIG. 3A, IPv4 network packet 40 may
include header 42 followed by data section 44. Header 42
may include fields that specifies various information regard-
ing IPv4 network packet 40. In the example of FIG. 4, the
fields in header 42 may include total length 50A, identifi-
cation 50B, flag 50C, fragment offset 50D, protocol 50E,
source address 50F, and destination address 50G. Header 42
may include additional fields not shown in FIG. 4. For
example, header 42 may include a total of fourteen fields,
thirteen of which are required.

Total length 50A is the size of IPv4 network packet 40,
including header 42 and data section 44. When part of a
fragment of IPv4 network packet 40, total length 50A may
be the size of the fragment rather than the size of IPv4
network packet 40.

Identification 50B is a value that uniquely identify the
groups of fragments making up IPv4 network packet 40.
Identification 50B may be referred to throughout this dis-
closure as fragment ID. Flags 50C may include one or more
flags. Flags 50C may include a Don’t Fragment (DF) flag
that may be set (e.g., have a value of one) if IPv4 network
packet 40 cannot be fragmented, and may not be set (e.g.,
has a value of zero) if IPv4 network packet 40 can be
fragmented. Flags 50C may also include a More Fragments
(MF) that is set (e.g., have a value of one) for each fragment
of IPv4 network packet 40 other than the last fragment.

Fragment offset 50D specifies the offset of a particular
fragment of 1Pv4 network packet 40 relative to the begin-
ning of the original unfragmented IPv4 network packet 40.
The first fragment has an offset of zero. Protocol 50E
specifies the protocol used in data section 44 of IPv4
network packet 40, such as Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP). Source address
50F specifies the IPv4 address of the sender of IPv4 network

10

15

20

25

30

35

40

45

50

55

60

65

18
packet 40. Destination address 50G specifies the IPv4
address of the receiver of IPv4 network packet 40.

Data section 44 of IPv4 network packet 40 may include
data associated with the transport layer protocol, such as
TCP, UDP, and the like, utilized by IPv4 network packet 40.
Data section 44 of IPv4 network packet 40 may include
transport protocol header 46 followed by payload 48. Trans-
port protocol header 46 may be a TCP header, UDP header,
and the like depending on the transport layer protocol used
by IPv4 network packet 40. Transport protocol header 46
may include source port 50H and destination port 50I.
Source port 50H identifies the sending port of IPv4 network
packet 40, and destination port 501 identifies the destination
port of IPv4 network packet 40. Transport protocol header
46 may include additional fields not shown in FIG. 3A.
Payload 48 may be data carried by IPv4 network packet 40
besides header 42 and transport protocol header 46.

Fragmenting IPv4 network packet 40 includes dividing
data section 44 of IPv4 network packet 40 into sequential
data section fragments 45A-45N (“data sections 45”), which
are sequential non-overlapping portions of data section 44 of
IPv4 network packet 40. Data section fragment 45A may
include a sequentially first portion of data section 44,
including transport protocol header 46 and a first portion of
payload 48. Data section fragment 45N may include the
sequentially last non-overlapping portion of payload 48.
One or more data section fragments, such as data section
fragment 45B, may each contain a non-overlapping portion
of payload 48 between the portions of payload 48 contained
in data section fragment 45A and data section fragment 45N.
As can be seen, only data section fragment 45A contains
transport protocol header 46, while none of the remaining
data section fragments 45B-45N contains transport protocol
header 46.

Fragments 52A-52N (“fragments 52”) of IPv4 network
packet 40 may each contain IPv4 header 42 and one of data
sections 45. Fragment 52A that contains data section frag-
ment 52A, and is an example of a first fragment of IPv4
network packet 40 because it contains the sequentially first
portion of data section 44. Fragment 52N that contains data
section fragment 45N, and is an example of a last fragment
of IPv4 network packet 40 because it contains the sequen-
tially last portion of data section 44. Fragment 52B that
contains data section fragment 52B is an example of a mid
fragment of TPv4 network packet 40 because it contains a
data section fragment (e.g., data section fragment 45B) that
is not sequentially the first portion of data section 44 or the
last portion of data section 44.

IPv4 network packet 40 may be fragmented into a plu-
rality of fragments 52. Plurality of fragments 52 may include
one first fragment (i.e., fragment 52A), one last fragment
(i.e., fragment 52N), and one or more mid fragments (i.e.,
fragment 52B). Each fragment of fragments 52 includes the
fields of IPv4 header 42, including fields 50A-50G. While
the values for each of fields S0A-50G are the same for each
fragment of fragments 52, some of the fields may contain
different values. For example, the first fragment such as
fragment 52A and the one or more mid fragments, such as
fragment 52B, may each have the More Fragments (MF) flag
in flags 50C be set (e.g., have a value of one) because they
are not the last fragment. Meanwhile, the last fragment such
as fragment 52N may have the MD flag in flags 50C not be
set (e.g., have a value of zero). In addition, the value of
fragment offset 50D may be different for each fragment of
fragments 52. For example, the value of fragment offset 50D

PATENT

REEL: 065031 FRAME: 0378

US 11,736,399 B2

19

for the first fragment such as fragment 52A is zero, while the
value of fragment offset 50D for other fragments is non-
Zero.

While fragments 52 are referred to as first fragment, mid
fragment, and last fragment, it should be understood that
these names do not necessarily refer to the order in which
network device 10 may receive these fragments 52, because
fragments 52 may arrive out of order at network device 10.
Instead, the terms first, mid, and last refer to the sequential
portions of data section 44 that are included in the respective
fragments 52.

When fragments 52 arrive at network device 10, network
device 10 may encapsulate fragments 52 into IPv6 network
packets, where each fragment of fragments 52 is encapsu-
lated within a separate IPv6 network packet. Thus, if frag-
ments 52 includes a total of five fragments, network device
10 may encapsulate the five fragments within five IPv6
network packets that each contain one of the five fragments.

As shown in FIG. 3B, when network device 10 receives
fragments 52, network device 10 may perform MAP-E to
encapsulate fragments 52 within IPv6 network packets 60A-
60N (“IPv6 network packets 607). In particular, network
device 10 may encapsulate fragment 52A within IPv6 net-
work packet 60A, encapsulate fragment 52B within IPv6
network packet 60B, encapsulate fragment 52N within IPv6
network packet 60N, and so on. An IPv6 network packet
includes IPv6 header 62 and a payload (e.g., one of frag-
ments 52). Thus, IPv6 network packet 60A includes IPv6
header 62 and fragment S52A, IPv6 network packet 60B
includes IPv6 header 62 and fragment 52B, and IPv6 net-
work packet 60C includes IPv6 header 62 and fragment 52C.
IPv6 header 62 may include IPv6 source address 64A and
IPv6 destination address 64B. IPv6 source address 64A
specifies the IPv6 address of the sender of IPv4 network
packet 40, a fragment of which is contained in the IPv6
network packet. IPv6 destination address 64B specifies the
IPv6 address of the receiver of the IPv6 network packet. It
should be understood that IPv6 header 62 may include
additional fields that are not shown in FIG. 3B.

To perform MAP-E to encapsulate fragments 52 within
IPv6 network packets 60, network device 10 may generate
IPv6 network header 62, including IPv6 source address 64A
and IPv6 destination address 64B, based at least in part on
fragments 52. Because IPv4 network packet 40 uses an
address plus port technique for packet routing, where the
source address 50F specified by IPv4 network packet 40 is
extended by at least a portion of the source port 50H
specified by IPv4 network packet 40, and the destination
addresses 50G specified by IPv4 network packet 40 is
extended by at least a portion of the destination port 501
specified by the IPv4 network packet 40, network device 10
may not be able to generate IPv6 network header 62 until it
receives fragment 52A that includes source port 50H and
destination port 501.

However, network device 10 may not necessarily receive
fragment 52A that contains destination port 521 before it
receives other fragments of fragments 52. If network device
10 receives one or more fragments of fragments 52 other
than fragment 52A before network device 10 receives frag-
ment 52A, network device 10 may not be able to encapsulate
the one or more fragments of fragments 52 that it has
received. Instead, network device 10 may buffer the one or
more fragments of fragments 52 that it has received in
fragment buffer 28 until it receives fragment 52A that
includes source port S0H and destination port 50I. When
network device 10 receives fragment S2A that includes
source port S0H and destination port 501, network device 10

10

15

20

25

30

35

40

45

50

55

60

65

20

may be able to generate IPv6 header 62, including IPv6
source address 64A and IPv6 destination address 64B, based
at least in part on source port S0H and destination port 501
included by fragment 52A. Network device 10 may utilize
IPv6 header 62 to encapsulate fragment 52A and the one or
more fragments stored in fragment buffer 28 into IPv6
network packets 60, and dispatch IPv6 network packets 60
to IPv6 network 6.

In some examples, network device 10 may also receive
IPv6 network packets 60 that may encapsulate fragments 52
of a fragment flow associated with IPv4 network packet 40.
Network device 10 may decapsulate fragments 52 from the
received IPv6 network packets 60, perform anti-spoof
checks on fragments 52, and, if fragments 52 pass the
anti-spoof checks, forward fragments 52 onto IPv4 network
4.

Network device 10 may perform anti-spoof checks on
fragments 52 based at least in part on IPv4 source address
50F and source port 50H included in fragments 52 by
determining whether each of source address 50F and source
port 50H is within a respective acceptable range. If each of
source address 50F and source port 50H is each within a
respective acceptable range, then fragments 52 may pass the
fragment check.

However, only the first fragment (e.g., fragment 52A) of
the fragment flow, contains source port S0H, and network
device may not necessarily receive fragment 52A that con-
tains source port S0H before it receives other fragments of
fragments 52. If network device 10 receives one or more
fragments of fragments 52 other than fragment 52A before
network device 10 receives fragment 52A, network device
10 may not be able to perform anti-spoof checks on the one
or more fragments of fragments 52 that it has received.
Instead, network device 10 may buffer the one or more
fragments of fragments 52 that it has received in fragment
buffer 28 until it receives fragment 52A that includes source
port 50H. When network device 10 receives fragment 52A
that includes source port 50H, network device 10 may be
able to perform an anti-spoof check on fragments 52 of the
fragment flow based at least in part on source port 50H
included in fragment 52A. If the fragments 52 of the
fragment flow pass the anti-spoof check, network device 10
may forward fragments 52 of the fragment flow to IPv4
network 4.

