508256728 11/30/2023

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

EPAS ID: PAT8303920

SUBMISSION TYPE:

NEW ASSIGNMENT

NATURE OF CONVEYANCE: ASSIGNMENT
CONVEYING PARTY DATA
Name Execution Date
KIRAN K N 07/26/2023
DAMIAN SZELUGA 07/25/2023
RECEIVING PARTY DATA
Name: JUNIPER NETWORKS, INC.
Street Address: 1133 INNOVATION WAY
City: SUNNYVALE
State/Country: CALIFORNIA
Postal Code: 94089
PROPERTY NUMBERS Total: 1
Property Type Number
Patent Number: 11394663

CORRESPONDENCE DATA
Fax Number:

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 2:
Address Line 4:

(651)735-1102

6517351100
pairdocketing@ssiplaw.com
SHUMAKER & SIEFFERT, P.A.
1625 RADIO DRIVE

SUITE 100

MINNEAPOLIS, MINNESOTA 55432

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

ATTORNEY DOCKET NUMBER: 2014-370US01

NAME OF SUBMITTER:

JACLYN M. SKIBA

SIGNATURE:

/Jaclyn M. Skiba/

DATE SIGNED:

11/30/2023

Total Attachments: 19

source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page1.tif
source=JNP3421-US_Assignment_
source=JNP3421-US_Assignment_
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page4.tif

Juniper-Confirmatory
Juniper-Confirmatory

()
(Y#page?2.tif
(y#page3.tif
()

508256728

PATENT

REEL: 065721 FRAME: 0740

source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page5.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page6.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page?7 .tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page8.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page9.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page10.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page11.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page12.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page13.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page14.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page15.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page16.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page17.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page18.tif
source=JNP3421-US_Assignment_(Juniper-Confirmatory)#page19.tif

PATENT
REEL: 065721 FRAME: 0741

CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to Juniper
Networks, Inc., having a place of business at 1133 Innovation Way, Sunnyvale, CA 94089-
1206, United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER”™) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
U.S.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 U.S.C. § 371
(“APPLICATION™):

U.S. Application No. 17/301,367, entitled “SELECTIVE PACKET
PROCESSING INCLUDING A RUN-TO-COMPLETION PACKET
PROCESSING DATA PLANE,” filed on March 31, 2021.

2. The entire worldwide right, title, and interest in and to:

(a) the APPLICATION; (b) all applications claiming priority from the APPLICATION;
(c) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (c) above; and (e) all right of
priority in the APPLICATION and in any underlying provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

3. The entire worldwide right, title, and interest in and to (including all
claims of):

U.S. Patent No. 11,394,663, issued July 19, 2022, a copy of which is included as
an Appendix to this Assignment.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawtul
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,
assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not

Attorney Docket No.: 2014-370US01 1 PATENT
REEL: 065721 FRAME: 0742

Title: SELECTIVE PACKET PROCESSING INCLUDING A RUN-TO-COMPLETION PACKET
PROCESSING DATA PLANE

Date Filed: March 31,2021

Application No.: 17/301,367

hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,
titles, and interests herein conveyed.

INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature Date of Signature
* Jul 26,2023

Kiran K N

Name and Signature Date of Signature

Przemyslaw Krzysztof Grygiel

Name and Signature Date of Signature

Damiar Szeliga Jul 25,2023

Damian Szeluga

A_ttorney Docket No:: 36

2 PATENT
REEL: 065721 FRAME: 0743

Title: SELECTIVE PACKET PROCESSING INCLUDING A RUN-TO-COMPLETION PACKET

PROCESSING DATA PLANE
Date Filed: March 31,2021

Application No.: 17/301 367
APPENDIX

3 PATENT
REEL: 065721 FRAME: 0744

Attorney Docket Nov: @

US011394663B1

a2 United States Patent (10) Patent No.: US 11,394,663 B1
K N et al. (45) Date of Patent: Jul. 19, 2022
(54) SELECTIVE PACKET PROCESSING 2017/0061041 Al* 3/2017 Kumar ... GOGF 30/33
INCLUDING A RUN-TO-COMPLETION 2018/0275891 Al* 9/2018 Jin GO6F 13/161

PACKET PROCESSING DATA PLANE 2020/0097269 Al1* 3/2020 Wang ..o GOG6F 8/41
2021/0136049 Al* 5/2021 Wang HO4L 63/0485

. . * 2022 Bhattacharya
(71) Applicant: Juniper Networks, Inc., Sunnyvale, 2022/0021687 Al 1/2022 Bhattacharya HO4L 63/029

CAUS) FOREIGN PATENT DOCUMENTS
(72) Inventors: Kiran K N, Bangalore (IN);) WO 2013/184846 Al 12/2013
Przemyslaw Krzysztof Grygiel,

Gniezno (PL); Damian Szeluga, Vienna
(AT) OTHER PUBLICATIONS

(73) Assignee: Juniper Networks, Inc., Sunnyvale Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” Net-
’ CA (US) ’ ’ ’ work Working Group, RFC 2992, Nov. 2000, 9 pp.

