508193810 10/25/2023 ### PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT8240996 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | #### **CONVEYING PARTY DATA** | Name | Execution Date | |-------------------|----------------| | XEROX CORPORATION | 08/11/2023 | #### **RECEIVING PARTY DATA** | Name: | ELEM ADDITIVE LLC | |-----------------|-------------------| | Street Address: | 11000 WESTON PKWY | | City: | CARY | | State/Country: | NORTH CAROLINA | | Postal Code: | 27513 | #### **PROPERTY NUMBERS Total: 1** | Property Type | Number | |---------------------|----------| | Application Number: | 17060600 | #### **CORRESPONDENCE DATA** **Fax Number:** (703)997-4905 Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. **Phone:** 7039170000 Email: doreen@mh2law.com, docketing@mh2law.com Correspondent Name: MH2 TECHNOLOGY LAW GROUP, LLP Address Line 1: 1951 KIDWELL DRIVE Address Line 2: SUITE 310 Address Line 4: TYSONS CORNER, VIRGINIA 22182 | ATTORNEY DOCKET NUMBER: | 0474.0675 | |-------------------------|-----------------| | NAME OF SUBMITTER: | DOREEN SASAKI | | SIGNATURE: | /DOREEN SASAKI/ | | DATE SIGNED: | 10/25/2023 | #### **Total Attachments: 34** source=2023-08-11_Assignment_to_Elem_Additive#page1.tif source=2023-08-11_Assignment_to_Elem_Additive#page2.tif source=2023-08-11_Assignment_to_Elem_Additive#page3.tif source=2023-08-11_Assignment_to_Elem_Additive#page4.tif source=2023-08-11_Assignment_to_Elem_Additive#page5.tif PATENT REEL: 065350 FRAME: 0344 508193810 | source=2023-08-11_Assignment_to_Elem_Additive#page6.tif | |--| | source=2023-08-11_Assignment_to_Elem_Additive#page7.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page8.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page9.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page10.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page11.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page12.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page13.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page14.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page15.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page16.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page17.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page18.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page19.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page20.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page21.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page22.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page23.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page24.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page25.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page26.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page27.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page28.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page29.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page30.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page31.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page32.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page33.tif | | source=2023-08-11_Assignment_to_Elem_Additive#page34.tif | #### **Patent Assignment Agreement** WHEREAS Xerox Corporation, a corporation incorporated under the laws of New York ("Assignor") agreed to assign or cause to be assigned to Elem Additive LLC, a corporation organized under the laws of Delaware ("Assignee") all of Assignor's right, title and interest in and to the patent rights listed on Exhibit A1 hereto (the "Assigned Patents"). NOW, THEREFORE, for good and valuable consideration, receipt and sufficiency of which are hereby acknowledged, effective as of August 11, 2023 (the "*Effective Date*"): - 1. Assignor hereby grants, conveys and assigns to Assignee all its right, title and interest in and to (a) Assigned Patents and the inventions and improvements disclosed therein; (b) all reissues, divisionals, continuations, extensions, renewals, reexaminations and foreign counterparts thereof; and (c) all patents and applications which claim priority to or have common priority with any such patents or patent applications, or are linked with any such patents or patent applications by terminal disclaimer. - 2. Assignor further grants, conveys and assigns to Assignee all its right, title and interest in and to any and all proceeds, causes of action and rights of recovery for past and future infringement or misappropriation of any of the Assigned Patents. - 3. Assignor further grants, conveys and assigns to Assignee all its right, title and interest in and to any and all rights of Assignor to obtain reissues, reexaminations, continuations, continuations-in-part, divisions, extensions or other legal protections arising solely from the Assigned Patents that are or may be secured in any relevant jurisdiction anywhere in the world, including but not limited to the United States, its territories and possessions, as of the Effective Date or hereinafter in effect. - 4. The Assigned Patents are conveyed subject to any and all licenses, permissions, consents or other rights that may have been granted by Assignor or its predecessors-in-interest with respect thereto prior to the Effective Date, or by Assignee to Assignor as of the Effective Date. - 5. Assignor agrees that Assignee shall have the right to file or record this Patent Assignment with the United States Patent and Trademark Office or other such entities throughout the world, and Assignor authorizes and requests the relevant authorities to record Assignee as the assignee and owner of the Assigned Patents. Assignor shall execute and deliver to Assignee such documents and take such actions as requested by Assignee to register, evidence or perfect Assignee's rights under this Patent Assignment. In addition, Assignor hereby irrevocably designates and appoints Assignee and its duly authorized officers and agents as its agents and attorneys in fact, to act for and on their behalf and stead to execute and file any such documents and to do all other lawfully permitted acts to register, evidence or perfect Assignee's rights under this Patent Assignment with the same legal force and effect as if executed by Assignor. This includes, but is not limited to, the power to insert on this Patent Assignment any further identification that may be necessary to comply with the rules of the United States Patent and Trademark Office, or rules of other entities throughout the world, for recordation of this document. [Signature Page Follows] IN WITNESS WHEREOF, the undersigned Assignor has caused this Patent Assignment to be executed by its authorized representative. XEROX CORPORATION, By John G Bruno (Aug 11, 2023 06:35 EDT) Name: John Bruno Date: President and Chief Operating Officer **REEL: 065350 FRAME: 0348** # **Exhibit A (Assigned Patents)** [See attached.] # **Transferred Patents and Transferred IDs** ### <u>Transferred Utility Patents and Transferred IDs</u> | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |------------------------------|-----------------------------|-------------------|--|----------------------------------|----------------------------------|------------|--------------------------------| | 20190066US01 | United States
of America | Granted | CONDUCTIVE
LIQUID THREE
DIMENSIONAL
PRINTER | 14/228681 | 20150273577 | 9616494 | Alloy Acquisition
Corp. LLC | | 20190066US02 | United States
of America | Granted | CONDUCTIVE
LIQUID THREE
DIMENSIONAL
PRINTER | 15/457586 | 2017-0182553 | 10040119 | Alloy Acquisition
Corp. LLC | | 20190068US02 | United States
of America | Granted | METAL POWDER MANUFACTURE USING A LIQUID METAL EJECTOR | 16/412801 | 2019-0351488 | 11607727 | XEROX
CORPORATION | | 20190138US02 | United States
of America | Granted | METHOD AND
SYSTEM FOR
OPERATING A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER TO
COMPENSATE FOR
GEOMETRIC
VARIATIONS THAT
OCCUR DURING AN
ADDITIVE
MANUFACTURING
PROCESS | 16/845312 | 2020-0324486 | 11565475 | XEROX
CORPORATION | | 20190139US02 | United States of America | Published | NOZZLE CLEANING
IN JETTING OF
METAL ALLOYS | 16/844524 | 2020-0324341 | | XEROX
CORPORATION | | | | | | | | | | | 20190378US01 | United States
of America | Granted | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE-
DIMENSIONAL | 16/808266 | 2021-0276081 | 11358215 | XEROX
CORPORATION | | 20190378US01
20190378CN01 | | Granted Published | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE- | 16/808266 2021101388 53.1 | 2021-0276081
CN113414403
A | 11358215 | | | | of America | | A THREE-DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE-DIMENSIONAL PRINTING A THREE-DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE-DIMENSIONAL PRINTING | 2021101388 | CN113414403 | 11358215 | CORPORATION XEROX | | 20190378CN01 | of America China | Published | A THREE-DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE-DIMENSIONAL PRINTING A THREE-DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE-DIMENSIONAL PRINTING A THREE-DIMENSIONAL PRINTING A THREE-DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE-DIMENSIONAL | 2021101388