As network device 10 receives, buffers, and encapsulates
fragments 52 of a fragment flow, the fragment flow may
transition between different states. FIG. 4 is a block diagram
illustrating the state transitions of an example fragment flow,
according to the techniques described herein. As shown in
FIG. 4, the state of a fragment flow may be new entry state
70, buffer state 72, encapsulation state 74, or drop state 76.
New entry state 70 indicates that network device 10 has yet
to receive any fragments 52 of the fragment flow. Buffer
state 72 indicates that network device 10 is currently buff-
ering fragments 52 that it receives but cannot yet encapsu-
late and dispatch any of the received fragments 52. Encap-
sulation state 74 indicates that the network device 10 is
currently able to encapsulate and dispatch any fragments 52
that it receives. Drop state 76 indicates that network device
10 is currently dropping any fragments 52 that it receives.

A fragment flow is in new entry state 70 until it receives
a fragment of the fragment flow. When the fragment flow is
in new entry state 70, the fragment flow may transition to
buffer state 72 if network device 10 receives a mid fragment
or a last fragment of the fragment of flows, or may transition
to encapsulation state 74 if network device 10 receives a first
fragment of the fragment flows. When the fragment flow is

PATENT

REEL: 065031 FRAME: 0379

US 11,736,399 B2

21

in buffer state 72, network device 10 is unable to encapsulate
any fragments 52 of the fragment flow it receives. Instead,
network device 10 may store fragments it has received in
fragment buffer 28. When network device 10 receives addi-
tional mid fragments or the last fragment of the fragment
flow when the fragment flow is in buffer state 72, the
fragment flow may remain in buffer state 72 and network
device 10 may store the fragments it receives in fragment
buffer 28.

Regardless of whether the fragment state is in new entry
state 70 or buffer state 72, when network device 10 receives
a first fragment of the fragment flow, network device 10 is
able to transition to encapsulation state 74. When the frag-
ment flow is in encapsulation state 74, network device 10
has received the first fragment of the fragment flow that
includes an indication of the destination port of IPv4 net-
work packet 40. Thus, network device 10 is now ready to
encapsulate fragments 52 that it has received in IPv6 net-
work packets 60 and dispatch the IPv6 network packets 60
to IPv6 network 6. When network device 10 receives
additional fragments 52 while the fragment flow is in
encapsulation state 74, network device 10 may encapsulate
the additional fragments 52 it receives in IPv6 network
packets 60 and dispatch the IPv6 network packets 60 to IPv6
network 6 without buffering the additional fragments 52 in
fragment buffer 28.

When the fragment is in new entry state 70, buffer state
72, or encapsulation state 74, the fragment flow may tran-
sition to a drop state 76 when the time elapsed for processing
fragments 52 exceeds a reassembly time out, or when an
error occurs. Examples of the length of time for a reassem-
bly time out may be 30 seconds, 45 seconds, and the like.
When the fragment flow is in drop state 76, network device
10 may drop any fragments 52 that it receives. Dropping a
fragment may include network device 10 refraining from
encapsulating or forwarding fragments 52 to IPv6 network
6.

FIGS. 5A-5C depict a flowchart illustrating an example
process for encapsulate IPv4 packets in IPv6 packets with-
out reassembling the IPv4 packets, according to techniques
described herein. Such a process can be performed by a
network device, such as network device 10, that is connected
to an IPv4 network such as IPv4 network 4 and to an IPv6
network such as IPv6 network 6. As shown in FIG. 5A,
network device 10 may receive a fragment of an IPv4
network packet, such as one of fragments 52 of IPv4
network packet 40, from TPv4 network 4 (82).

As discussed throughout this disclosure, network device
10 may buffer every fragment of a flow that it receives until
it receives a first fragment of the flow. Once network device
10 receives the first fragment of the flow, it has the necessary
information, such as the destination port, to perform encap-
sulation of each of the fragments of the flow that it has
received. Thus, network device 10 determine the type of
action to take in response to receiving the fragment based at
least in part on the type of the fragment. Further, as dis-
cussed above with respect to FIG. 4, the type of action that
network device 10 takes in response to receiving a fragment
may also be based at least in part on the state of the fragment
flow.

As such, when network device 10 receives the fragment,
network device 10 may determine the fragment type of the
fragment as well as the state of the fragment flow of the
fragment in order to determine an action to perform in
response to receiving the fragment. Network device 10 may
determine the fragment type of a fragment as being one of:
a first fragment (e.g., fragment 52A), a mid fragment (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

22

fragment 52B), or a last fragment (e.g., fragment 52N) of the
fragment flow based at least in part on information contained
in the fragment (84). For example, IFCs 22 of network
device 10 may receive the fragment, and packet module 30
of network device 10 may determine the fragment type of
the fragment.

Network device 10 may determine whether the fragment
is a first fragment, mid fragment, or last fragment of the
fragment flow based at least in part on the fragment offset
50D and flag 50C in IPv4 header 42 of the fragment. In
particular, network device 10 may determine that the frag-
ment is a first fragment of the fragment flow if the value of
fragment offset 50D is equal to zero and if the More
Fragments flag in flags 50C is set. Network device 10 may
determine that the fragment is a mid fragment if the value of
fragment offset 50D is non-zero and the More Fragments
flag in flags 50C is set. Network device 10 may determine
that the fragment is a last fragment if the value of fragment
offset 50D is non-zero and the More Fragments flag in flags
50C is not set.

Besides determining the type of the fragment, network
device 10 may also determine the state of the fragment flow
at the time network device 10 receives the fragment. The
state of the fragment flow may also inform network device
10 as to the action it takes in response to receiving the
fragment. A fragment flow may be in one of four states: new
entry, buffer, encapsulation, or drop. A fragment flow may be
in a new entry state when network device 10 has not yet
received any fragments of the fragment flow. A fragment
flow may be in a buffer state when it has received one or
more fragments of the fragment flow, but has yet to receive
the first fragment of the fragment flow that includes an
indication of the destination port. A fragment flow may be in
an encapsulation state when it has received the first fragment
of the fragment flow that includes an indication of the
destination port. A fragment flow may be in a drop state
when each fragment of the fragment flow is to be dropped
by network device 10. For example, packet module 30 of
network device 10 may determine the state of the fragment
flow.

When the fragment flow is in a buffer state, network
device 10 may be able to buffer any fragments of the
fragment flow that it receives in fragment buffer 28, but may
not be able to encapsulate and dispatch the fragments of the
fragment flow it has received. When the flow state is in an
encapsulation state, network device 10 may be able to
encapsulate and dispatch fragments of the fragment flow that
it has received. When the fragment flow is in a drop state,
network device 10 may drop any fragments of the fragment
flow that it receives.

As shown in FIG. 5B, when the fragment is a first
fragment 52A, network device 10 may determine the frag-
ment flow for the fragment to be in one of the following flow
states: new entry, buffer, or drop. (86). Because network
device 10 cannot encapsulate fragments of the fragment flow
until it has received the first fragment of the fragment flow,
the fragment flow cannot be in encapsulation mode until
network device 10 receives the first fragment of the frag-
ment flow. While FIGS. 5A and 5B illustrates that the
fragment’s type is determined before determining the state
of the fragment flow for the fragment, it should be under-
stood that such determinations may occur in any order, or
may occur simultaneously. For example, network device 10
may determine the state of the fragment flow for the frag-
ment prior to determining the fragment type of the fragment.

Network device 10 may determine the state of the frag-
ment flow by performing a lookup into flow table 32 to

PATENT

REEL: 065031 FRAME: 0380

US 11,736,399 B2

23

determine whether flow table 32 includes an entry for the
particular fragment flow and, if so, determine the value of
the state field of the flow table entry for the fragment flow.
Network device 10 may perform the lookup into flow table
32 by indexing into flow table 32 using a key that network
device 10 may generate based at least in part on the contents
of the fragment. Because each fragment may include IPv4
header 42, network device 10 may generate the key based at
least in part on a portion of IPv4 header 42. In one example,
network device 10 may generate the key based at least in
part on fragment ID, source address, destination address,
and protocol ID contained in IPv4 header 42 because they
may uniquely identify the fragment flow compared with
other fragment flows. For example, network device 10 may
hash the fragment ID, source address, destination address,
and protocol ID to generate a key that is used to index into
flow table 32 to lookup the flow table entry for the fragment
flow.

Network device 10 may determine the fragment flow to be
in the new entry state when flow table 32 does not include
an entry for the fragment flow. In response to determining
that the fragment is a first fragment and that the state of the
fragment flow is new entry, network device 10 may create an
entry for the fragment flow in flow table 32 for the fragment
flow (88). For example, packet module 30 of network device
10 may create the entry for the fragment flow in flow table
32 and update the fields of the entry in flow table 32. As
discussed above, an entry for the fragment flow in flow table
32 may include fields such as state, destination port, sent
bytes, queued bytes, total bytes, and timer. Because the first
fragment includes an indication of the destination port,
network device 10 may update the destination port field in
the entry to the destination port indicated by the first
fragment. Further, when network device 10 receives the first
fragment of the fragment flow, network device 10 may
change the state of the fragment flow from new entry to
encapsulation by setting the state field of the entry to a value
that indicates encapsulation state.

In addition, because the first fragment can be encapsu-
lated and dispatched without being buffered in fragment
buffer 28, network device 10 may also set the sent bytes field
to the size of the data section (e.g., data section fragment
45A) of the fragment. The IPv4 header (e.g., IPv4 header 42)
of the fragment includes total length 50A that indicates the
size of the fragment inclusive of the IPv4 header. Thus,
network device 10 may determine the size of the data section
of the fragment based at least in part on the total length 50A
by subtracting the size of the IPv4 header from the value of
total length 50A.

Network device 10 may proceed to encapsulate the first
fragment according to MAP-E (90) and to dispatch the
encapsulated first fragment to IPv6 network 6 (92). After
encapsulating and dispatching the first fragment, the frag-
ment flow may remain in the encapsulation state, and
process may return to step 82 for network device 10 to
receive further segments of the fragment flow. For example,
packet module 30 of network device 10 may encapsulate the
first fragment.