(*) Notice: Subject to any disclaimer, the term of this cited by examiner

patent is extended or adjusted under 35

US.C. 154(b) by 0 days. Primary Examiner — Diane L Lo
1) Appl. No.: 17/301,367 %)7;1’) Attorney, Agent, or Firm — Shumaker & Sieffert,
(22) Filed: Mar. 31, 2021
57 ABSTRACT
(51) Imt. CL))))
HO4L 49/00 (2022.01) An example virtual router includes a plurality of logical
HO4L 47/625 (2022.01) cores (“lcores™), where each Icore comprises a CPU core or
HO4L 47/56 (2022.01) hardware thread. The virtual router is configured to deter-
(52) US. CL mine a latency profile, select, based at least in part on the
CPC ... HO4L 49/3063 (2013.01); HO4L 47/56 latency profile, a packet processing mode from the plurality
(2013.01); HO4L 47/6255 (2013.01) of packet processing modes. In response to a determination
(58) Field of Classification Search that the packet processing mode comprises the run-to-

completion mode, an Icore of the plurality of lcores is
configured to: read a network packet from a device queue,
process the network packet to determine a destination virtual

None
See application file for complete search history.

(56) References Cited dev@ce for the I.le‘[WOI.'k packet, the destinat.ion virtual device
having a plurality of interface queues, and insert the network
U.S. PATENT DOCUMENTS packet into an interface queue of the plurality of interface

queues.

10,291,497 B2 5/2019 Mehta et al.
2015/0110132 Al* 4/2015 Purushothaman HO4L 47/24
370/465 20 Claims, 5 Drawing Sheets

-,
W~y

INSTANTATE A VIRTUAL RO

ROUTER ENECUTABLE BY

LCORES, EACH OF THE LCOS 3
CPU CORE OR KARDWARE THREA:

l L3

DETERMINING A LATERCY FROFILE r

o, PROCESS Pa
PIPEL NIE PR

s
s
RUS-YO-COMELENON OPERATIBNS I

LCURS READS & NETWORK SSCKET FROMTHE | — %
DEVICE QURIE

)
SAME L CORE PROCESSES THE NETWORK
PACKET TO DETERIRINE THE PACKET - B
DESTINGTION

)

SAME LOORE INSERTE THE RETWORK PACKET }/ 340

INTE AN INTERFAGE QUEUE OF IESTRHATION
JICE

PATENT
REEL: 065721 FRAME: 0745

US 11,394,663 B1

Sheet 1 of 5

Jul. 19, 2022

U.S. Patent

Vol

HIINED YAV

L Old
s X0E | I VOE |
1oy ¥A 1 ¥ee | INzoY MA | et
LRk TR
N S i -
8% gt ces 58 8¢
WA WA WA WA
Xet vzl
HIANTS HELNED
/ \\\
LES ¥
HOLIMS 288 HOLIMES
HOL 831
& 4 e
gL
y ki .
[W8t -
HOLiMS #es HOLIME
SISEYHD — SISSYHD
0z
JI4EY4 di
] __
AVRILYD e

(OXoEER)
\S¥3LNIO viv/

i3
ANIONZ
NOULVHLSIHINO

x
.
& 2

Zl
HITIOAUINGD
NOS

i

__ HAOMLIN
™\ A HICIAOH FOIANIS

671
FNAIC N

A

PATENT
REEL: 065721 FRAME: 0746

US 11,394,663 B1

Sheet 2 of 5

Jul. 19, 2022

U.S. Patent

vz 'Old

i34
NOILVOIiddY
#0340
SerE
JeIT | 30VRIMNE
WA | RIOMIIN
TYILEIA
:14%4
g9 | 30v4uaiN
WA | MJOMIIN
TYOLHIA
viiZ
¥5iZ | 30VRIIIM
WA | MOMLIN
TYRLEIA
e
UIAHIS