53.1 | CN113414403
A |
11358215 | XEROX CORPORATION | B1-1 | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------|-----------|--|-----------------------|-----------------------|------------|----------------------| | 20190403US01 | United States
of America | Granted | A THREE- DIMENSIONAL PRINTING SYSTEM AND METHOD OF THREE- DIMENSIONAL PRINTING | 16/808285 | 2021-0276082 | 11260449 | XEROX
CORPORATION | | 20190403CN01 | China | Published | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE-DIMENSIONAL
PRINTING | 2021101367
01.8 | 113333776 | | XEROX
CORPORATION | | 20190403JP01 | Japan | Published | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE-DIMENSIONAL
PRINTING | 2021-013083 | 2021-138135 | | XEROX
CORPORATION | | 20190403EP01 | European
Patent | Published | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE-DIMENSIONAL
PRINTING | 21157968.5 | 3875189 | | XEROX
CORPORATION | | 20190403KR01 | Korea,
Republic of
(KR) | Published | A THREE-
DIMENSIONAL
PRINTING SYSTEM
AND METHOD OF
THREE-DIMENSIONAL
PRINTING | 10-2021-
0017942 | 10-2021-
0111676 | | XEROX
CORPORATION | | 20190413US02 | United States
of America | Granted | ATMOSPHERE AND
PART FORMATION
IN A LIQUID METAL
DROP-ON-DEMAND
PRINTER | 16/991159 | 2021-0046541 | 11607724 | XEROX
CORPORATION | | 20190413US03 | United States
of America | Published | ATMOSPHERE AND
PART FORMATION
IN A LIQUID METAL
DROP-ON-DEMAND
PRINTER | 18/166104 | | | XEROX
CORPORATION | | 20190455US01 | United States of America | Granted | VENTURI INLET
PRINTHEAD | 16/712725 | 2021-0178751 | 11220102 | XEROX
CORPORATION | | 20190455CN01 | China | Allowed | VENTURI INLET
PRINTHEAD | 2020112384
58.2 | CN112976810
A | | XEROX
CORPORATION | | 20190455JP01 | Japan | Published | PRINTHEAD | 2020-192843 | 2021-094849 | | XEROX
CORPORATION | | 20190455KR01 | Korea,
Republic of
(KR) | Published | VENTURI INLET
PRINTHEAD | 10-2020-
0157668 | 10-2021-
0075003 | | XEROX
CORPORATION | | 20190464US01 | United States
of America | Granted | GAS EXPANSION
MATERIAL JETTING
ACTUATOR | 16/712618 | 2021-0178763 | 11440321 | XEROX
CORPORATION | | 20190464CN01 | China | Published | GAS EXPANSION
MATERIAL JETTING
ACTUATOR | 2020112371
85.X | CN112976809
A | | XEROX
CORPORATION | | 20190464JP01 | Japan | Published | GAS EXPANSION
MATERIAL JETTING
ACTUATOR | 2020-192811 | 2021-095634 | | XEROX
CORPORATION | | 20190464EP01 | European
Patent | Published | GAS EXPANSION
MATERIAL JETTING
ACTUATOR | 20210488.1 | 3835068 | | XEROX
CORPORATION | | 20190464KR01 | Korea,
Republic of
(KR) | Published | GAS EXPANSION
MATERIAL JETTING
ACTUATOR | 10-2020-
0157669 | 10-2021-
0075004 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------|-----------|---|-----------------------|-----------------------|------------|----------------------| | 20190503US01 | United States
of America | Allowed | SURFACE TREATED ADDITIVE MANUFACTURING PRINTHEAD NOZZLES AND METHODS FOR THE SAME | 17/017392 | 2021-0069972 | | XEROX
CORPORATION | | 20190503US02 | United States
of America | Published | SURFACE TREATED
ADDITIVE
MANUFACTURING
PRINTHEAD
NOZZLES AND
METHODS FOR THE
SAME | 17/017447 | 2021-0069778 | | XEROX
CORPORATION | | 20190579US01 | United States
of America | Granted | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 16/816853 | 2021-0283853 | 11485089 | XEROX
CORPORATION | | 20190579CN01 | China | Allowed | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 2021101732
47.3 | CN113458414
A | | XEROX
CORPORATION | | 20190579JP01 | Japan | Published | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 2021-025207 | 2021-143420 | | XEROX
CORPORATION | | 20190579EP01 | European
Patent | Published | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 21159105.2 | 3878581 | | XEROX
CORPORATION | | 20190579KR01 | Korea,
Republic of
(KR) | Published | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 10-2021-
0022258 | 10-2021-
0116231 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------|-----------|---|-----------------------|-----------------------|------------|----------------------| | 20190840US01 | United States
of America | Granted | SYSTEM AND
METHOD FOR
DETERMINING A
TEMPERATURE OF
AN OBJECT | 16/903813 | 2021-0394448 | 11478991 | XEROX
CORPORATION | | 20190840US02 | United States of America | Granted | AN OBJECT PRINTED
BY A 3D PRINTER
AND A METHOD FOR
DETERMINING THE
TEMPERATURE OF
THE OBJECT | 16/903835 | 2021-0396593 | 11307099 | XEROX
CORPORATION | | 20190840US03 | United States
of America | Granted | A SYSTEM AND METHOD FOR DETERMINING A TEMPERATURE DIFFERENTIAL BETWEEN PORTIONS OF AN OBJECT PRINTED BY A 3D PRINTER | 16/903855 | 2021-0396591 | 11499873 | XEROX
CORPORATION | | 20190840US04 | United States
of America | Published | AN OBJECT PRINTED
BY A 3D PRINTER
AND A METHOD FOR
DETERMINING THE
TEMPERATURE OF
THE OBJECT | 17/655246 | 2022-0205845 | | XEROX
CORPORATION | | 20190840CN01 | China | Published | SYSTEM AND
METHOD FOR
DETERMINING A
TEMPERATURE OF AN
OBJECT | 2021105268
191 | CN113997395
A | | XEROX
CORPORATION | | 20190840ЈР01 | Japan | Granted | SYSTEM AND
METHOD FOR
DETERMINING A
TEMPERATURE OF AN
OBJECT | 2021-092998 | 2021-195620 | 7238017 | XEROX
CORPORATION | | 20190840EP01 | European
Patent | Published | SYSTEM AND
METHOD FOR
DETERMINING A
TEMPERATURE OF AN
OBJECT | 21177430.2 | 3926314 | | XEROX
CORPORATION | | 20190840KR01 | Korea,
Republic of
(KR) | Granted | SYSTEM AND
METHOD FOR
DETERMINING A
TEMPERATURE OF AN
OBJECT | 10-2021-
0075857 | 10-2021-
0156224 | 10-2478412 | XEROX
CORPORATION | | 20200125US01 | United States of America | Granted | METHOD AND
SYSTEM FOR
OPERATING A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER TO
FORM ELECTRICAL
CIRCUITS ON
SUBSTRATES | 16/945509 | 2022-0032550 | | XEROX
CORPORATION | | 20200125CN01 | China | Published | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 2021107321
56.9 | CN114054779
A | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. Original Owner | |--|---|--|---|---|---|--| | 20200125JP01 | Japan | Published | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 2021-120199 | 2022-027546 | XEROX
CORPORATION | | 20200125EP01 | European
Patent | Published | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 21182997.3 | 3944912 | XEROX
CORPORATION | | 20200125KR01 | Korea,
Republic of
(KR) | Published | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 10-2021-
0097489 | 10-2022-
0015955 | XEROX
CORPORATION | | 20200232US01 | United States
of America | Allowed | MICRO-WELDING
USING A THREE
DIMENSIONAL | 17/060600 | 2022-0105684 | XEROX
CORPORATION | | | | | PRINTER | | | | | 20200232US02 | United States
of America | Published | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER | 17/060825 | 2022-0105673 | XEROX
CORPORATION | | 20200232US02
20200232US03 | | Published
Granted | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER MICRO-WELDING USING A THREE DIMENSIONAL | 17/060825
17/061213 | 2022-0105673
2022-0105561 | | | | of America United States | | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER MICRO-WELDING USING A THREE | | | CORPORATION 11504766 XEROX | | 20200232US03 | of America United States of America | Granted | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER MICRO-WELDING USING A THREE DIMENSIONAL PRINTER MICRO-WELDING USING A THREE DIMENSIONAL | 17/061213 2021110735 | 2022-0105561 CN114273758 | CORPORATION 11504766 XEROX CORPORATION XEROX | | 20200232US03
20200232CN01 | of America United States of America China | Granted Published | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER MICRO-WELDING USING A THREE | 17/061213
2021110735
75.2
2021110782 | 2022-0105561 CN114273758 A CN114273669 | CORPORATION 11504766 XEROX CORPORATION XEROX CORPORATION XEROX | | 20200232US03
20200232CN01
20200232CN02 | of America United States of America China China | Granted Published Published | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER MICRO-WELDING USING A THREE DIMENSIONAL | 17/061213 2021110735 75.2 2021110782 768 2021111290 794 | 2022-0105561 CN114273758 A CN114273669 A CN114273670 | CORPORATION 11504766 XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION | | 20200232US03
20200232CN01
20200232CN02
20200232CN03 | of America United States of America China China China | Granted Published Published Published | MICRO-WELDING USING A THREE DIMENSIONAL PRINTER | 17/061213 2021110735 75.2 2021110782 768 2021111290 794 2021-159865 | 2022-0105561 CN114273758 A CN114273669 A CN114273670 A | CORPORATION 11504766 XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION XEROX CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------------|-----------|---|-----------------------|-----------------------|------------|----------------------| | 20200232DE01 | Germany
(Federal
Republic of) | Published | MICRO-WELDING
USING A THREE
DIMENSIONAL | 1020211249
90.2 | 102021124990.
2 | | XEROX
CORPORATION | | 20200232DE02 | Germany
(Federal | Published | PRINTER MICRO-WELDING USING A THREE | 1020211249
91.0 | 102021124991.