If the current fragment is a first fragment of the fragment
flow, and if flow table 32 includes an entry for the fragment
flow, then the state field of the entry for the format flow may
indicate whether the fragment flow is in a buffer state or
whether the state of the fragment flow is in a drop state. As
discussed above, a fragment flow may be in a buffer state
when network device 10 has already received and buffered
one or more fragments of the fragment flow.

10

15

20

25

30

35

40

45

50

55

60

65

24

In response to determining that the current fragment is a
first fragment of the fragment flow, and that the state of the
fragment flow is drop, network device 10 may drop the
fragment (i.e., refrain from forwarding the fragment to IPv6
network 6) (92).

In response to determining that the current fragment is a
first fragment of the fragment flow, and that the fragment
flow is in a buffer state, network device 10 may update the
entry for the fragment flow in flow table 32 based on the first
fragment (94). Network device 10 may update the value of
the state field of the fragment flow from indicating a buffer
state to indicating an encapsulation state and update the
value of the destination port field in the entry to indicate the
destination port indicated by the first fragment.

Because receiving the first fragment of the fragment flow
enables network device 10 to encapsulate and forward the
fragments of the fragment flow it has been buffering, net-
work device 10 may also update the value of the sent bytes
field of the entry to indicate current value of the queued
bytes field plus the size of the data section (e.g., data section
fragment 45A) of the fragment. As discussed above, the
IPv4 header (e.g., IPv4 header 42) of the fragment includes
total length 50A that indicates the size of the fragment
inclusive of the IPv4 header. Thus, network device 10 may
determine the size of the data section of the fragment based
at least in part on the total length S0A by subtracting the size
of the IPv4 header from the value of total length 50A.
Network device 10 may also set the value of the queued
bytes field of the entry to indicate zero due to network device
10 being able to encapsulate and forward the fragments of
the fragment flow it has been buffering.

Network device 10 may proceed to encapsulate each
fragment of the flow that it has buffered, plus the first
fragment, using MAP-E (96) and may dispatch each of the
encapsulated fragments to IPv6 network 6 (98). For
example, packet module 30 of network device 10 may
encapsulate the fragments of the fragment flow and may
dispatch the encapsulated packets via IFCs 22 to IPv6
network 6. In response to encapsulating and dispatching
each fragment of the fragment flow that it has received,
network device 10 may determine whether to delete the
entry for the fragment flow in flow table 32 (100). Network
device 10 may delete the entry for the fragment flow in flow
table 32 if it has encapsulated and forwarded all fragments
of the fragment flow.

Network device 10 may determine it has encapsulated and
forwarded all fragments of the fragment flow by determining
whether the amount of data it has sent to forward fragments
of the fragment flow is equal to the total size of all of the
fragments of the fragment flow. Network device 10 may
determine if the value of the total bytes field of the entry for
the fragment flow is greater than zero and if the value of the
total bytes field is equal to the value of the sent bytes field
of the entry. If so, network device 10 may determine that it
has encapsulated and forwarded all fragments of the frag-
ment flow and may delete the entry for the fragment flow
from flow table 32, thus ending the forwarding of fragments
performed by network device 10 for the particular fragment
flow (101). If network device 10 determines it has not
encapsulated and forwarded all fragments of the fragment
flow, network device 10 may refrain from deleting the entry
for the fragment flow, and may return to step 82 to receive
additional fragments of the fragment flow. For example,
packet module 30 of network device 10 may determine
whether it has encapsulated and forwarded all fragments of
the fragment flow.

PATENT

REEL: 065031 FRAME: 0381

US 11,736,399 B2

25

As discussed above, a fragment may be a first fragment,
a mid fragment, or a last fragment. As shown in FIG. 5C,
when the fragment is a mid fragment or a last fragment,
network device 10 may determine the state of the fragment
flow for the fragment and may perform one or more actions
based at least in part on the state of the fragment flow (104).
When network device 10 receives a fragment that is a mid
fragment or a last fragment, the fragment flow state may be
in one of: a new entry state, a buffer state, an encapsulation
state, or a drop state.

As discussed above with respect to FIG. 5B, network
device 10 may determine the state of the fragment flow by
performing a lookup into flow table 32 to determine whether
flow table 32 includes an entry for the particular fragment
flow and, if so, determine state of the fragment flow based
on the value of the state field in the flow table entry for the
fragment flow.

If flow table 32 does not include an entry for the fragment
flow, then network device 10 may determine the fragment
flow to be in the new entry state regardless of whether the
current fragment is a first fragment, a mid fragment, or a last
fragment. In response to determining that the fragment is a
mid fragment or a last fragment and that the state of the
fragment flow is new entry, network device 10 may create an
entry for the fragment flow in flow table 32 for the fragment
flow (106). Upon creating the entry for the fragment flow in
flow table 32, network device 10 may update the values of
one or more fields of the entry. Because network device 10
has not received the first fragment of the fragment flow, the
fragment flow state transitions from a new entry state to a
buffer state when the network device 10 receives a mid
fragment or a last fragment of the fragment flow. Thus,
network device 10 may set the value of the state field of the
entry for the fragment flow in flow table 32 to indicate a
buffer state. Network device 10 may also set the value of the
sent bytes field of the entry in flow table 32 to zero, as
network device 10 has not yet encapsulated and dispatched
any previous fragments of the fragment flow, and as the
fragment flow is currently in the buffer state.

When the fragment received by network device 10 is a last
fragment of the fragment flow (e.g., fragment 52N), network
device 10 may be able to determine the total size of data
sections 45 of all of the fragments of the fragment flow
based at least in part on the value of the fragment offset 50D
and the value of the total length 50A included in IPv4 header
42 of the last fragment. In one example, the total size of the
data sections 45 of all of the fragments of the fragment flow
may be determined by adding the value of the total length
50A in IPv4 header 42 the last fragment to the result of
multiplying the value of the fragment offset 50D in IPv4
header 42 of the last fragment by eight, and subtracting the
result of the sum by the size of the IPv4 header 42 of the last
fragment. Network device 10 may update the value of the
total bytes field of the entry with the total size of all
fragments of the fragment flow that it has determined.

When the fragment flow is currently in the buffer state,
network device 10 operates to buffer fragments it receives in
the fragment buffer while it remains in the buffer state,
instead of encapsulating and forwarding fragments or drop-
ping fragments. Because the fragment flow is now in a buffer
state, network device 10 may buffer the fragment in frag-
ment buffer 28 (108). As network device 10 buffers frag-
ments of a fragment flow, network device 10 may update the
fragment flow’s entry in flow table 32 to reflect the size of
the fragments that are currently buffered in fragment buffer
28 of network device 10. Thus, because the mid fragment or
the last fragment received by network device 10 is currently

10

40

45

26

the only fragment of the fragment flow being buffered in
fragment buffer 28, network device 10 may set the value of
the queued bytes field in the entry for the fragment flow in
flow table 32 to indicate the result of subtracting the total
length specified by total length S0A of IPv4 header 42 the
mid fragment or last fragment that it has received and
buffered by the size of IPv4 header 42. Upon buffering the
fragment in fragment buffer 28, network device 10 may
await receipt of additional fragments of the fragment flow at
step 82 shown in FIG. 5A.

If the fragment received by network device 10 is a mid
fragment or a last fragment of the fragment flow, and if flow
table 32 includes an entry for the fragment flow, then the
fragment flow is either in a buffer state, an encapsulation
state, or a drop state. As discussed above, the state field in
the fragment flow’s entry in flow table 32 indicates whether
the fragment flow is in the buffer state, the encapsulation
state, or the drop state. When the fragment flow is in the drop
state, network device 10 may drop the fragment it has
received (i.e., refrain from forwarding the fragment to IPv6
network 6) (120). Upon dropping the fragment, network
device 10 may await receipt of additional fragments of the
fragment flow at step 82 shown in FIG. 5A.

When the fragment received by network device 10 is a
mid fragment or a last fragment of the fragment flow, if the
fragment flow is in a buffer state, network device 10 may
buffer the fragment it has received in fragment buffer 28 and
may update the fragment flow’s entry in flow table 32 (110).
Network device 10 may update the queued bytes field in the
entry to add the result of subtracting the value indicated by
total length 50A of IPv4 header 42 of the current fragment
being buffered by the size of IPv4 header 42 of the fragment
to the current value of the queued bytes field. If the fragment
is a last fragment of the fragment flow, network device 10
may also be able to determine the total size of all fragments
of the fragment flow based at least in part on the value of
fragment offset 50D and the value of total length S0A of the
last fragment, as discussed above, and may update the value
of the total bytes field of the entry with the total size of data
sections 45 of all fragments of the fragment flow that it has
determined. Upon buffering the fragment in fragment buffer
28, network device 10 may await receipt of additional
fragments of the fragment flow at step 82 shown in FIG. 5A.

The fragment flow is in an encapsulation state if network
device 10 has previously received the first fragment of the
fragment flow. When the fragment is a mid fragment or a last
fragment of the fragment flow, and if the fragment flow is in
an encapsulation state, network device 10 may be able to
encapsulate the fragment it has received within IPv6 net-
work packet 60 and dispatch IPv6 network packet 60 to IPv6
network 6 without buffering the fragment in fragment buffer
28. Network device 10 may encapsulate the fragment using
MAP-E (112) and to dispatch the encapsulated fragment to
IPv6 network 6 (114). As part of encapsulating the fragment
using MAP-E, network device 10 may determine an IPv6
destination address based at least in part by the destination
address and the destination port specified by the fragment
flow.

When network device 10 encapsulates and dispatches a
fragment of the fragment flow, network device 10 may
update the sent bytes field in the entry for the fragment flow
in flow table 32 to add the total length of the fragment
encapsulated and dispatched by network device 10 to the
current value of the sent bytes field. If the fragment is a last
fragment of the fragment flow, network device 10 may also
be able to determine the total size of all fragments of the
fragment flow based at least in part on the value of fragment

PATENT

REEL: 065031 FRAME: 0382

US 11,736,399 B2

27
offset 50D and the value of total length 50A in IPv4 header
42 of the last fragment, as discussed above, and may update
the value of the total bytes field of the entry with the total
size of data sections 45 of all fragments of the fragment flow
that it has determined.