et e ety deeeee e

g
FHI0UL
AJNILYT
Pl
HITIOHLNGD J001
i
weae |, | wew i
IRCGIT FROIY w
7 |
{

DNISSI0U NOLLFTHROO-QLNNY

RS CRARAN ARARR) NRRRAD

PV

P SR,

802
IO

el

|

|

OO |
- m
|

SNISSZI0Ud 3N3did

. s ot s

&

HILNOH TYNLYIA

¥et
FHI0Ud
<04

EAird
b EEEI
MHOMLIN
TYOSAHY

PATENT
REEL: 065721 FRAME: 0747

US 11,394,663 B1

Sheet 3 of 5

Jul. 19, 2022

U.S. Patent

(34
FN0ud
4a0
@
454 L IDYAHILN
(723 HOVABILN Mwmmmwm
WA HUOMLIN
TRLHA

it
UIAAIE

744
AZLO0H TYNLAA

¥4

PATENT
REEL: 065721 FRAME: 0748

US 11,394,663 B1

Sheet 4 of 5

Jul. 19, 2022

U.S. Patent

MIARIIE

k444

DNISEI00US NOULF GO0 OL NNY

o454
BT | 3IDvAEIIN
WA HEOMLIN
TENLHIA
(1444
S917 | 30v4e3iM
Ha HEOMIIN
TYRLEA
vt
YHIZ | 30v4u3IN
WA | MYOMISN
TRLMA
[i7£4
HIAEIAS

HILNOY TYNLYIA

g

234
U0
400

FAird
b L EIR
MHOMLIN
TYOSAHL

PATENT
REEL: 065721 FRAME: 0749

U.S. Patent Jul. 19, 2022 Sheet 5 of 5 US 11,394,663 B1

300 %

INSTANTIATE A VIRTUAL ROUTER, THE VIRTUAL 05
ROUTER EXECUTABLE BY A PLURALITY OF e
LCORES, EACH OF THE LCORES COMPRISING A
CPY CORE OR HARDWARE THREAD

¥ - 318
DETERMINING A LATENCY PROFILE

¥
SELECT A PACKET PROCESSING MODE FROM | — 315

THE PLURALITY OF PACKET PROCESSING MODES
BASED ON THE LATENCY PROFILE

'
i
:
é

.. 328

PACKET PROCESSING ™~ 345

MODE =RUNTO. - NO PROCESS PACKET USING /
o COUPLETION WODE? PIPELINE FROCESSING

\ 4

325

RUN-TO-COMPLETION OPERATIONS

\ 4

LOORE READS A NETWORK PACKET FROM THE |~
BEVICE QUEUE

- 330

Y

SAME LOCORE PROCESSES THE NETWORK

PACKET TO DETERMINE THE PACKET - 35
DESTINATION

¥
SAME LOORE INSERTS THE NETWORK PACKET - 340

INTO AN INTERFACE QUEUE OF DESTINATION 4
DEVICE

FIG. 3

PATENT
REEL: 065721 FRAME: 0750

US 11,394,663 Bl

1
SELECTIVE PACKET PROCESSING
INCLUDING A RUN-TO-COMPLETION
PACKET PROCESSING DATA PLANE

TECHNICAL FIELD

The disclosure relates to computer networks and, more
particularly, to packet processing in computer networks.

BACKGROUND

In a typical cloud data center environment, a large col-
lection of interconnected servers provides computing (e.g.,
compute nodes) and/or storage capacity to run various
applications. For example, a data center comprises a facility
or set of facilities that host applications and services for
customers of the data center. The data center, for example,
hosts all the infrastructure equipment, such as networking
and storage systems, redundant power supplies, and envi-
ronmental controls. In a typical data center, clusters of
storage systems and application servers are interconnected
via high-speed switch fabric provided by one or more tiers
of physical network switches and routers. More sophisti-
cated data centers provide infrastructure spread throughout
the world with subscriber support equipment located in
various physical hosting facilities.

Software Defined Networking (SDN) platforms may be
used in data centers, and in some cases, may use a logically
centralized and physically distributed SDN controller, and a
distributed forwarding plane of virtual routers that extend
the network from physical routers and switches in the data
center into a virtual overlay network hosted in virtualized
servers. The SDN controller provides management, control,
and analytics functions of a virtualized network and orches-
trates the virtual routers by communicating with the virtual
routers. The virtual routers operate on the servers to forward
packets between the applications and the overlay network.

SUMMARY

In general, the disclosure describes techniques for low-
ering packet latency in computer networks by performing
run-to-completion processing on packets. In general, latency
is the amount of time taken by forwarding logic to process
a packet. Latency can be an important metric in determining
the performance of a data plane in a computer network. It is
generally desirable to have as low latency as possible for
many applications. In a software-based virtual router,
latency may be introduced in packet processing software due
to internal queueing and processing the packet using table
lookups, header manipulation, adding/deleting headers, re-
writing header fields etc. Low latency can be a crucial need
for some applications. For example, Voice over Internet
Protocol (VOIP) and fifth generation (5G) telephony appli-
cations are typically not tolerant of large latency or jitter that
may be introduced by long packet processing times.