0 | | XEROX
CORPORATION | | 202002220020 | Republic of) | D.L. L. | DIMENSIONAL
PRINTER | | | | | | 20200232DE03 | Germany
(Federal
Republic of) | Published | MICRO-WELDING
USING A THREE
DIMENSIONAL | 01.1 | 102021123301. | | XEROX
CORPORATION | | 20200349US01 | United States
of America | Published | PRINTER METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER TO SHORTEN OBJECT FORMATION TIME | 17/154063 | 2022-0226888 | | XEROX
CORPORATION | | 20200410US01 | United States
of America | Granted | REMOVABLE INNER
SHELL FOR DROSS
CONTROL AND/OR
REMOVAL FOR
METAL PRINTER | 17/131372 | 2022-0193780 | 11618086 | XEROX
CORPORATION | | 20200410CN01 | China | Published | REMOVABLE INNER
SHELL FOR DROSS
CONTROL AND/OR
REMOVAL FOR
METAL PRINTER | 2021113726
83X | CN114653969
A | | XEROX
CORPORATION | | 20200410JP01 | Japan | Published | REMOVABLE INNER
SHELL FOR DROSS
CONTROL AND/OR
REMOVAL FOR
METAL PRINTER | 2021-202829 | 2022-099280 | | XEROX
CORPORATION | | 20200410DE01 | Germany
(Federal
Republic of) | Published | REMOVABLE INNER
SHELL FOR DROSS
CONTROL AND/OR
REMOVAL FOR
METAL PRINTER | 1020211341
62.0 | 102021134162. | | XEROX
CORPORATION | | 20200410KR01 | Korea,
Republic of
(KR) | Published | REMOVABLE INNER SHELL FOR DROSS CONTROL AND/OR REMOVAL FOR METAL PRINTER | 10-2021-
0166828 | 10-2022-
0090412 | | XEROX
CORPORATION | | 20200411US01 | United States
of America | Granted | METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE
REUSE | 17/131402 | 2022-0194082 | 11400714 | XEROX
CORPORATION | | 20200411US02 | United States
of America | Published | METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE
REUSE | 17/850526 | 2022-0332116 | | XEROX
CORPORATION | | 20200411US03 | of America | Published | SYSTEM AND
METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE | 17/851551 | 2022-0324031 | | XEROX
CORPORATION | | 20200411CN01 | China | Published | METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE
REUSE | 2021113762
037 | CN114653964
A | | XEROX
CORPORATION | | t No. Original Owner | Publication Paten
Number | Application
Number | Title | Status | Country | Patent
Reference | |----------------------|-----------------------------|-----------------------|--|-----------|-------------------------------------|---------------------| | XEROX
CORPORATION | 2022-099281 | 2021-202851 | METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE | Published | Japan | 20200411JP01 | | XEROX
CORPORATION | 102021133945.
6 | 1020211339
45.6 | REUSE
METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE
REUSE | Published | Germany
(Federal
Republic of) | 20200411DE01 | | XERO)
CORPORATION | 10-2022-
0090413 | 10-2021-
0166829 | METHOD FOR
MAGNETOHYDRODY
NAMIC (MHD)
PRINTHEAD/NOZZLE
REUSE | Published | Korea,
Republic of
(KR) | 20200411KR01 | | XEROX
CORPORATION | 2022-0194088 | 17/131498 | RESISTIVE LIQUID
METAL LEVEL
SENSING IN A
MAGNETOHYDRODY
NAMIC (MHD)
JETTING SYSTEM | Published | United States
of America | 20200412US01 | | XEROX
CORPORATION | 2022-0212249 | 17/143007 | FABRICATION OF
LATTICE
STRUCTURES WITH
THREE
DIMENSIONAL
PRINTER | Published | United States of America | 20200420US01 | | XERO)
CORPORATION | 2022-106284 | 2021-206519 | FABRICATION OF
LATTICE
STRUCTURES WITH
THREE DIMENSIONAL
PRINTER | Published | Japan | 20200420JP01 | | XERO)
CORPORATION | 102022100153.
9 | 1020221001
53.9 | FABRICATION OF
LATTICE
STRUCTURES WITH
THREE DIMENSIONAL
PRINTER | Published | Germany
(Federal
Republic of) | 20200420DE01 | | XEROX
CORPORATION | 2022-0219381 | 17/144910 | BUILDING AN OBJECT WITH A THREE- DIMENSIONAL PRINTER USING VIBRATIONAL ENERGY | Published | United States of America | 20200422US01 | | XEROX
CORPORATION | 2022-107516 | | BUILDING AN OBJECT WITH A THREE- DIMENSIONAL PRINTER USING VIBRATIONAL ENERGY | Published | Japan | 20200422JP01 | | XERO)
CORPORATION | 102022100154.
7 | 1020221001
54.7 | BUILDING AN OBJECT
WITH A THREE-
DIMENSIONAL
PRINTER USING
VIBRATIONAL
ENERGY | Published | Germany
(Federal
Republic of) | 20200422DE01 | | XEROX
CORPORATION | 2022-0184708 | 17/121197 | BUILDING AN OBJECT WITH A THREE- DIMENSIONAL PRINTER USING BURST MODE JETTING | Published | United States of America | 20200423US01 | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. Original Owner | |---------------------|-------------------------------------|-----------|---|-----------------------|-----------------------|-------------------------------| | 20200423CN01 | China | Published | BUILDING AN OBJECT
WITH A THREE-
DIMENSIONAL
PRINTER USING
BURST MODE
JETTING | 2021114469
33X | CN114619046
A | XEROX
CORPORATION | | 20200423JP01 | Japan | Published | BUILDING AN OBJECT WITH A THREE- DIMENSIONAL PRINTER USING BURST MODE JETTING | 2021-201354 | 2022-094339 | XEROX
CORPORATION | | 20200423DE01 | Germany
(Federal
Republic of) | Published | BUILDING AN OBJECT
WITH A THREE-
DIMENSIONAL
PRINTER USING
BURST MODE
JETTING | 1020211290
30.9 | 102021129030.
9 | XEROX
CORPORATION | | 20200423KR01 | Korea,
Republic of
(KR) | Published | BUILDING AN OBJECT
WITH A THREE-
DIMENSIONAL
PRINTER USING
BURST MODE
JETTING | 10-2021-
0175691 | 10-2022-
0085015 | XEROX
CORPORATION | | 20200427US01 | United States
of America | Granted | METAL DROP
EJECTING THREE-
DIMENSIONAL (3D) | 17/155455 | 2022-0240387 | 11737216 XEROX
CORPORATION | | 20200430US01 | United States
of America | Published | OBJECT PRINTER METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL DEPOSITION RATE | 17/140954 | 2022-0212265 | XEROX
CORPORATION | | 20200430CN01 | China | Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL DEPOSITION RATE | 2022100013
07.8 | CN114713856
A | XEROX
CORPORATION | | 20200430JP01 | Japan | Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL | 2021-206176 | 2022-105475 | XEROX
CORPORATION | | | | | | | | | | 20200430EP01 | European
Patent | Published | DEPOSITION RATE METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL DEPOSITION RATE | 22150083.8 | 4023369 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------------|-----------|---|-----------------------|-----------------------|------------|----------------------| | 20200438US01 | United States
of America | Allowed | SYSTEM AND
METHOD FOR
CALIBRATING LAG
TIME IN A THREE-
DIMENSIONAL
OBJECT PRINTER | 17/163355 | 2022-0242048 | | XEROX
CORPORATION | | 20200439US01 | United States of America | Granted | SYSTEM
AND METHOD FOR REDUCING DROP PLACEMENT ERRORS AT PERIMETER FEATURES ON AN OBJECT IN A THREE- DIMENSIONAL (3D) OBJECT PRINTER | 17/163363 | 2022-0241865 | 11701712 | XEROX
CORPORATION | | 20200439US02 | of America | Granted | SYSTEM AND METHOD FOR REDUCING DROP PLACEMENT ERRORS AT PERIMETER FEATURES ON AN OBJECT IN A THREE- DIMENSIONAL (3D) OBJECT PRINTER | 17/163368 | | 11673198 | XEROX
CORPORATION | | 20200450US01 | United States
of America | Granted | THREE-
DIMENSIONAL
PRINTER WITH
NITROGEN
ATMOSPHERE | 17/109800 | 2022-0168817 | 11666975 | XEROX
CORPORATION | | 20200469US01 | United States of America | Granted | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER WITH A THERMALLY INSULATED BUILD PLATFORM TRANSLATIONAL | 17/085557 | 2022-0134418 | 11684972 | XEROX
CORPORATION | | 20200506US01 | United States of America | Allowed | MECHANISM MELTED METAL LEVEL SENSOR FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER | 17/319830 | 2022-0362858 | | XEROX
CORPORATION | | 20200506CN01 | China | Published | MELTED METAL
LEVEL SENSOR FOR A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 2022103710
191 | CN115338431
A | | XEROX
CORPORATION | | 20200506ЈР01 | Japan | Published | MELTED METAL
LEVEL SENSOR FOR A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 2022-065121 | 2022-176099 | | XEROX
CORPORATION | | 20200506DE01 | Germany
(Federal
Republic of) | Published | MELTED METAL
LEVEL SENSOR FOR A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 1020221118
50.9 | 102022111850.