In response to encapsulating and dispatching the frag-
ment, network device 10 may determine whether to delete
the entry for the fragment flow in flow table 32 (116).
Network device 10 may delete the entry for the fragment
flow in flow table 32 if it has encapsulated and dispatched
every fragment of the fragment flow. Network device 10
may determine it has encapsulated and forwarded all frag-
ments of the fragment flow if the amount of data (e.g., data
sections 45) it has sent to forward fragments of the fragment
flow is equal to the total size of data sections 45 all of the
fragments of the fragment flow. Network device 10 may
determine if the value of the total bytes field of the entry for
the fragment flow is greater than zero and if the value of the
total bytes field is equal to the value of the sent bytes field.
If so, network device 10 may determine that it has encap-
sulated and forwarded all fragments of the fragment flow
and may delete the entry for the fragment flow, thus ending
the buffering, encapsulating, and forwarding of fragments
performed by network device 10 for the particular fragment
flow (118). If network device 10 determines it has not
encapsulated and forwarded all fragments of the fragment
flow, network device 10 may refrain from deleting the entry
for the fragment flow from flow table 32, and may await
receipt of additional fragments of the fragment flow at step
82 shown in FIG. 5A.

In addition to forwarding fragments 52 of an IPv4 net-
work packet 40 to IPv6 network 6, network device 10 may
also forward fragments 52 encapsulated within IPv6 net-
work packets 60 from IPv6 network 6 to IPv4 network 4. As
part of forwarding the encapsulated fragments 52, network
device 10 may perform an anti-spoof check on each of the
fragments 52 that it receives to determine whether the values
of source address 50F and source port 50H in each fragment
are each within a respective acceptable range. If the values
of source address 50F and source port 50H of a fragment are
each within a respective acceptable range, then the fragment
passes the anti-spoof check. However, if at least one of the
values of source address 50F and source port S0H of a
fragment is not within a respective acceptable range, then
the fragment fails the anti-spoof check.

Because IPv4 network packet 40 uses an address plus port
technique for packet routing, where the source address 50F
specified by IPv4 network packet 40 is extended by at least
a portion of the source port 50H specified by IPv4 network
packet 40, and the destination addresses 50G specified by
1Pv4 network packet 40 is extended by at least a portion of
the destination port 501 specified by the IPv4 network packet
40, network device 10 may not be able to perform anti-spoof
checks on the fragments it has received until it receives a
fragment of the fragment flow that includes source port S0H.
In some examples, only the first fragment of a fragment
includes source port S0H.

However, network device 10 may not necessarily receive
an IPv6 network packet that encapsulates the first fragment
before it receives IPv6 network packets that encapsulate
other fragments of fragments 52. If network device 10
receives one or more IPv6 network packets that encapsulate
one or more fragments of fragments 52 other than the first
fragment before network device 10 receives an IPv6 net-
work packet that encapsulates the first fragment, network
device 10 may not be able to perform anti-spoof checks on
the one or more fragments of fragments 52 that it has

10

15

20

25

30

35

40

45

50

55

60

65

28

received. Instead, network device 10 may decapsulate the
one or more fragments from the one or more IPv6 network
packets and may buffer the one or more fragments in
fragment buffer 28 until it receives an IPv6 network packet
that encapsulates the first fragment.

When network device 10 receives an IPv6 network packet
that encapsulates the first fragment of the fragment flow,
network device 10 may be able to perform anti-spoof checks
on the first fragment as well as any fragments of the
fragment flow that is already stored in fragment buffer 28
based at least in part on source port 50H included in the first
fragment. Network device 10 may utilize IPv6 header 62 to
encapsulate fragment 52A and the one or more fragments
stored in fragment buffer 28 into IPv6 network packets 60,
and dispatch IPv6 network packets 60 to [Pv6 network 6. In
some examples, network device 10 may perform anti-spoof
checks if anti-spoof checks are enabled in network device
10. If anti-spoof checks are not enabled in network device
10, network device 10 may refrain from performing anti-
spoof checks when forwarding fragments 52 of the fragment
flow to IPv4 network 4.

As network device 10 receives and decapsulates and
performs anti-spoof checks on fragments 52 of a fragment
flow, the fragment flow may transition between different
states. FIG. 6 is a block diagram illustrating the state
transitions of an example fragment flow for performing
anti-spoof checks on fragments of the fragment flow, accord-
ing to the techniques described herein. As shown in FIG. 6,
the state of a fragment flow may be new entry state 122,
buffer state 124, spoof status available state 126, or drop
state 128. New entry state 122 indicates that network device
10 has yet to receive any IPv6 network packets 60 that
encapsulate fragments 52 of the fragment flow. Buffer state
124 indicates that network device 10 is currently buffering
fragments 52 that it has decapsulated from IPv6 network
packets 60, but cannot yet perform anti-spoof checks on any
of the received fragments 52. Spoof status available state
126 indicates that the network device 10 is currently able to
perform anti-spoof checks on any fragments 52 that it has
decapsulated. Drop state 128 indicates that network device
10 is currently dropping any fragments 52 that it decapsu-
lates.

A fragment flow is in new entry state 122 until it receives
an [Pv6 network packet that encapsulates a fragment of the
fragment flow. When the fragment flow is in new entry state
122, the fragment flow may transition to buffer state 124
when network device 10 receives an IPv6 network packet
that encapsulates a mid fragment or a last fragment of the
fragment of flows, or may transition to spoof status available
state 126 if network device 10 receives an IPv6 network
packet that encapsulates a first fragment of the fragment
flow. When the fragment flow is in buffer state 124, network
device 10 is unable to perform anti-spoof checks on any
fragments 52 of the fragment flow it receives. Instead,
network device 10 may decapsulate fragments from IPv6
network packets it receives, and may store fragments it has
received in fragment buffer 28. When network device 10
receives and decapsulates additional mid fragments or the
last fragment of the fragment flow when the fragment flow
is in buffer state 124, the fragment flow may remain in buffer
state 124 and network device 10 may store the fragments it
has decapsulated in fragment buffer 28.

Regardless of whether the fragment state is in new entry
state 122 or buffer state 124, when network device 10
receives a first fragment of the fragment flow, network
device 10 is able to transition to spoof status available state
126. When the fragment flow is in spoof status available

PATENT

REEL: 065031 FRAME: 0383

US 11,736,399 B2

29

state 126, network device 10 has received and decapsulated
the first fragment of the fragment flow that includes an
indication of the source port of IPv4 network packet 40
associated with the fragment flow. Thus, network device 10
is now ready to perform anti-spoof checks on fragments 52
that it has received in IPv6 network packets 60. Network
device 10 may forward all fragments 52 that pass the
anti-spoof check to IPv4 network 4 and may drop all
fragments 52 that fail the anti-spoof check.

When network device 10 receives additional fragments 52
while the fragment flow is in spoof status available state 126,
network device 10 may perform anti-spoof checks on the
additional fragments 52 it receives without buffering the
additional fragments 52 in fragment buffer 28 and without
reassembling IPv4 network packet 40 from the additional
fragments 52.

When the fragment is in new entry state 122, buffer state
124, or encapsulation state 126, the fragment flow may
transition to a drop state 128 when the time elapsed for
processing fragments 52 exceeds a reassembly time out or
when an error occurs in processing of the fragment flow. A
reassembly time out in some examples may be 30 seconds,
45 seconds, or any other suitable value. When the fragment
flow is in drop state 128, network device 10 may drop any
fragments 52 that it receives. Dropping a fragment may
include network device 10 refraining from encapsulating or
forwarding fragments 52 to IPv6 network 6.

FIGS. 7A-D is a flowchart illustrating an example process
for decapsulating fragments of an IPv4 packet from IPv6
packets and performing anti-spoof checks on the fragments
without reassembling the IPv4 packet, according to tech-
niques described herein. Such a process can be performed by
a network device that is connected to an IPv4 network and
an IPv6 network, such as network device 10 shown in FIGS.
1 and 2 that is connected to IPv4 network 4 and IPv6
network 6. As shown in FIG. 6A, network device 10 may
receive an IPv6 network packet, such as one of IPv6 network
packets 60, that encapsulates a fragment of an IPv4 network
packet, such as one of fragments 52 of IPv4 network packet
40, from 1Pv4 network 4 (130). In response, network device
10 may decapsulate the fragment of the IPv4 network packet
40 from the IPv6 network packet it receives (132). For
example, IFCs 22 of network device 10 may receive the
IPv6 network packet and packet module 30 of network
device 10 may decapsulate the fragment from the IPv6
network packet.

Fvery fragment of the same Pv4 network packet may be
part of the same fragment flow. As discussed throughout this
disclosure, network device 10 may, for a fragment flow,
buffer every fragment that it receives and decapsulates until
it receives a first fragment of the flow. Once network device
10 receives and decapsulate the first fragment of the flow, it
has the necessary information, such as the source port, to
perform an anti-spoof check of each of the fragments of the
fragment flow that it has received. Thus, network device 10
may determine the type of action to take in response to
receiving and decapsulating a fragment based at least in part
on the type of the fragment. Further, as discussed above with
respect to FIG. 4, the type of action that network device 10
takes in response to receiving a fragment may also be based
at least in part on the state of the fragment flow.

As such, when network device 10 receives and decapsu-
lates a fragment, network device 10 may determine the
fragment type of the fragment as well as the state of the
fragment flow of the fragment in order to determine an
action to perform in response to receiving the fragment.
Network device 10 may determine the fragment type of a

5

10

15

25

30

35

40

45

50

55

65

30

fragment as being one of: a first fragment (e.g., fragment
52A), a mid fragment (e.g., fragment 52B), or a last frag-
ment (e.g., fragment 52N) of the fragment flow based at least
in part on information contained in the fragment (134). For
example, packet module 30 of network device 10 may
determine the fragment type of the fragment.

Network device 10 may determine whether the fragment
is a first fragment, mid fragment, or last fragment of the
fragment flow based at least in part on the fragment offset
50D and flag 50C in IPv4 header 42 of the fragment. For
example, network device 10 may determine that the frag-
ment is a first fragment of the fragment flow if the value of
fragment offset 50D is equal to zero and if the More
Fragments flag in flags 50C is set. Network device 10 may
determine that the fragment is a mid fragment if the value of
fragment offset 50D is non-zero and the More Fragments
flag in flags 50C is set. Network device 10 may determine
that the fragment is a last fragment if the value of fragment
offset 50D is non-zero and the More Fragments flag in flags
50C is not set.

Besides determining the type of the fragment, network
device 10 may also determine the state of the fragment flow
at the time network device 10 receives the fragment. The
state of the fragment flow may also inform network device
10 as to the action it takes in response to receiving the
fragment. When network device 10 is to perform anti-spoof
checks on fragments of a fragment flow, the fragment flow
may be in one of four states: new entry, buffer, spoof status
available, or drop. A fragment flow may be in a new entry
state when network device 10 has not yet received any
fragments of the fragment flow. A fragment flow may be in
a buffer state when it has received one or more fragments of
the fragment flow, but has yet to receive the first fragment
of'the fragment flow that includes an indication of the source
port. A fragment flow may be in a spoof status available state
when it has received the first fragment of the fragment flow
that includes an indication of the source port. A fragment
flow may be in a drop state when each fragment of the
fragment flow is to be dropped by network device 10. For
example, packet module 30 of network device 10 may
determine the state of the fragment flow.

When the fragment flow is in a buffer state, network
device 10 may be able to buffer in fragment buffer 28 any
fragments of the fragment flow that it receives and decap-
sulates, but may not be able to perform anti-spoof checks on
the fragments it has received. When the flow state is in a
spoof status available state, network device 10 may be able
to perform anti-spoof checks on fragments of the fragment
flow that it has received. When the fragment flow is in a drop
state, network device 10 may drop any fragments of the
fragment flow that it receives.

As shown in FIG. 7B, when the fragment is a first
fragment, network device 10 may determine the fragment
flow for the fragment to be in one of the following flow
states: new entry, buffer, or drop. (136). Because network
device 10 cannot perform anti-spoof checks on fragments of
the fragment flow until it has received the first fragment of
the fragment flow, the fragment flow cannot be in a spoof
status available state until network device 10 receives the
first fragment of the fragment flow. While FIGS. 7A and 7B
illustrates that the fragment’s type is determined before
determining the state of the fragment flow for the fragment,
it should be understood that such determinations may occur
in any order, or may occur simultaneously. For example,
network device 10 may determine the state of the fragment
flow for the fragment prior to determining the fragment type
of the fragment.

PATENT

REEL: 065031 FRAME: 0384

US 11,736,399 B2

31

Network device 10 may determine the state of the frag-
ment flow by performing a lookup into flow table 32 to
determine whether flow table 32 includes an entry for the
particular fragment flow and, if so, determine the value of
the state field of the flow table entry for the fragment flow.
Network device 10 may perform the lookup into flow table
32 by indexing into flow table 32 using a key that network
device 10 may generate based at least in part on the contents
of the IPv6 network packet that encapsulates the fragment.
Because each IPv6 network packet that encapsulates a
fragment may include IPv6 header 62 and IPv4 header 42,
network device 10 may generate the key based at least in
part on at least a portion of IPv6 header 62 and at least a
portion of IPv4 header 42. In one example, network device
10 may generate the key based at least in part on IPv6 source
address and IPv6 destination address contained in IPv6
header 62 and fragment ID, source address, destination
address, and protocol ID contained in IPv4 header 42
because they may uniquely identify the fragment flow
compared with other fragment flows. For example, network
device 10 may hash the IPv6 source address, IPv6 destina-
tion address, fragment ID, source address, destination
address, and protocol ID to generate a key that is used to
index into flow table 32 to lookup the flow table entry for the
fragment flow.

Network device 10 may determine the fragment flow to be
in the new entry state when flow table 32 does not include
an entry for the fragment flow. In response to determining
that the fragment received and decapsulated by network
device 10 is a first fragment, and that the state of the
fragment flow is new entry, network device 10 may create an
entry for the fragment flow in flow table 32 for the fragment
flow (138). As discussed above, an entry for the fragment
flow in flow table 32 may include fields such as state, source
port, sent bytes, queued bytes, total bytes, dropped bytes,
and timer. Because the first fragment includes an indication
of' the source port, network device 10 may update the source
port field in the entry to the source port indicated by the first
fragment. Further, when network device 10 receives the first
fragment of the fragment flow, network device 10 may
transition the fragment flow from new entry state to spoof
status available state by setting the state field of the entry to
a value that indicates the spoof status available state.
Because network device 10 can perform anti-spoof checks
once it receives the first fragment, network device 10 may
proceed to perform anti-spoof check on the fragment it has
received and decapsulated, as shown in further detail in FIG.
7D.

As shown in FIG. 7D, network device 10 may perform an
anti-spoof check on the fragment it has received by deter-
mining whether the source address and the source port
associated with the fragment flow of the fragment range are
each within an acceptable range (154). For example, packet
module 30 of network device 10 may perform the anti-spoof
check on the fragment. Network device 10 may retrieve the
source address from the source address field of the fragment
flow’s entry in flow table 32 and may determine whether the
source address is within an acceptable range. Network
device 10 may also retrieve the source port from the source
port field of the fragment flow’s entry in flow table 32 and
may determine whether the source address is within an
acceptable range.

If the source address and the source port are both within
acceptable ranges, then the fragment passes the anti-spoof
check. If either the source address or the source port is not
within an acceptable range, the fragment fails the anti-spoof
check. If the fragment fails the anti-spoof check, network

10

15

20

25

30

35

40

45

50

55

60

65

32

device 10 may drop the fragment as well as all previously
received fragments of the same fragment flow that are
currently being buffered in fragment buffer 28 (156).

When the fragment fails the anti-spoof check, network
device 10 may update the fragment flow’s entry in flow table
32. Network device 10 may set the value of the dropped
bytes field as the total size of data sections 45 of the
fragments that network device 10 has dropped. Because
network device 10 drops the fragment as well as all previ-
ously received fragments of the same fragment flow that are
currently being buffered in fragment buffer 28, network
device 10 may set the value of the dropped bytes field to the
sum of the value of the queued bytes field and the value of
total length 50A in [Pv4 header 42 of the fragment specified
by total length 50A in the fragment minus the size of [Pv4
header 42. Network device 10 may also set the values of the
sent bytes field and the queued bytes field to zero.

Network device 10 may determine whether it should
delete the fragment flow’s entry in flow table 32. Network
device 10 may delete the fragment flow’s entry if it has
received every fragment making up the fragment flow (158).
Because the fragment has failed the anti-spoof check, net-
work device 10 should have dropped every fragment of the
fragment flow it has received. If network device 10 has
received and dropped every fragment of the fragment flow,
the total size of all of the fragments it has dropped should be
the same as the total size of all of the fragments of the
fragment flow.

Thus, network device 10 may determine if it has received
every fragment of the fragment flow by comparing the value
of the total bytes field to the dropped bytes field. If the value
of the total bytes field is greater than zero, and if the value
of the total bytes field equals the value of the dropped bytes
field, then network device 10 may determine it has received
every fragment of the fragment flow, and may delete the
fragment flow’s entry in flow table 32 (160). On the other
hand, if network device 10 determines it has not yet received
every fragment of the fragment flow, network device 10 may
refrain from deleting the fragment flow’s entry in flow table
32 and may instead await receipt of additional IPv6 network
packets 60 that carry fragments of the fragment flow at step
130 shown in FIG. 7A.

When the fragment passes the anti-spoof check, network
device 10 may forward the fragment as well as all previously
received fragments of the same fragment flow that are
currently being buffered in fragment buffer 28 to IPv4
network 4 (162). Network device 10 may also set the value
of the sent bytes field as the total size of data sections 45 of
the fragments that network device 10 has sent to IPv4
network 4. Because network device 10 sends to IPv4 net-
work 4 the fragment as well as all previously received
fragments of the same fragment flow that are currently being
buffered in fragment buffer 28, network device 10 may set
the value of the sent bytes field to the sum of the value of the
queued bytes field and the value of total length 50A in IPv4
header 42 of the fragment minus the size of IPv4 header 42.
Network device 10 may also set the values of the queued
bytes field to zero.

Network device 10 may determine whether it should
delete the fragment flow’s entry in flow table 32. Network
device 10 may delete the fragment flow’s entry if it has
received every fragment making up the fragment flow (164).
Because the fragment has passed the anti-spoof check,
network device 10 should have forwarded every fragment of
the fragment flow it has received. If network device 10 has
received and forwarded every fragment of the fragment flow,

PATENT

REEL: 065031 FRAME: 0385

US 11,736,399 B2

33

the total size of all of the fragments it has forwarded should
be the same as the total size of all of the fragments of the
fragment flow.

Thus, network device 10 may determine if it has received
every fragment of the fragment flow by comparing the value
of the total bytes field to the sent bytes field. If the value of
the total bytes field is greater than zero, and if the value of
the total bytes field equals the value of the sent bytes field,
then network device 10 may determine it has received every
fragment of the fragment flow, and may delete the fragment
flow’s entry in flow table 32 (166). On the other hand, if
network device 10 determines it has not yet received every
fragment of the fragment flow, network device 10 may
refrain from deleting the fragment flow’s entry in flow table
32 and may instead await receipt of additional IPv6 network
packets 60 that carry fragments of the fragment flow at step
130 shown in FIG. 7A.

Network device 10 may only have to perform the anti-
spoof check once for a particular fragment flow, because the
fragment flow comprises the fragments of a single IPv4
network packet that specifies a single IPv4 source address
and a single source port. Thus, if one fragment of a fragment
flow passes the anti-spoof check, then other fragments of the
fragment flow will also pass the anti-spoof check. Con-
versely, if one fragment of a fragment flow fails the anti-
spoof check, then other fragments of the fragment flow will
also fail the anti-spoof check. Thus, once network device 10
has performed an anti-spoof check for a fragment flow,
network device 10 may determine whether to forward or to
drop the remaining fragments of the fragment flow based on
whether the fragment flow has previously passed or failed
the anti-spoof check.