9 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | Original Owner | |---------------------|-----------------------------|-----------|--|-----------------------|----------------------------------|----------------------| | 20200585US01 | United States
of America | Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER WITH A THERMALLY INSULATED BUILD PLATFORM TRANSLATIONAL MECHANISM | 17/143378 | 2022-0212257 | XEROX
CORPORATION | | 20200601US01 | United States
of America | Published | CLAMPING MECHANISM FOR 3D PRINTING BUILD PLATE | 17/400916 | 2023-0049328 | XEROX
CORPORATION | | 20200640US01 | United States
of America | Allowed | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD FOR PREPARING THE METAL DROP EJECTING 3D OBJECT PRINTER FOR PRINTING | 17/147773 | 2022-0219238 | XEROX
CORPORATION | | 20200640US02 | United States
of America | Published | A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 17/147810 | 2022-0219240 | XEROX
CORPORATION | | 20200640CN01 | China | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD FOR PREPARING THE METAL DROP EJECTING 3D OBJECT PRINTER FOR PRINTING | 2022100144
13.X | CN114309663
A | XEROX
CORPORATION | | 20200640CN02 | China | Published | A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 2022100340
41.7 | CN114762899
A | XEROX
CORPORATION | | 20200640JP01 | Japan | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD FOR PREPARING THE METAL DROP EJECTING 3D OBJECT PRINTER FOR PRINTING | 2021-214100 | 2022-108720 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Pa
Number | atent No. Original Owner | |---------------------|-------------------------------|-----------|---|-----------------------|--------------------------|--------------------------| | 20200640JP02 | Japan | Published | A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 2021-214153 | 2022-108721 | XEROX
CORPORATION | | 20200640EP01 | European
Patent | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD FOR PREPARING THE METAL DROP EJECTING 3D OBJECT PRINTER FOR PRINTING | 22150215.6 | 4029631 | XEROX
CORPORATION | | 20200640EP02 | European
Patent | Published | A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 22150218.0 | 4029632 | XEROX
CORPORATION | | 20200640KR01 | Korea,
Republic of
(KR) | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD FOR PREPARING THE METAL DROP EJECTING 3D OBJECT PRINTER FOR PRINTING | 10-2022-
0001952 | 10-2022-
0102571 | XEROX
CORPORATION | | 20200640KR02 | Korea,
Republic of
(KR) | Published | A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 10-2022-
0001953 | 10-2022-
0102572 | XEROX
CORPORATION | | 20200663US02 | United States of America | Published | METHOD FOR HIGH
TEMPERATURE
HEAT TREATING OF
METAL OBJECTS
FORMED IN A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 17/451501 | 2022-0126371 | XEROX
CORPORATION | | 20200693US01 | United States
of America | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FORMING METAL SUPPORT STRUCTURES | 17/457966 | 2023-0173585 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication P.
Number | atent No. Original Owner | |---------------------|--------------------------|-----------|--|-----------------------|--------------------------|--------------------------| | 20200693CN01 | China | Published | A METAL DROP
EJECTING THREE- | 2022113726
016 | ••••• | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL
SUPPORT | | | | | 202006021B01 | Ioman | Dublishad | STRUCTURES | 2022 176924 | | VEROV | | 20200693JP01 | Japan | Published | A METAL DROP
EJECTING THREE- | 2022-170634 | | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200693EP01 | European
Patent | Published | A METAL DROP
EJECTING THREE- | 22208366.9 | | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF | | | | | | | | OPERATION FOR
FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200693KR01 | Korea,
Republic of | Published | A METAL DROP
EJECTING THREE- | 10-2022-
0165588 | | XEROX
CORPORATION | | | (KR) | | DIMENSIONAL (3D)
OBJECT PRINTER AND | 010000 | | | | | | | METHOD OF | | | | | | | | OPERATION FOR
FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200720US01 | United States of America | Allowed | METAL DROP EJECTING THREE- | 17/393115 | 2023-0037539 | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER | | | | | | | | AND METHOD OF | | | | | | | | OPERATION FOR
FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200720CN01 | China | Published | METAL DROP
EJECTING THREE- | 2022108498
60.7 | CN115703154
A | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200720JP01 | Japan | Published | METAL DROP
EJECTING THREE- | 2022-112509 | 2023-022818 | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | Patent
Reference
20200720DE01 | Germany
(Federal
Republic of) | Status
Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FORMING METAL | Application
Number
1020221187
48.9 | Publication I
Number | Patent No. Original Owner XEROX CORPORATION | |-------------------------------------|-------------------------------------|---------------------|--|---|-------------------------|--| | 20200723US01 | United States
of America | Published | SUPPORT
STRUCTURES
A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER
AND METHOD OF
OPERATION FOR
FORMING METAL
SUPPORT
STRUCTURES | 17/353555 | 2022-0402060 | XEROX
CORPORATION | | 20200723CN01 | China | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FORMING METAL SUPPORT STRUCTURES | 2022105613
25.1 | CN115570152
A | XEROX
CORPORATION | | 20200723JP01 | Japan | Published | A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER AND
METHOD OF
OPERATION FOR
FORMING METAL
SUPPORT | 2022-083261 | 2023-001876 | XEROX
CORPORATION | | 20200723DE01 | Germany
(Federal
Republic of) | Published | STRUCTURES A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FORMING METAL SUPPORT STRUCTURES | 1020221145
96.4 | 102022114596.
4 | XEROX
CORPORATION | | 20200723KR01 | Korea,
Republic of
(KR) | Published | A METAL DROP EJECTING
THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FORMING METAL SUPPORT STRUCTURES | 10-2022-
0073300 | 10-2022-
0169910 | XEROX
CORPORATION | | 20200731US01 | United States
of America | Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FACILITATING RELEASE OF A METAL OBJECT FROM A BUILD PLATFORM | 17/360515 | 2022-0410302 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication I
Number | atent No Original Owner | |---------------------|--------------------------|-------------|--|-----------------------|-------------------------|-------------------------| | 20200731CN01 | China | Published | A METAL DROP
EJECTING THREE- | 2022105982
947 | CN115592138
A | XEROX
CORPORATION | | | | | DIMENSIONAL (3D) | 747 | 71 | CORTORATION | | | | | OBJECT PRINTER AND METHOD OF | | | | | | | | OPERATION FOR
FACILITATING | | | | | | | | RELEASE OF A | | | | | | | | METAL OBJECT FROM
A BUILD PLATFORM | | | | | 20200731JP01 | Japan | Published | A METAL DROP
EJECTING THREE- | 2022-085029 | 2023-007414 | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF | | | | | | | | OPERATION FOR
FACILITATING | | | | | | | | RELEASE OF A
METAL OBJECT FROM | | | | | 20200731DE01 | Germany | Published | A BUILD PLATFORM
A METAL DROP | 1020221148 | 102022114871. | XEROX | | 20200731DE01 | (Federal | Tublished | EJECTING THREE- | 71.8 | 8 | CORPORATION | | | Republic of) | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF OPERATION FOR | | | | | | | | FACILITATING
RELEASE OF A | | | | | | | | METAL OBJECT FROM
A BUILD PLATFORM | | | | | 20200731KR01 | Korea, | Application | A METAL DROP | 10-2022- | | XEROX | | | Republic of (KR) | | EJECTING THREE-
DIMENSIONAL (3D) | 0076025 | | CORPORATION | | | | | OBJECT PRINTER AND METHOD OF | | | | | | | | OPERATION FOR
FACILITATING | | | | | | | | RELEASE OF A | | | | | | | | METAL OBJECT FROM
A BUILD PLATFORM | | | | | 20200733US01 | United States of America | Published | A METAL DROP
EJECTING THREE- | 17/412399 | 2023-0063103 | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER | | | | | | | | AND METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200733CN01 | China | Published | A METAL DROP
EJECTING THREE- | 2022108847
30.7 | CN115722686
A | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | FORMING METAL | | | | | | | | SUPPORT
STRUCTURES | | | | | 20200733JP01 | Japan | Published | A METAL DROP
EJECTING THREE- | 2022-118699 | 2023-033137 | XEROX
CORPORATION | | | | | DIMENSIONAL (3D)
OBJECT PRINTER AND | | | | | | | | METHOD OF
OPERATION FOR | | | | | | | | | | | | | | | | FORMING METAL | | | | | | | | FORMING METAL
SUPPORT
STRUCTURES | | | | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | Original Owner | |---------------------|-------------------------------------|----------------|---|-----------------------|-----------------------|------------|----------------------| | 20200733DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER AND
METHOD OF
OPERATION FOR | 1020221192
70.9 | | | XEROX
CORPORATION | | 20210001US01 | United States | Granted | FORMING METAL
SUPPORT
STRUCTURES
METAL DROP | 17/339969 | 2022-0388063 | 11731199 | XEROX | | 202100010301 | of America | 57.4.1. | EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER
WITH DOUBLE
THERMAL LAYER
INSULATION FOR
THE BUILD
PLATFORM
TRANSLATIONAL | 11100000 | 2022 0.0000 | 11/31/ | CORPORATION | | 20210036US01 | United States
of America | Granted | MECHANISM
LIQUID METAL
EJECTOR LEVEL
SENSING SYSTEM
AND METHODS
THEREOF | 17/367991 | 2023-0008592 | 11654482 | XEROX
CORPORATION | | 20210036US02 | United States
of America | Published | LIQUID METAL
EJECTOR LEVEL
SENSING SYSTEM
AND METHODS
THEREOF | | 2023-0241670 | | XEROX
CORPORATION | | 20210125US01 | United States
of America | Published | VESSEL FOR
MELTING METAL IN
A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 17/391265 | 2023-0034213 | | XEROX
CORPORATION | | 20210125CN01 | China | Published | VESSEL FOR
MELTING METAL IN A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 2022108498
59.4 | CN115701367
A | | XEROX
CORPORATION | | 20210125JP01 | Japan | Published | VESSEL FOR
MELTING METAL IN A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 2022-112445 | 2023-021931 | | XEROX
CORPORATION | | 20210125DE01 | Germany
(Federal
Republic of) | Published | VESSEL FOR
MELTING METAL IN A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 1020221176
91.6 | | | XEROX
CORPORATION | | 20210125KR01 | Korea,
Republic of
(KR) | Application | VESSEL FOR
MELTING METAL IN A
METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER | 10-2022-
0093679 | | | XEROX
CORPORATION | | 20210127US01 | United States of America | Published | DROSS ABATEMENT
SYSTEM AND
METHODS THEREOF | 17/348908 | 2022-0402023 | | XEROX
CORPORATION | | 20210127CN01 | China | Published | DROSS ABATEMENT
SYSTEM AND
METHODS THEREOF | 2022105223
28.4 | CN115475966
A | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication I
Number | Patent No Original Owner | |---------------------|-------------------------------------|-------------|--|-----------------------|-------------------------|--------------------------| | 20210127JP01 | Japan | Published | DROSS ABATEMENT
SYSTEM AND
METHODS THEREOF | 2022-083230 | 2022-192013 | XEROX
CORPORATION | | 20210127DE01 | Germany
(Federal
Republic of) | Published | DROSS ABATEMENT
SYSTEM AND
METHODS THEREOF | 1020221143
15.5 | 102022114315.