Referring back to FIG. 7B, if the current fragment is a first
fragment of the fragment flow, and if flow table 32 includes
an entry for the fragment flow, then the state field of the
entry for the format flow may indicate whether the fragment
flow is in a buffer state or whether the state of the fragment
flow is in a drop state. As discussed above, a fragment flow
may be in a buffer state when network device 10 has already
received and buffered one or more fragments of the fragment
flow.

In response to determining that the current fragment is a
first fragment of the fragment flow, and that the fragment
flow is in a drop state, network device 10 may drop the
fragment (i.e., refrain from forwarding the fragment to IPv4
network 4) (142). In response to dropping the fragment,
network device 10 may await receipt of additional IPv6
network packets 60 that carry fragments of the fragment
flow at step 130 shown in FIG. 7A.

In response to determining that the current fragment is a
first fragment of the fragment flow, and that the fragment
flow is in a buffer state, network device 10 may transition the
fragment flow from the buffer state to the spoof status
available state and may update the entry for the fragment
flow in flow table 32 based on the first fragment (140).
Network device 10 may update the value of the state field of
the fragment flow from indicating a buffer state to indicating
a spoof status available state and update the value of the
source port field in the entry to indicate the source port
indicated by the first fragment. Because receiving the first
fragment of the fragment flow enables network device 10 to
forward the fragments of the fragment flow it has been
buffering to IPv4 network 4, network device 10 may also
update the value of the sent bytes field of the entry to
indicate current value of the queued bytes field plus the
value of total length S0A in IPv4 header 42 of the fragment
minus the size of [Pv4 header 42. Network device 10 may

40

45

34

also set the value of the queued bytes field of the entry to
indicate zero due to network device 10 being able to forward
the fragments of the fragment flow it has been buffering.
Network device 10 may proceed to perform anti-spoof
checks on each fragment of the flow that it has buffered, plus
the first fragment, as shown in FIG. 7D.

As discussed above, a fragment may be a first fragment,
a mid fragment, or a last fragment. As shown in FIG. 7C,
when the fragment is a mid fragment or a last fragment,
network device 10 may determine the state of the fragment
flow for the fragment and may perform one or more actions
based at least in part on the state of the fragment flow (143).
When network device 10 receives a fragment that is a mid
fragment or a last fragment, the fragment flow state may be
in one of: a new entry state, a buffer state, a spoof status
available state, or a drop state.

As discussed above with respect to FIG. 7B, network
device 10 may determine the state of the fragment flow by
performing a lookup into flow table 32 to determine whether
flow table 32 includes an entry for the particular fragment
flow and, if so, determine state of the fragment flow based
on the value of the state field in the flow table entry for the
fragment tlow.

If flow table 32 does not include an entry for the fragment
flow, then network device 10 may determine the fragment
flow to be in the new entry state regardless of whether the
current fragment is a first fragment, a mid fragment, or a last
fragment. In response to determining that the fragment is a
mid fragment or a last fragment and that the state of the
fragment flow is new entry, network device 10 may create an
entry for the fragment flow in flow table 32 for the fragment
flow (144). Upon creating the entry for the fragment flow in
flow table 32, network device 10 may update the values of
one or more fields of the entry. Because network device 10
has not received the first fragment of the fragment flow, the
fragment flow state transitions from a new entry state to a
buffer state when the network device 10 receives a mid
fragment or a last fragment of the fragment flow. Thus,
network device 10 may set the value of the state field of the
entry for the fragment flow in flow table 32 to indicate a
buffer state. Network device 10 may also set each of the
values of the sent bytes field and the dropped bytes field of
the entry in flow table 32 to zero, as none of the fragments
of the fragment flow has yet to pass or fail the anti-spoof
check.

When the fragment received by network device 10 is a last
fragment of the fragment flow, network device 10 may be
able to determine the total size of data sections 45 of all of
the fragments of the fragment flow based at least in part on
the value of fragment offset 50D and the value of total length
50A included in IPv4 header 42 of the last fragment. In one
example, the total size of data sections 45 of all of the
fragments of the fragment flow may be determined by
adding the value of total length 50A in IPv4 header 42 of the
last fragment to the result of multiplying the value of
fragment offset 50D in IPv4 header 42 of the last fragment
by eight, and subtracting the result of the sum by the size of
the IPv4 header 42 of the last fragment. Network device 10
may update the value of the total bytes field of the entry with
the total size of all fragments of the fragment flow. When the
fragment received by network device 10 is a mid fragment,
network device 10 may set the value of the total size field to
Zero.

When the fragment flow is currently in the buffer state,
network device 10 operates to buffer fragments it receives in
the fragment buffer while it remains in the buffer state.
Because the fragment flow is now in a buffer state, network

PATENT

REEL: 065031 FRAME: 0386

US 11,736,399 B2

35

device 10 may buffer the fragment in fragment buffer 28
(146). As network device 10 buffers fragments of a fragment
flow, network device 10 may update the fragment flow’s
entry in flow table 32 to reflect the size of the data sections
45 of the fragments that are currently buffered in fragment
buffer 28 of network device 10. Thus, because the mid
fragment or the last fragment received by network device 10
is currently the only fragment of the fragment flow being
buffered in fragment buffer 28, network device 10 may set
the value of the queued bytes field in the entry for the
fragment flow in flow table 32 to indicate the value of total
length 50A of IPv4 header 42 of the mid fragment or last
fragment that it has received and buffered minus the size of
IPv4 header 42. Upon buffering the fragment in fragment
buffer 28, network device 10 may await receipt of additional
fragments of the fragment flow at step 130 shown in FIG.
7A.

If the fragment received by network device 10 is a mid
fragment or a last fragment of the fragment flow, and if flow
table 32 includes an entry for the fragment flow, then the
fragment flow is either in a buffer state, a spoof status
available state, or a drop state. As discussed above, the state
field in the fragment flow’s entry in flow table 32 indicates
whether the fragment flow is in the buffer state, the spoof
status state, or the drop state. When the fragment flow is in
the drop state, network device 10 may drop the fragment it
has received (i.e., refrain from performing anti-spoof checks
on the fragments or forwarding the fragment to IPv4 net-
work 4) (152). Upon dropping the fragment, network device
10 may await receipt of additional fragments of the fragment
flow at step 130 shown in FIG. 7A.

When the fragment received by network device 10 is a
mid fragment or a last fragment of the fragment flow, if the
fragment flow is in a buffer state, network device 10 may
buffer the fragment it has received in fragment buffer 28 and
may update the fragment flow’s entry in flow table 32 (148).
Network device 10 may update the queued bytes field in the
entry to add the value of total length 50A in IPv4 header 42
of the current fragment being buffered subtracted by the size
of IPv4 header 42 to the current value of the queued bytes
field. If the fragment is a last fragment of the fragment flow,
network device 10 may also be able to determine the total
size of all fragments of the fragment flow based at least in
part on the value of fragment offset 50D and the value of
total length 50A in IPv4 header 42 of the last fragment, as
discussed above, and may update the value of the total bytes
field of the entry with the total size of the data sections 45
of all fragments of the fragment flow that it has determined.
Upon buffering the fragment in fragment buffer 28, network
device 10 may await receipt of additional fragments of the
fragment flow at step 130 shown in FIG. 7A.

The fragment flow is in a spoof status state if network
device 10 has previously received the first fragment of the
fragment flow. When the fragment is a last fragment of the
fragment flow, network device 10 may update the queued
bytes field in the entry to add the value of total length 50A
in IPv4 header 42 of the current fragment being buffered
subtracted by the size of IPv4 header 42 to the current value
of the queued bytes field, and may also be able to determine
the total size of data sections 45 of all fragments of the
fragment flow based at least in part on the value of fragment
offset 50D and the value of total length 50A in IPv4 header
42 of the last fragment, as discussed above, and may update
the value of the total bytes field of the entry with the total
size of data sections 45 of all fragments of the fragment flow
that it has determined (150). When the fragment is a mid
fragment or a last fragment of the fragment flow, and if the

10

15

20

25

30

35

40

45

50

55

60

65

36

fragment flow is in a spoof status state, network device 10
may perform anti-spoof check on the fragment it has
received and decapsulated, as shown in further detail in FIG.
7D. In this way, network device 10 may be able to receive
IPv6 network packets 60 that encapsulate fragments 52,
decapsulate the fragments 52 from IPv6 network packets 60,
and perform anti-spoof checks on each of fragments 52
without reassembling IPv4 network packet 40 from frag-
ments 52.

FIG. 8 is a flowchart illustrating an example process for
encapsulate IPv4 packets in IPv6 packets without reassem-
bling the IPv4 packets, according to techniques described
herein. Such a process can be performed by a network
device that is connected to an IPv4 network and an IPv6
network, such as network device 10 shown in FIGS. 1 and
2 that is connected to IPv4 network 4 and IPv6 network 6.
As shown in FIG. 8, network device 10 may receive, from
a first network, one or more fragments of a fragment flow
associated with a network packet, wherein the network
packet is a first type of network packet (202). In some
examples, the first network may be IPv4 network 4, and the
first type of network packet may be IPv4 network packet 40.

Network device 10 may, in response to determining that
the network device 10 has not yet received a fragment of the
fragment flow that includes an indication of a destination
port for the network packet, buffer the one or more frag-
ments (204). In some examples, the destination port may be
IPv4 destination port 501, and network device 10 may buffer
the one or more fragments in fragment buffer 28.

Network device 10 may receive the fragment of the
fragment flow that includes the indication of the destination
port of the network packet (206). In some examples, the
fragment received by network device 10 may be fragment
52A that includes destination port S0F.

Network device 10 may, in response to receiving the
fragment of the fragment flow that includes the indication of
the destination port of the network packet, encapsulate the
one or more fragments of the fragment flow and the frag-
ment of the fragment flow within a plurality of network
packets based at least in part on the destination port of the
network packet without reassembling the network packet
from the one or more fragments and the fragment, wherein
the plurality of network packets are each a second type of
network packet (208). In some examples, the second type of
network packet may be IPv6 network packets 60, and
network device 10 may perform the techniques of MAP-E to
encapsulate the one or more fragments of the fragment flow.