5 | XEROX
CORPORATION | | 20210137US01 | United States of America | Published | METHOD FOR METHOD FOR CONTROLLING TEMPERATURE IN A THREE- DIMENSIONAL (3D) PRINTER | 17/371391 | 2023-0012088 | XEROX
CORPORATION | | 20210137US02 | United States of America | Published | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE- DIMENSIONAL (3D) PRINTER | 17/371470 | 2023-0011639 | XEROX
CORPORATION | | 20210137CN01 | China | Published | SYSTEM AND
METHOD FOR
CONTROLLING
TEMPERATURE IN A
THREE-DIMENSIONAL
(3D) PRINTER | 2022106761
97.5 | CN115647384
A | XEROX
CORPORATION | | 20210137CN02 | China | Published | SYSTEM AND
METHOD FOR
CONTROLLING
TEMPERATURE IN A
THREE-DIMENSIONAL
(3D) PRINTER | 2022106605
93.9 | CN115592134
A | XEROX
CORPORATION | | 20210137JP01 | Japan | Published | SYSTEM AND
METHOD FOR
CONTROLLING
TEMPERATURE IN A
THREE-DIMENSIONAL
(3D) PRINTER | 2022-097900 | 2023-010605 | XEROX
CORPORATION | | 20210137JP02 | Japan | Published | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL (3D) PRINTER | 2022-097917 | 2023-010606 | XEROX
CORPORATION | | 20210137DE01 | Germany
(Federal
Republic of) | Published | SYSTEM AND
METHOD FOR
CONTROLLING
TEMPERATURE IN A
THREE-DIMENSIONAL | 1020221151
46.8 | | XEROX
CORPORATION | | 20210137DE02 | Germany
(Federal
Republic of) | Published | (3D) PRINTER SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL | 1020221154
73.4 | | XEROX
CORPORATION | | 20210137KR01 | Korea,
Republic of
(KR) | Application | (3D) PRINTER SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL (3D) PRINTER | 10-2022-
0081307 | | XEROX
CORPORATION | | 20210137KR02 | Korea,
Republic of
(KR) | Application | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL (3D) PRINTER | 10-2022-
0081281 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication I
Number | Patent No. Original Owner | |---------------------|-------------------------------------|-------------|--|-----------------------|-------------------------|---------------------------| | 20210168US01 | United States
of America | Published | MODIFICATION OF
THE METAL
JETTING | 17/462804 | 2023-0066534 | XEROX
CORPORATION | | 20210168US02 | United States
of America | Published | COMPOSITIONS AND
METHODS THEREOF
EJECTOR FOR
MODIFICATION OF
METAL JETTING
COMPOSITIONS AND | 17/462713 | 2023-0063825 | XEROX
CORPORATION | | 20210168CN01 | China | Published | METHODS THEREOF
MODIFICATION OF
THE METAL JETTING
COMPOSITIONS AND | 2022109196
22.9 | CN115722679
A | XEROX
CORPORATION | | 20210168CN02 | China | Published | METHODS THEREOF EJECTOR FOR MODIFICATION OF METAL JETTING | 2022108899
96.0 | CN115722646
A | XEROX
CORPORATION | | 20210168JP01 | Japan | Published | COMPOSITIONS AND METHODS THEREOF MODIFICATION OF THE METAL JETTING COMPOSITIONS AND METHODS THEREOF | 2022-124730 | 2023-035880 | XEROX
CORPORATION | | 20210168JP02 | Japan | Published | EJECTOR FOR MODIFICATION OF METAL JETTING COMPOSITIONS AND | 2022-126107 | 2023-035885 | XEROX
CORPORATION | | 20210168DE01 | Germany
(Federal
Republic of) |
Published | METHODS THEREOF
MODIFICATION OF
THE METAL JETTING
COMPOSITIONS AND | 1020221202
24.0 | | XEROX
CORPORATION | | 20210168DE02 | Germany
(Federal
Republic of) | Published | METHODS THEREOF
EJECTOR FOR
MODIFICATION OF
METAL JETTING
COMPOSITIONS AND | 1020221202
23.2 | | XEROX
CORPORATION | | 20210168KR01 | Korea,
Republic of
(KR) | Application | METHODS THEREOF
MODIFICATION OF
THE METAL JETTING
COMPOSITIONS AND | 10-2022-
0106921 | | XEROX
CORPORATION | | 20210168KR02 | Korea,
Republic of
(KR) | Application | METHODS THEREOF
EJECTOR FOR
MODIFICATION OF
METAL JETTING
COMPOSITIONS AND
METHODS THEREOF | 10-2022-
0106922 | | XEROX
CORPORATION | | 20210193US01 | United States of America | Published | DROSS EXTRACTION
SYSTEM AND
METHODS THEREOF | 17/374762 | 2023-0015142 | XEROX
CORPORATION | | 20210382US01 | United States
of America | Published | ALLOYING OF
METAL JETTING
COMPOSITIONS AND | 17/448940 | 2023-0097037 | XEROX
CORPORATION | | 20210382CN01 | China | Published | METHODS THEREOF
ALLOYING OF METAL
JETTING
COMPOSITIONS AND | 2022110719
87.7 | | XEROX
CORPORATION | | 20210382JP01 | Japan | Published | METHODS THEREOF
ALLOYING OF METAL
JETTING
COMPOSITIONS AND | 2022-145568 | | XEROX
CORPORATION | | 20210382EP01 | European
Patent | Published | METHODS THEREOF
ALLOYING OF METAL
JETTING
COMPOSITIONS AND
METHODS THEREOF | 22194327.7 | 4155010 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent Number | io. Original Owner | |---------------------|-------------------------------------|-----------|---|-----------------------|---------------------------|----------------------| | 20210390US01 | United States
of America | Published | LIQUID METAL
DROP MASS
MEASUREMENTS
AND METHODS
THEREOF | 17/447174 | 2023-0076563 | XEROX
CORPORATION | | 20210390JP01 | Japan | Published | LIQUID METAL DROP
MASS
MEASUREMENTS
AND METHODS
THEREOF | 2022-135464 | 2023-039415 | XEROX
CORPORATION | | 20210390DE01 | Germany
(Federal
Republic of) | Published | LIQUID METAL DROP
MASS
MEASUREMENTS
AND METHODS
THEREOF | 1020221202
25.9 | | XEROX
CORPORATION | | 20210391US01 | United States
of America | Allowed | A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER
AND METHOD OF
OPERATION FOR
FACILITATING
BUILD AND RELEASE
OF A METAL
OBJECT FROM A
BUILD PLATFORM | 17/457346 | 2023-0076563 | XEROX
CORPORATION | | 20210391CN01 | China | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FACILITATING BUILD AND RELEASE OF A METAL OBJECT FROM A BUILD PLATFORM | 2022113592
647 | | XEROX
CORPORATION | | 20210391JP01 | Japan | Published | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR FACILITATING BUILD AND RELEASE OF A METAL OBJECT FROM A BUILD PLATFORM | 2022-176832 | | XEROX
CORPORATION | | 20210391DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER AND
METHOD OF
OPERATION FOR
FACILITATING BUILD
AND RELEASE OF A
METAL OBJECT FROM
A BUILD PLATFORM | 1020221316
39.4 | | XEROX
CORPORATION | | 20210411US01 | United States of America | Published | METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN IMPROVED HEATED BUILD PLATFORM | 17/455785 | 2023-0158573 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | Original Owner | |---------------------|-------------------------------------|-------------|--|-----------------------|----------------------------------|----------------------| | 20210421US01 | United States
of America | Published | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 17/649393 | 2023-0241680 | XEROX
CORPORATION | | 20210421CN01 | China | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 2023100307
945 | | XEROX
CORPORATION | | 20210421JP01 | Japan | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 2023-000506 | | XEROX
CORPORATION | | 20210421DE01 | Germany
(Federal
Republic of) | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 1020231001
95.7 | | XEROX
CORPORATION | | 20210421KR01 | Korea,
Republic of
(KR) | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 10-2023-
0009930 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No
Number | . Original Owner | |---------------------|-------------------------------------|-------------|---|-----------------------|---------------------------------|----------------------| | 20210430US01 | United States
of America | Published | DEVICE AND METHOD FOR CLEANING AN ORIFICE IN A METAL DROP EJECTING THREE- DIMENSIONAL (3D) METAL OBJECT PRINTER | 17/648490 | 2023-0226614 | XEROX
CORPORATION | | 20210458US01 | United States
of America | Published | EJECTOR FOR
METAL JETTING
BULK METALLIC
GLASS
COMPOSITIONS AND