Network device 10 may dispatch, to a second network, the
plurality of network packets (210). For example, network
device 10 may forward each packet of the plurality of
network packets by outputting packets on an outgoing
interface of one of IFCs 22 toward a destination of the
packet. In some examples, the second network may be IPv6
network 6.

In some examples, network device 10 may, subsequent to
receiving the fragment that includes the indication of the
destination port and dispatching the plurality of network
packets, receive one or more remaining fragments of the
fragment flow. Network device 10 may encapsulate the one
or more remaining fragments of the fragment flow within
one or more network packets based at least in part on the
destination port without buffering the one or more remaining
fragments of the fragment flow, wherein the one or more
network packets are each the second type of network packet.
Network device 10 may dispatch the one or more network
packets to the second network.

PATENT

REEL: 065031 FRAME: 0387

US 11,736,399 B2

37

In some examples, network device 10 may create an entry
for the fragment flow in a flow table, such as flow table 32.
Network device 10 may, in response to receiving the one or
more fragments of the fragment flow that does not include
the fragment of the fragment flow that includes the indica-
tion of the destination port of the network packet, transition
the fragment flow to a buffer state by updating the entry for
the fragment in the flow table to indicate that the fragment
flow is in the buffer state, wherein the buffer state indicates
that the network device has not yet received the indication
of the destination port of the network packet. For example,
network device 10 may update the state field in the entry for
the fragment flow in flow table 32 to indicate a buffer state.

In some examples, network device 10 may, in response to
receiving the fragment of the fragment flow that includes the
indication of the destination port of the network packet,
transition the fragment flow from the buffer state to an
encapsulation state by updating the entry for the fragment in
the flow table to indicate that the fragment flow is in the
encapsulation state, wherein the encapsulation state indi-
cates that the network device is able to encapsulate frag-
ments of the fragment flow based at least in part on the
destination port. For example, network device 10 may
update the state field in the entry for the fragment flow in
flow table 32 to indicate an encapsulation state.

In some examples, network device 10 may determine that
the one or more fragments of the fragment flow for the
network packet does not include a first fragment of the
fragment flow. In some examples, the first fragment of the
fragment flow may be fragment 52A. Network device 10
may determine whether the fragment of the fragment flow
includes the indication of the destination port of the network
packet based at least in part on determining whether the
fragment is a first fragment of the fragment flow.

FIG. 9 is a flowchart illustrating an example process for
decapsulating fragments of an IPv4 packet from IPv6 pack-
ets and performing anti-spoof checks on the fragments
without reassembling the IPv4 packet, according to tech-
niques described herein. As shown in FIG. 9, network device
10 may receive, from a first network, one or more network
packets of a first network packet type, wherein each of the
one or more network packets encapsulate a respective one of
one or more fragments of a fragment flow associated with a
network packet of a second network packet type (302). In
some examples, the first network may be IPv6 network 6, the
first network packet type may be IPv6 packets 50, the one or
more fragments may be one or more of fragments 52, and the
second network packet type may be IPv4 network packet 40.

Network device 10 may, in response to determining that
the one or more network packets of the fragment flow does
not include a fragment of the fragment flow that includes an
indication of a source port of the network packet, buffer the
one or more fragments of the fragment flow (304). In some
examples, the fragment of the fragment flow that includes an
indication of a source port of the network packet may be
fragment 52A that includes source port 50H, and network
device 10 may buffer the one or more fragments of the
fragment flow in fragment buffer 28.

Network device 10 may receive a network packet of the
first network type that encapsulates the fragment of the
fragment flow that includes the indication of the source port
of the network packet (306). In some examples, the network
packet of the first type may be IPv6 network packet 60A.

Network device 10 may, in response to receiving the
network packet of the first network type that encapsulates
the fragment of the fragment flow that includes the indica-
tion of the source port of the network packet, perform an

10

15

20

25

30

35

40

45

50

55

60

65

38

anti-spoof check on the one or more fragments of the
fragment flow and the fragment of the fragment flow based
at least in part on the source port of the network packet of
the second network packet type without reassembling the
network packet of the second network packet type from the
one or more fragments of the fragment flow and the frag-
ment of the fragment flow (308).

Network device 10 may, in response to the one or more
fragments of the fragment flow and the fragment of the
fragment flow passing the anti-spoof check, dispatch, to a
second network, the one or more fragments of the fragment
flow and the fragment of the fragment flow (310). For
example, network device 10 may forward each packet of the
plurality of network packets by outputting packets on an
outgoing interface of one of IFCs 22 toward a destination of
the packet. In some examples, the second network may be
IPv4 network 4.

In some examples, network device 10 may, subsequent to
receiving the network packet of the first network type that
encapsulates the fragment of the fragment flow that includes
the indication of the source port of the network packet and
the one or more fragments of the fragment flow and the
fragment of the fragment flow passing the anti-spoof check,
receive a second one or more network packets of the first
network packet type, wherein each of the second one or
more network packets encapsulates a respective one of one
or more remaining fragments of the fragment flow.

In some examples, network device 10 may perform an
anti-spoof check on the one or more remaining fragments of
the fragment flow without buffering the one or more remain-
ing fragments of the fragment flow. In some examples,
network device 10 may, in response to the one or more
remaining fragments of the fragment flow passing the anti-
spoof check, dispatch, to the second network, the one or
more remaining fragments of the fragment flow.

In some examples, network device 10 may create an entry
associated with the fragment flow in a flow table, such as
flow table 32. Network device 10 may, in response to
determining that the one or more fragments of the fragment
flow do not include the fragment of the fragment flow that
includes the indication of the source port of the network
packet of the second network packet type, transition the
fragment flow to a buffer state by updating the entry for the
fragment in the flow table to indicate that the fragment flow
is in the buffer state, wherein the buffer state indicates that
the network device has not yet received the indication of the
source port of the network packet. For example, network
device 10 may update the state field in the entry for the
fragment flow in flow table 32 to indicate a buffer state.

In some examples, network device 10 may, in response to
determining that the fragment of the fragment flow includes
the indication of the source port of the network packet of the
second network packet type, transition the fragment flow
from the buffer state to a spoof status available state by
updating the entry for the fragment in the flow table to
indicate that the fragment flow is in the spoof status avail-
able state, wherein the spoof status available state indicates
that the network device is able to perform anti-spoof checks
on the one or more fragments of the fragment flow and the
fragment of the fragment flow based at least in part on the
source port of the network packet. For example, network
device 10 may update the state field in the entry for the
fragment flow in flow table 32 to indicate a spoof status
available state.

In some examples, network device 10 may determine that
the one or more fragments of the fragment flow for the
network packet does not include a first fragment of the

PATENT

REEL: 065031 FRAME: 0388

US 11,736,399 B2

39

fragment flow. In some examples, network device 10 may
determine whether the fragment of the fragment flow
includes the indication of the source port of the network
packet based at least in part on determining whether the
fragment is a first fragment of the fragment flow. In some
examples, the first fragment of the fragment flow may be
fragment 52A.

The techniques described in this disclosure may be imple-
mented, at least in part, in hardware, software, firmware or
any combination thereof. For example, various aspects of
the described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays
(FPGAs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
The term “processor” or “processing circuitry” may gener-
ally refer to any of the foregoing logic circuitry, alone or in
combination with other logic circuitry, or any other equiva-
lent circuitry. A control unit comprising hardware may also
perform one or more of the techniques of this disclosure.

Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described in
this disclosure. In addition, any of the described units,
modules or components may be implemented together or
separately as discrete but interoperable logic devices. Depic-
tion of different features as modules or units is intended to
highlight different functional aspects and does not necessar-
ily imply that such modules or units must be realized by
separate hardware or software components. Rather, func-
tionality associated with one or more modules or units may
be performed by separate hardware or software components,
or integrated within common or separate hardware or soft-
ware components.

The techniques described in this disclosure may also be
embodied or encoded in a computer-readable medium, such
as a computer-readable storage medium, containing instruc-
tions. Instructions embedded or encoded in a computer-
readable medium may cause a programmable processor, or
other processor, to perform the method, e.g., when the
instructions are executed. Computer-readable media may
include non-transitory computer-readable storage media and
transient communication media. Computer readable storage
media, which is tangible and non-transitory, may include
random access memory (RAM), read only memory (ROM),
programmable read only memory (PROM), erasable pro-
grammable read only memory (EPROM), electronically
erasable programmable read only memory (EEPROM), flash
memory, a hard disk, a CD-ROM, a floppy disk, a cassette,
magnetic media, optical media, or other computer-readable
storage media. It should be understood that the term “com-
puter-readable storage media” refers to physical storage
media, and not signals, carrier waves, or other transient
media.

Various examples have been described. These and other
examples are within the scope of the following claims.

What is claimed is:

1. A method comprising:

receiving, by a network device from a first network, one

or more network packets of a first network packet type,
wherein each of the one or more network packets
encapsulate a respective one of one or more fragments
of a fragment flow associated with a network packet of
a second network packet type;

in response to determining that the one or more network

packets of the fragment flow does not include a frag-

30

35

40

45

50

55

60

65

40

ment of the fragment flow that includes an indication of
a source port of the network packet, buffering, by the
network device, the one or more fragments of the
fragment flow;
receiving, by the network device, a network packet of the
first network packet type that encapsulates the fragment
of the fragment flow that includes the indication of the
source port of the network packet;
in response to receiving the network packet of the first
network packet type that encapsulates the fragment of
the fragment flow that includes the indication of the
source port of the network packet, performing, by the
network device, an anti-spoof check on the one or more
fragments of the fragment flow and the fragment of the
fragment flow based at least in part on the source port
of the network packet of the second network packet
type without reassembling the network packet of the
second network packet type from the one or more
fragments of the fragment flow and the fragment of the
fragment flow; and
in response to the one or more fragments of the fragment
flow and the fragment of the fragment flow passing the
anti-spoof check, dispatching, by the network device to
a second network, the one or more fragments of the
fragment flow and the fragment of the fragment flow.
2. The method of claim 1, further comprising:
subsequent to receiving the network packet of the first
network packet type that encapsulates the fragment of
the fragment flow that includes the indication of the
source port of the network packet and the one or more
fragments of the fragment flow and the fragment of the
fragment flow passing the anti-spoof check, receiving,
by the network device, a second one or more network
packets of the first network packet type, wherein each
of the second one or more network packets encapsu-
lates a respective one of one or more remaining frag-
ments of the fragment flow;
performing, by the network device, an anti-spoof check
on the one or more remaining fragments of the frag-
ment flow without buffering the one or more remaining
fragments of the fragment flow; and
in response to the one or more remaining fragments of the
fragment flow passing the anti-spoof check, dispatch-
ing, by the network device to the second network, the
one or more remaining fragments of the fragment flow.
3. The method of claim 1, further comprising:
creating, by the network device, an entry associated with
the fragment flow in a flow table;
in response to determining that the one or more fragments
of the fragment flow do not include the fragment of the
fragment flow that includes the indication of the source
port of the network packet of the second network
packet type, transitioning the fragment flow to a buffer
state by updating the entry for the fragment flow in the
flow table to indicate that the fragment flow is in the
buffer state, wherein the buffer state indicates that the
network device has not yet received the indication of
the source port of the network packet; and
in response to determining that the fragment of the
fragment flow includes the indication of the source
port of the network packet of the second network
packet type, transitioning the fragment flow from the
buffer state to a spoof status available state by
updating the entry for the fragment flow in the flow
table to indicate that the fragment flow is in the spoof
status available state, wherein the spoof status avail-
able state indicates that the network device is able to

PATENT

REEL: 065031 FRAME: 0389

US 11,736,399 B2

41

perform anti-spoof checks on the one or more frag-
ments of the fragment flow and the fragment of the
fragment flow based at least in part on the source port
of the network packet.
4. The method of claim 1, further comprising:
determining, by the network device, that the one or more
fragments of the fragment flow for the network packet
does not include a first fragment of the fragment flow;
and
determining whether the fragment of the fragment flow
includes the indication of the source port of the network
packet based at least in part on determining whether the
fragment is a first fragment of the fragment flow.
5. The method of claim 1, wherein:
the first network packet type is an Internet Protocol
version 6 (IPv6) network packet;
the second network packet type is an Internet Protocol
version 4 (IPv4) network packet;
the first network is an IPv6 network; and
the second network is an IPv4 network.
6. A network device comprising:
one or more network interfaces configured to receive,
from a first network, one or more network packets of a
first network packet type, wherein each of the one or
more network packets encapsulate a respective one of
one or more fragments of a fragment flow associated
with a network packet of a second network packet type;
and
one or more processors configured to, in response to
determining that the one or more network packets of
the fragment flow does not include a fragment of the
fragment flow that includes an indication of a source
port of the network packet, buffer the one or more
fragments of the fragment flow in a fragment buffer;
wherein the one or more network interfaces are further
configured to receive a network packet of the first
network packet type that encapsulates the fragment of
the fragment flow that includes the indication of the
source port of the network packet,
wherein the one or more processors are further configured
to, in response to the one or more network interfaces
receiving the network packet of the first network packet
type that encapsulates the fragment of the fragment
flow that includes the indication of the source port of
the network packet, perform an anti-spoof check on the
one or more fragments of the fragment flow and the
fragment of the fragment flow based at least in part on
the source port of the network packet of the second
network packet type without reassembling the network
packet of the second network packet type from the one
or more fragments of the fragment flow and the frag-
ment of the fragment flow, and
wherein the one or more network interfaces are further
configured to, in response to the one or more fragments
of the fragment flow and the fragment of the fragment
flow passing the anti-spoof check, dispatch the one or
more fragments of the fragment flow and the fragment
of the fragment flow to a second network.
7. The network device of claim 6,
wherein the one or more network interfaces are further
configured to, subsequent to receiving the network
packet of the first network packet type that encapsulates
the fragment of the fragment flow that includes the
indication of the source port of the network packet and
the one or more fragments of the fragment flow and the
fragment of the fragment flow passing the anti-spoof
check, receive a second one or more network packets of

5

10

15

20

35

40

45

60

42

the first network packet type, wherein each of the
second one or more network packets encapsulates a
respective one of one or more remaining fragments of
the fragment flow;

wherein the one or more processors are further configured

to perform an anti-spoof check on the one or more
remaining fragments of the fragment flow without
buffering the one or more remaining fragments of the
fragment flow in the fragment buffer; and

wherein the one or more network interfaces are further

configured to, in response to the one or more remaining
fragments of the fragment flow passing the anti-spoof
check, dispatch the one or more remaining fragments of
the fragment flow to the second network.

8. The network device of claim 6, wherein the one or more
processors are further configured to:

create an entry associated with the fragment flow in a flow

table;
in response to determining that the one or more fragments
of the fragment flow do not include the fragment of the
fragment flow that includes the indication of the source
port of the network packet of the second network
packet type, transition the fragment flow to a buffer
state by updating the entry associated with the fragment
flow in the flow table to indicate that the fragment flow
is in the buffer state, wherein the buffer state indicates
that the network device has not yet received the indi-
cation of the source port of the network packet; and

in response to determining that the fragment of the
fragment flow includes the indication of the source port
of the network packet of the second network packet
type, transition the fragment flow from the buffer state
to a spoof status available state by updating the entry
associated with the fragment flow in the flow table to
indicate that the fragment flow is in the spoof status
available state, wherein the spoof status available state
indicates that the network device is able to perform
anti-spoof checks on the one or more fragments of the
fragment flow and the fragment of the fragment flow
based at least in part on the source port of the network
packet.
9. The network device of claim 6, further comprising:
wherein the one or more processors are further configured
to determine that the one or more fragments of the
fragment flow for the network packet does not include
a first fragment of the fragment flow; and

wherein the one or more processors are further configured
to determine whether the fragment of the fragment flow
includes the indication of the source port of the network
packet based at least in part on determining whether the
fragment is a first fragment of the fragment flow.

10. The network device of claim 6, wherein:

the first network packet type is an Internet Protocol

version 6 (IPv6) network packet;

the second network packet type is an Internet Protocol

version 4 (IPv4) network packet;

the first network is an IPv6 network; and

the second network is an IPv4 network.

11. A non-transitory computer-readable medium compris-
ing instructions for causing a programmable processor of a
network device to:

receive, from a first network, one or more network

packets of a first network packet type, wherein each of
the one or more network packets encapsulate a respec-
tive one of one or more fragments of a fragment flow
associated with a network packet of a second network

packet type;

PATENT

REEL: 065031 FRAME: 0390

US 11,736,399 B2

43

in response to determining that the one or more network
packets of the fragment flow does not include a frag-
ment of the fragment flow that includes an indication of
a source port of the network packet, buffering, by the
network device, the one or more fragments of the
fragment flow;

receive a network packet of the first network packet type

that encapsulates the fragment of the fragment flow that
includes the indication of the source port of the network
packet;
in response to receiving the network packet of the first
network packet type that encapsulates the fragment of
the fragment flow that includes the indication of the
source port of the network packet, perform an anti-
spoof check on the one or more fragments of the
fragment flow and the fragment of the fragment flow
based at least in part on the source port of the network
packet of the second network packet type without
reassembling the network packet of the second network
packet type from the one or more fragments of the
fragment flow and the fragment of the fragment flow;
and
in response to the one or more fragments of the fragment
flow and the fragment of the fragment flow passing the
anti-spoof check, dispatch, to a second network, the
one or more fragments of the fragment flow and the
fragment of the fragment flow.
12. The non-transitory computer-readable medium of
claim 11, wherein the instructions further cause the pro-
grammable processor to:
subsequent to receiving the network packet of the first
network packet type that encapsulates the fragment of
the fragment flow that includes the indication of the
source port of the network packet and the one or more
fragments of the fragment flow and the fragment of the
fragment flow passing the anti-spoof check, receive a
second one or more network packets of the first net-
work packet type, wherein each of the second one or
more network packets encapsulates a respective one of
one or more remaining fragments of the fragment flow;

perform an anti-spoof check on the one or more remaining
fragments of the fragment flow without buffering the
one or more remaining fragments of the fragment flow;
and

in response to the one or more remaining fragments of the

fragment flow passing the anti-spoof check, dispatch, to
the second network, the one or more remaining frag-
ments of the fragment flow.

RECORDED: 09/26/2023

44

13. The non-transitory computer-readable medium of
claim 11, wherein the instructions further cause the pro-
grammable processor to:

create an entry associated with the fragment flow in a flow

5 table;

in response to determining that the one or more fragments

of the fragment flow do not include the fragment of the
fragment flow that includes the indication of the source
port of the network packet of the second network
packet type, transition the fragment flow to a buffer
state by updating the entry for the fragment flow in the
flow table to indicate that the fragment flow is in the
buffer state, wherein the buffer state indicates that the
network device has not yet received the indication of
the source port of the network packet; and

in response to determining that the fragment of the

fragment flow includes the indication of the source port
of the network packet of the second network packet
type, transition the fragment flow from the buffer state
to a spoof status available state by updating the entry
for the fragment flow in the flow table to indicate that
the fragment flow is in the spoof status available state,
wherein the spoof status available state indicates that
the network device is able to perform anti-spoof checks
on the one or more fragments of the fragment flow and
the fragment of the fragment flow based at least in part
on the source port of the network packet.

14. The non-transitory computer-readable medium of
claim 11, wherein the instructions further cause the pro-
grammable processor to:

determine that the one or more fragments of the fragment

flow for the network packet does not include a first

fragment of the fragment flow; and

determine whether the fragment of the fragment flow

includes the indication of the source port of the network

packet based at least in part on determining whether the
fragment is a first fragment of the fragment flow.

15. The non-transitory computer-readable medium of
claim 11, wherein:

the first network packet type is an Internet Protocol

version 6 (IPv6) network packet;

the second network packet type is an Internet Protocol

version 4 (IPv4) network packet;

the first network is an IPv6 network; and

the second network is an IPv4 network.

10

25

30

35

40

45

#* #* #* #* #*

PATENT

REEL: 065031 FRAME: 0391