METHODS THEREOF | 17/554089 | 2023-0191487 | XEROX
CORPORATION | | 20210502US01 | United States of America | Published | METAL DROP EJECTING THREE- DIMENSIONAL(3D) OBJECT PRINTER AND IMPROVED METHOD FOR OPERATING THE PRINTER | 17/455590 | 2023-0150026 | XEROX
CORPORATION | | 20210502CN01 | China | Published | METAL DROP EJECTING THREE- DIMENSIONAL(3D) OBJECT PRINTER AND IMPROVED METHOD FOR OPERATING THE PRINTER | 2022114239
328 | | XEROX
CORPORATION | | 20210502JP01 | Japan | Published | METAL DROP
EJECTING THREE-
DIMENSIONAL(3D)
OBJECT PRINTER AND
IMPROVED METHOD
FOR OPERATING THE
PRINTER | 2022-175525 | | XEROX
CORPORATION | | 20210502DE01 | Germany
(Federal
Republic of) | Published | METAL DROP EJECTING THREE- DIMENSIONAL(3D) OBJECT PRINTER AND IMPROVED METHOD FOR OPERATING THE PRINTER | 1020221306
24.0 | | XEROX
CORPORATION | | 20210502KR01 | Korea,
Republic of
(KR) | Application | METAL DROP EJECTING THREE- DIMENSIONAL(3D) OBJECT PRINTER AND IMPROVED METHOD FOR OPERATING THE PRINTER | 10-2022-
0151617 | | XEROX
CORPORATION | | 20210512US01 | United States
of America | Published | LIQUID METAL
EJECTOR DUAL
SENSOR SYSTEM
AND METHODS
THEREOF | 17/454926 | 2023-0150033 | XEROX
CORPORATION | | 20210512CN01 | China | Published | LIQUID METAL
EJECTOR DUAL
SENSOR SYSTEM AND
METHODS THEREOF | 2022114374
65.4 | | XEROX
CORPORATION | | 20210512JP01 | Japan | Published | LIQUID METAL
EJECTOR DUAL
SENSOR SYSTEM AND
METHODS THEREOF | 2022-179183 | | XEROX
CORPORATION | | 20210512EP01 | European
Patent | Published | LIQUID METAL
EJECTOR DUAL
SENSOR SYSTEM AND
METHODS THEREOF | 22203929.9 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | Original Owner | |---------------------|-------------------------------------|-------------|---|-----------------------|----------------------------------|----------------------| | 20210512KR01 | Korea,
Republic of
(KR) | Application | LIQUID METAL
EJECTOR DUAL
SENSOR SYSTEM AND
METHODS THEREOF | 10-2022-
0149380 | | XEROX
CORPORATION | | 20210514US01 | United States
of America | Application | LIQUID METAL
EJECTOR LEVEL
SENSE SYSTEM AND
METHODS THEREOF | 17/853676 | | XEROX
CORPORATION | | 20210514CN01 | China | Application | LIQUID METAL
EJECTOR LEVEL
SENSE SYSTEM AND
METHODS THEREOF | 2023106276
07.1 | | XEROX
CORPORATION | | 20210514JP01 | Japan | Application | LIQUID METAL
EJECTOR LEVEL
SENSE SYSTEM AND
METHODS THEREOF | 1020231150
41.3 | | XEROX
CORPORATION | | 20210514DE01 | Germany
(Federal
Republic of) | Application | LIQUID METAL
EJECTOR LEVEL
SENSE SYSTEM AND
METHODS THEREOF | 2023-
090719 | | XEROX
CORPORATION | | 20210514KR01 | Korea,
Republic of
(KR) | Application | LIQUID METAL
EJECTOR LEVEL
SENSE SYSTEM AND
METHODS THEREOF | 10-2023-
0080174 | | XEROX
CORPORATION | | 20210517US01 | United States
of America | Published | LIQUID METAL
EJECTOR BUOYANT
SENSING SYSTEM
AND METHODS | 17/534040 | 2023-0158575 | XEROX
CORPORATION | | 20210540US01 | United States
of America | Application | THEREOF METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT | 17/652911 | | XEROX
CORPORATION | | 20210540CN01 | China | Application | STRUCTURES A METAL DROP
EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT | 2023101591
135 | | XEROX
CORPORATION | | 20210540JP01 | Japan | Application | STRUCTURES A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT | 2023-023408 | | XEROX
CORPORATION | | 20210540DE01 | Germany
(Federal
Republic of) | Application | STRUCTURES A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT STRUCTURES | 1020231017
32.2 | | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | | ablication Patent No. Original Owner umber | |---------------------|-------------------------------------|-------------|---|---------------------|--| | 20210540KR01 | Korea,
Republic of
(KR) | Application | A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT | 10-2023-
0023504 | XEROX
CORPORATION | | 20210571US01 | United States of America | Application | STRUCTURES A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER AND METHOD OF OPERATION FOR BUILDING SUPPORT STRUCTURES | 17/652914 | XEROX
CORPORATION | | 20210588US01 | United States of America | Application | A METAL DROP
EJECTING THREE-
DIMENSIONAL (3D)
OBJECT PRINTER
AND METHOD OF
OPERATION FOR
FACILITATING
BUILD AND RELEASE
OF A METAL
OBJECT FROM A
BUILD PLATFORM | 17/652919 | XEROX
CORPORATION | | 20210591US01 | United States of America | Application | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE- DIMENSIONAL (3D) PRINTER | 17/653138 | XEROX
CORPORATION | | 20210591JP01 | Japan | Application | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL (3D) PRINTER | 2023-024915 | XEROX
CORPORATION | | 20210591DE01 | Germany
(Federal
Republic of) | Application | SYSTEM AND METHOD FOR CONTROLLING TEMPERATURE IN A THREE-DIMENSIONAL (3D) PRINTER | 1020231039
10.5 | XEROX
CORPORATION | | 20210604US01 | United States
of America | Application | DROSS EXTRACTION
SYSTEM FOR AN
MHD PRINTER AND
METHODS THEREOF | 17/651248 | XEROX
CORPORATION | | 20210604JP01 | Japan | Application | DROSS EXTRACTION
SYSTEM FOR AN MHD
PRINTER AND
METHODS THEREOF | 2023-016670 | XEROX
CORPORATION | | 20210604DE01 | Germany
(Federal
Republic of) | Application | DROSS EXTRACTION
SYSTEM FOR AN MHD
PRINTER AND
METHODS THEREOF | 1020231017
31.4 | XEROX
CORPORATION | | 20210654US01 | United States
of America | Application | DROSS EXTRACTION
IMPLEMENT FOR AN
MHD PRINTER AND
METHODS THEREOF | 17/652532 | XEROX
CORPORATION | | 20210654JP01 | Japan | Application | DROSS EXTRACTION
IMPLEMENT FOR AN
MHD PRINTER AND
METHODS THEREOF | 2023-023202 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No. Original Owner
Number | |---------------------|-------------------------------------|-------------|--|-----------------------|---| | 20210654DE01 | Germany
(Federal
Republic of) | Application | DROSS EXTRACTION
IMPLEMENT FOR AN
MHD PRINTER AND | 1020231039
14.8 | XEROX
CORPORATION | | 20210679US01 | United States of America | Application | METHODS THEREOF
THREE-
DIMENSIONAL | 17/843098 | XEROX
CORPORATION | | | | | UNSUPPORTED
STRUCTURAL
FEATURES AND
SYSTEM AND
METHODS THEREOF | | | | 20210679CN01 | China | Application | THREE-DIMENSIONAL UNSUPPORTED STRUCTURAL FEATURES AND SYSTEM AND METHODS THEREOF | 2023106300
47.5 | XEROX
CORPORATION | | 20210679JP01 | Japan | Application | THREE-DIMENSIONAL UNSUPPORTED STRUCTURAL FEATURES AND SYSTEM AND METHODS THEREOF | 23176187.5 | XEROX
CORPORATION | | 20210679EP01 | European
Patent | Application | THREE-DIMENSIONAL UNSUPPORTED STRUCTURAL FEATURES AND SYSTEM AND METHODS THEREOF | 2023-085820 | XEROX
CORPORATION | | 20210679KR01 | Korea,
Republic of
(KR) | Application | THREE-DIMENSIONAL UNSUPPORTED STRUCTURAL FEATURES AND SYSTEM AND METHODS THEREOF | 10-2023-
0074664 | XEROX
CORPORATION | | 20220022US01 | United States of America | Application | METHOD AND APPARATUS FOR FORMING OVERHANGING STRUCTURES IN ADDITIVE MANUFACTURED PARTS THAT HAVE AN IMPROVED SURFACE ROUGHNESS | 17/664470 | XEROX
CORPORATION | | 20220022CN01 | China | Application | METHOD AND APPARATUS FOR FORMING OVERHANGING STRUCTURES IN ADDITIVE MANUFACTURED PARTS THAT HAVE AN IMPROVED SURFACE ROUGHNESS | 2023105137
071 | XEROX
CORPORATION | | 20220022JP01 | Japan | Application | METHOD AND APPARATUS FOR FORMING OVERHANGING STRUCTURES IN ADDITIVE MANUFACTURED PARTS THAT HAVE AN IMPROVED SURFACE ROUGHNESS | 23171449.4 | XEROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No. Original Owner
Number | |---------------------|--------------------|---------------------------|--------------------------------------|-----------------------|---| | 20220022EP01 | European
Patent | Application | METHOD AND
APPARATUS FOR | | XEROX
CORPORATION | | | | | FORMING | | | | | | | OVERHANGING
STRUCTURES IN | | | | | | | ADDITIVE | | | | | | | MANUFACTURED | | | | | | | PARTS THAT HAVE
AN IMPROVED | | | | | | | SURFACE | | | | 20220022KR01 | Korea, | Application | ROUGHNESS
METHOD AND | 10-2023- | XEROX | | 20220022KK01 | Republic of | Application | APPARATUS FOR | 0060889 | CORPORATION | | | (KR) | | FORMING | | | | | | | OVERHANGING
STRUCTURES IN | | | | | | | ADDITIVE | | | | | | | MANUFACTURED | | | | | | | PARTS THAT HAVE
AN IMPROVED | | | | | | | SURFACE | | | | 20220047US01 | United States | Application | ROUGHNESS
DYNAMIC IN- | 18/059638 | XEROX | | 20220047 0301 | of America | Application | FLIGHT | 10/03/030 | CORPORATION | | | | | CHARACTERIZATIO | | | | | | | N OF BUILD
MATERIAL IN A 3D | | | | | | | PRINTER AND | | | | | | | SYSTEM AND
METHODS THEREOF | | | | 20220053US01 | United States | Application | PRINTING A THREE- | 18/047359 | XEROX | | | of America | | DIMENSIONAL PART | | CORPORATION | | | | | WITH ENHANCED
DROP PLACEMENT | | | | | | | AND SYSTEM AND | | | | 20220053CN01 | China | Cumontly | METHODS THEREOF
PRINTING A THREE- | | XEROX | | 20220033CN01 | Clilla | Currently Designated | DIMENSIONAL PART | | CORPORATION | | | | To Be Filed | WITH ENHANCED | | | | | | | DROP PLACEMENT
AND SYSTEM AND | | | | | | | METHODS THEREOF | | | | 20220053JP01 | Japan | Currently | PRINTING A THREE- | | XEROX | | | | Designated
To Be Filed | DIMENSIONAL PART
WITH ENHANCED | | CORPORATION | | | | | DROP PLACEMENT | | | | | | | AND SYSTEM AND METHODS THEREOF | | | | 20220053EP01 | European | Currently | PRINTING A THREE- | | XEROX | | | Patent | Designated | DIMENSIONAL PART | | CORPORATION | | | | To Be Filed | WITH ENHANCED
DROP PLACEMENT | | | | | | | AND SYSTEM AND | | | | 20220053KR01 | Korea, | Currently | METHODS THEREOF
PRINTING A THREE- | | XEROX | | 20220033KK01 | Republic of | Designated | DIMENSIONAL PART | | CORPORATION | | | (KR) | To Be Filed | WITH ENHANCED | | | | | | | DROP PLACEMENT
AND SYSTEM AND | | | | | | | METHODS THEREOF | | | | 20220054US01 | United States | Application | PRINTING A THREE- | 18/047365 | XEROX | | | of America | | DIMENSIONAL PART
TO ENHANCE | | CORPORATION | | | | | SEPARATION AND | | | | | | | SYSTEM AND
METHODS THEREOF | | | | | | | METHODS THEREOF | | | | Patent
Reference | Country | Status | Title | Application Publication Patent No. Original Owner
Number Number | |---------------------|-----------------------|---------------------------|---------------------------------------|--| | 20220054JP01 | Japan | Currently | PRINTING A THREE- | XEROX | | 202200543101 | Japan | Designated | DIMENSIONAL PART | CORPORATION | | | | To Be Filed | TO ENHANCE | | | | | | SEPARATION AND | | | | | | SYSTEM AND | | | 20220054ED01 | F | C | METHODS THEREOF | VEDOV | | 20220054EP01 | European
Patent | Currently
Designated | PRINTING A THREE-
DIMENSIONAL PART | XEROX
CORPORATION | | | ratent | To Be Filed | TO ENHANCE | CORTORATION | | | | | SEPARATION AND | | | | | | SYSTEM AND | | | ********** | | ~ · | METHODS THEREOF | YED OX | | 20220054KR01 | Korea,
Republic of | Currently
Designated | PRINTING A THREE-
DIMENSIONAL PART | XEROX
CORPORATION | | | (KR) | To Be Filed | TO ENHANCE | CORPORATION | | | (III) | To Be Theu | SEPARATION AND | | | | | | SYSTEM AND | | | | | | METHODS THEREOF | | | 20220058US01 | United States | Application | PRINTING A THREE- | 18/047371 XEROX | | | of America | | DIMENSIONAL PART
TO ENHANCE | CORPORATION | | | | | SEPARATION AND | | | | | | SYSTEM AND | | | | | | METHODS THEREOF | | | 20220058JP01 | Japan | Currently | PRINTING A THREE- | XEROX | | | | Designated
To Be Filed | DIMENSIONAL PART
TO ENHANCE | CORPORATION | | | | To be Thed | SEPARATION AND | | | | | | SYSTEM AND | | | | | | METHODS THEREOF | | | 20220058EP01 | European | Currently | PRINTING A THREE- | XEROX | | | Patent | Designated | DIMENSIONAL PART | CORPORATION | | | | To Be Filed | TO ENHANCE
SEPARATION AND | | | | | | SYSTEM AND | | | | | | METHODS THEREOF | | | 20220063US01 | United States | Application | HIGH-THROUGHPUT | 17/820468 XEROX | | | of America | | LIQUID METAL
INKJET NOZZLE | CORPORATION | | | | | WITH | | | |
 | POROUS LAYER FOR | | | | | | MENISCUS DAMPING | | | 20220063US02 | United States | Application | | 17/820481 XEROX | | | of America | | LIQUID METAL | CORPORATION | | | | | INKJET NOZZLE
WITH | | | | | | WIII | | | | | | POROUS LAYER FOR | | | | | | MENISCUS DAMPING | | | 20220063CN01 | China | Application | HIGH-THROUGHPUT | 2023109167 XEROX | | | | | LIQUID METAL
INKJET NOZZLE WITH | 76.7 CORPORATION | | | | | POROUS LAYER FOR | | | | | | MENISCUS DAMPING | | | 20220063JP01 | Japan | Currently | HIGH-THROUGHPUT | XEROX | | | | Designated | LIQUID METAL | CORPORATION | | | | To Be Filed | INKJET NOZZLE WITH | | | | | | POROUS LAYER FOR MENISCUS DAMPING | | | 20220063EP01 | European | Application | HIGH-THROUGHPUT | 23188900.7 XEROX | | | Patent | | LIQUID METAL | CORPORATION | | | | | INKJET NOZZLE WITH | | | | | | POROUS LAYER FOR | | | | | | MENISCUS DAMPING | | | Patent
Reference | Country | Status | Title | Application Publication Patent No. Ori
Number Number | ginal Owner | |---------------------|--------------------------|-------------------------|----------------------------------|---|----------------------| | 20220063KR01 | Korea, | Currently | HIGH-THROUGHPUT | | XEROX | | | Republic of | Designated | LIQUID METAL | C | ORPORATION | | | (KR) | To Be Filed | INKJET NOZZLE WITH | | | | | | | POROUS LAYER FOR | | | | 20220070US01 | United States | Application | MENISCUS DAMPING | 17/883088 XEI | ROX | | 202200700801 | United States of America | Application | LEVERAGING
PRINTING | | RPORATION | | | of America | | STANDOFF | CO | RIORATION | | | | | DISTANCE IN | | | | | | | THREE- | | | | | | | DIMENSIONAL | | | | | | | PRINTING TO | | | | | | | ENHANCE PART | | | | | | | SEPARATION AND | | | | | | | SYSTEM AND | | | | 202200701001 | T | C | METHODS THEREOF | | VEDOV | | 20220070JP01 | Japan | Currently
Designated | LEVERAGING
PRINTING STANDOFF | C | XEROX
ORPORATION | | | | To Be Filed | DISTANCE IN THREE- | C. | OKIOKATION | | | | To be Theu | DIMENSIONAL | | | | | | | PRINTING TO | | | | | | | ENHANCE PART | | | | | | | SEPARATION AND | | | | | | | SYSTEM AND | | | | A0440404TC04 | ** * 10. · | | METHODS THEREOF | 18/02022 | DOV | | 20220103US01 | United States of America | Application | SYSTEM AND
METHOD FOR | | ROX
RPORATION | | | of America | | CONTROLLING | CO | Krokation | | | | | FLOW THROUGH A | | | | | | | 3D PRINTER | | | | 20220103US02 | United States | Application | SYSTEM AND | 17/930233 XEI | ROX | | | of America | | METHOD FOR | CO | RPORATION | | | | | CONTROLLING | | | | | | | FLOW THROUGH A | | | | 20220103CN01 | China | Currently | 3D PRINTER
SYSTEM AND | | XEROX | | 20220103C1401 | Cimia | Designated | METHOD FOR | C | ORPORATION | | | | To Be Filed | | Ţ. | 3111 3111 111 | | | | | THROUGH A 3D | | | | | | | PRINTER | | | | 20220103JP01 | Japan | Currently | SYSTEM AND | _ | XEROX | | | | Designated | METHOD FOR | C | ORPORATION | | | | To Be Filed | CONTROLLING FLOW
THROUGH A 3D | | | | | | | PRINTER | | | | 20220103EP01 | European | Currently | SYSTEM AND | | XEROX | | | Patent | | METHOD FOR | C | ORPORATION | | | | To Be Filed | | | | | | | | THROUGH A 3D | | | | | | | PRINTER | | | | 20220103KR01 | Korea, | Currently | SYSTEM AND | | XEROX | | | Republic of | Designated | METHOD FOR | C | ORPORATION | | | (KR) | To Be Filed | CONTROLLING FLOW
THROUGH A 3D | | | | | | | PRINTER | | | | 20220107US01 | United States | Application | INSPECTION | 18/059643 XE | ROX | | | of America | | SYSTEM FOR | CO | RPORATION | | | | | THREE- | | | | | | | DIMENSIONAL | | | | | | | PRINTER AND | | | | 2022010703701 | ØL: | C1 | METHODS THEREOF | | VEDOV | | 20220107CN01 | China | Currently
Designated | INSPECTION SYSTEM
FOR THREE- | C | XEROX
ORPORATION | | | | To Be Filed | DIMENSIONAL | C | SEL CHILION | | | | | PRINTER AND | | | | | | | METHODO THEREOF | | | | | | | METHODS THEREOF | | | | Patent
Reference | Country | Status | Title | Application Publication Patent No. C
Number Number | Original Owner | |---------------------|-------------------------------|--|---|---|----------------------| | 20220107ЈР01 | Japan | Currently
Designated
To Be Filed | INSPECTION SYSTEM FOR THREE- DIMENSIONAL PRINTER AND | | XEROX
CORPORATION | | 20220107EP01 | European
Patent | Currently
Designated
To Be Filed | METHODS THEREOF
INSPECTION SYSTEM
FOR THREE-
DIMENSIONAL
PRINTER AND | | XEROX
CORPORATION | | 20220107KR01 | Korea,
Republic of
(KR) | Currently
Designated
To Be Filed | METHODS THEREOF
INSPECTION SYSTEM
FOR THREE-
DIMENSIONAL
PRINTER AND | | XEROX
CORPORATION | | 20220111US01 | United States
of America | Application | METHODS THEREOF
IMPROVED VESSEL
FOR ATTENUATING
DROSS IN MELTED
METAL IN A METAL
DROP EJECTING | | EROX
CORPORATION | | 20220182US01 | United States of America | Application | THREE- DIMENSIONAL (3D) OBJECT PRINTER METHOD OF CREATING BIMETALLIC PARTS | - | EROX
CORPORATION | | 20220184US01 | United States of America | Application | USING LIQUID METAL ADDITIVE MANUFACTURING. LINE SPACING MODIFICATION TO PRINT | | EROX
CORPORATION | | 20220192US01 | United States of America | Application | UNSUPPORTED STEP
OUT IN 3D METAL
OBJECTS
A NON-CONTACT
METHOD FOR
CLEARING | | EROX
CORPORATION | | 20220192US02 | United States of America | Currently
Designated
To Be Filed | OCCLUSION FROM A METAL JETTING PRINTHEAD NOZZLE A NON-CONTACT METHOD FOR CLEARING OCCLUSION FROM A | | EROX
CORPORATION | | 20220195US01 | United States of America | Currently
Designated
To Be Filed | METAL JETTING
PRINTHEAD NOZZLE
BRIDGING
INTERNAL
CHANNELS BEYOND
1.75MM IN 3D METAL | | EROX
CORPORATION | | 20220385US01 | United States
of America | Currently
Designated
To Be Filed | OBJECTS OPTIMIZED MAGNETOHYDRODY NAMICS PUMP WITH FLOW | | EROX
CORPORATION | | 20220401US01 | United States
of America | Currently
Designated
To Be Filed | CONSTRICTION ENHANCING WETTING IN A 3D MHD METAL PRINTHEAD USING A SECONDARY METAL | | EROX
CORPORATION | | 20220409US01 | United States of America | Currently
Designated
To Be Filed | SUPPLY
ALLOY HARDENING
OPTIMIZATION FOR
PARTS 3D-PRINTED
VIA LIQUID METAL
JETTING | | EROX
CORPORATION | | Patent
Reference | Country | Status | Title | Application Publication Patent No.
Number Number | Original Owner | |---------------------|-----------------------------|--|--|---|---| | 20220410US01 | United States
of America | Application | PERIMETER AND
INFILL
OPTIMIZATIONS
FOR LIQUID METAL
JETTING 3D
PRINTING | 18/329259 | XEROX
CORPORATION | | 20220412US01 | United States
of America | Currently
Designated
To Be Filed | A WAY TO INCREASE PART HEIGHT PRINTING CAPABILITY FOR LIQUID METAL 3D PRINTER USING A DYNAMIC THERMAL ENCLOSURE WITH A ONE AXES HYBRID SHIELD SYSTEM | | XEROX
CORPORATION | | 20220431US01 | United States
of America | Currently
Designated
To Be Filed | WATER SOLUBLE
BORON OXIDE
SUPPORT MATERIAL
FOR 3D PRINTED
ALUMINUM | | XEROX
CORPORATION | | 20220461US01 | United States of America | Currently
Designated
To Be Filed | AUTOMATED DROP
COALESCENCE
MEASUREMENT AND
MONITORING FOR
3D METAL JET
PRINTERS | | XEROX
CORPORATION | | 20220505US01 | United States of America | Application | SPARSE FILL IN 3D
METAL OBJECTS | 18/358369 | XEROX
CORPORATION | | 20220524US01 | United States
of America | Currently
Designated
To Be Filed | IN SITU DROP MASS
ESTIMATION AND
PART QUALITY
MONITORING FOR
3D METAL JET
PRINTERS | | XEROX
CORPORATION | | 20220525US01 | United States
of America | Currently
Designated
To Be Filed | SCANNING OPTICAL
SYSTEM FOR LASER
ILLUMINATION AND
PYROMETER
TEMPERATURE
SENSING | | PALO ALTO
RESEARCH
CENTER
INCORPORATE
D | | 20220531US01 | United States
of America | Currently
Designated
To Be Filed | SURFACE HEIGHT
MEASUREMENTS/IM
AGING WITH
SCANNING PATH
FOLLOWING THE 3D
PRINTING
TOOLPATH | | CORPORATION PALO ALTO RESEARCH CENTER INCORPORATE D XEROX CORPORATION | | 20220532US01 | United States
of America | Currently
Designated
To Be Filed | TEMPERATURE MEASUREMENT & CONTROL FOR LIQUID METAL JETTING 3D PRINTING | | PALO ALTO RESEARCH CENTER INCORPORATE D XEROX | | 20220545US01 | United States
of America | Currently
Designated
To Be Filed | IN SITU DROP
PLACEMENT
MONITORING FOR
3D METAL JET
PRINTERS | | CORPORATION
XEROX
CORPORATION | | Patent
Reference | Country | Status | Title Application Publication Patent No.
Number Number | Original Owner | |---------------------|---------------|-------------|---|----------------| | 20230001US01 | United States | Currently | METHOD OF SEMI- | XEROX | | | of America | Designated | PASSIVE COOLING | CORPORATION | | | | To Be Filed | PNEUMATIC | | | | | | CYLINDERS FOR | | | | | | VERY HIGH | | | | | | TEMPERATURE | | | | | | USAGE IN METAL | | | | | | ADDITIVE PRINTING | | | | | | 3D | | | 20230084US01 | United States | Currently | STRAIGHT | XEROX | | | of America | Designated | SKELETON | CORPORATION | | | | To Be Filed | ARCHITECTURE- | | | | | | BASED TOOLPATH | | | |
 | DEVELOPMENT FOR | | | | | | 3D LIQUID METAL | | | | | | PRINTER | | ## <u>Transferred Design Patents</u> | Invention
Reference
20190681 | Patent Reference
20190681US01 | Country United States of America | Status
Granted | Patent
Application Title
3D PRINTER | Application
Number
29/713686 | Number | Patent No. D921718 | |------------------------------------|--|---|-------------------------------|---|---|-------------|---| | 20190681 | 20190681KR01 | Korea, Republic of (KR) | Granted | ALLOY | 30-2020-0019876 | | 30-1134267 | | 20190681
20190681
20190681 | 20190681JP01
20190681EM01
20190681CN01 | Japan
European Union
China | Granted
Granted
Granted | ALLOY
3D PRINTER
ALLOY | 2020-009624
007954805-0001
202030223542.1 | 2020-009624 | 1680603
007954805-0001
ZL202030223542
.1 | | 20190681
20210598 | 20190681GB01
20210598US01 | United Kingdom
United States of
America | Granted Application | 3D PRINTER DISPLAY SCREEN WITH ICON | 90079548050001
29/820443 | | 90079548050001 | | 20210598 | 20210598CN01 | China | Application | ELEM X
NAMEPLATE
PRODUCT
IDENTITY -
BLACK | 202230381951.3 | | | | 20210598 | 20210598JP01 | Japan | Granted | ELEM X NAMEPLATE PRODUCT IDENTITY - BLACK | 2022-013393 | | 1732573 | | 20210598 | 20210598EM01 | European Union | Granted | ELEM X NAMEPLATE PRODUCT IDENTITY - BLACK | 9068208-0001 | | 9068208-0001 | | 20210598 | 20210598US02 | United States of
America | Application | RAISED
LABEL WITH
SURFACE
ORNAMENTAT
ION | 29/825001 | | | | 20210598 | 20210598GB01 | United Kingdom | Granted | ICONS FOR
DISPLAY
SCREENS | 6215380 | | 6215380 | | 20210598 | 20210598EM02 | European Union | Granted | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 9068216-0001 | | 9068216-0001 | | 20210598 | 20210598GB02 | United Kingdom | Granted | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 6215381 | | 6215381 | | 20210598 | 20210598CN02 | China | Application | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 202230381956.6 | | | B1-30