The techniques described herein provide for a run-to-
completion mode of operation for a virtual router having
multiple software processes that operate on programmable
execution hardware that include a plurality of different CPU
cores, referred to herein generally as processors. The virtual
router may operate on a network of physical network
devices and virtual network devices. The virtual network
devices may be software or other logic that implements the
features of a corresponding physical device. For example, a
virtual router may implement in software the features of a
physical router. A virtual network device may have a virtual

10

35

40

45

55

2

network interface. The virtual network interface may pro-
vide the same functionality to the virtual device as a physical
network interface provides to a physical network device. In
some aspects, a virtual router operating on the program-
mable execution hardware may be configured for both
run-to-completion and pipeline modes of operation. In the
run-to-completion mode described herein, the same proces-
sor that dequeues an inbound network packet from a device
queue associated with a physical network interface may be
used to processes the network packet to determine a desti-
nation virtual device (e.g., a virtual network interface or the
virtual device), and enqueues the network packet onto an
interface queue associated with the virtual device. In a
pipeline mode of the virtual router, a first software process
(thread) executing on a first processor may dequeue the
network packet from the device queue and enqueue the
packet onto an internal queue. A second process executing
on a different processor may dequeue the packet from the
internal queue, process the packet, and enqueue the packet
onto an interface queue of the virtual device. An operating
system (e.g., kernel) providing the operating environment
for the virtual router may perform context switches in order
to schedule the first process and second process of the virtual
router. Further, there are additional dequeuing and
enqueuing operations performed by pipeline processing
when compared to run-to-completion processing. Context
switching and additional queuing operations typically add
latency in packet processing. The additional latency may
render the network system unsuitable for certain types of
applications. For example, the additional latency may render
the network system unsuitable for 5G and VOIP applica-
tions, among others.

A practical application of the techniques described herein
is a virtual router in a network system that implements the
techniques to provide a run-to-completion mode of opera-
tion. The techniques for run-to-completion mode described
herein can provide technical advantages. For example, the
techniques described herein avoid context switches and
extra dequeuing enqueuing operations and can thus provide
lower latency packet processing when compared to pipeline
processing. Thus, a network system having virtual routers
that implement a run-to-completion mode of operation may
be suitable for 5G and VOIP applications that may be
sensitive to large latency times (e.g., latencies in excess of
150 ps).

An example system includes a plurality of logical cores
(“Icores™), each of the lcores comprising a CPU core or
hardware thread; a physical network interface configured to
receive network packets and distribute the received network
packets across a plurality of device queues; and a virtual
router executable by the plurality of lcores, the virtual router
implementing a plurality of packet processing modes, the
packet processing modes including a pipeline mode and a
run-to-completion mode, the virtual router configured to:
determine a latency profile, select, based at least in part on
the latency profile, a packet processing mode from the
plurality of packet processing modes, in response a deter-
mination that the packet processing mode comprises the
run-to-completion mode, an lcore of the plurality of lcores
is configured to: read a network packet from a device queue,
process the network packet to determine a destination virtual
device for the network packet, the destination virtual device
having a plurality of interface queues, and insert the network
packet into an interface queue of the plurality of interface
queues.

An example virtual router includes a plurality of logical
cores (“Icores™), each of the Icores comprising a CPU core

PATENT

REEL: 065721 FRAME: 0751

US 11,394,663 Bl

3

or hardware thread; wherein a first Icore of the plurality of
Icores is configured to: determine a latency profile, select,
based at least in part on the latency profile, a packet
processing mode from the plurality of packet processing
modes, in response to a determination that the packet
processing mode comprises the run-to-completion mode, a
second Icore of the plurality of lcores is configured to: read
a network packet from a device queue of a physical network
interface, process the network packet to determine a desti-
nation virtual device for the network packet, the destination
virtual device having a plurality of interface queues, and
insert the network packet into an interface queue of the
plurality of interface queues.

An example method includes instantiating a virtual router,
the virtual router executable by a plurality of Icores, each of
the lcores comprising a CPU core or hardware thread;
determining, by a first lcore of the plurality of Icores, a
latency profile; selecting, by the first lcore based at least in
part on the latency profile, a packet processing mode from
the plurality of packet processing modes; in response to
determining that the packet processing mode comprises the
run-to-completion mode: reading, by a second Icore, a
network packet from a device queue of a physical network
interface, processing, by the second lcore, the network
packet to determine a destination virtual device for the
network packet, the destination virtual device having a
plurality of interface queues, and inserting the network
packet into an interface queue of the plurality of interface
queues.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example com-
puter network system in accordance with techniques
described herein.

FIGS. 2A-2C are block diagrams illustrating example
implementations of virtual routers of FIG. 1 in further detail
and in accordance with techniques described herein.

FIG. 3 is a flowchart illustrating operations of a method
for selectively performing run-to-completion packet pro-
cessing in accordance with techniques described herein.

DETAILED DESCRIPTION

FIG. 1 is a block diagram illustrating an example com-
puter network system 8 in accordance with techniques
described herein. The example computer network system 8
can be configured and operated using the techniques
described below with respect to FIGS. 2A-2C and 3.

Computer network system 8 in the example of FIG. 1
includes data centers 10A-10X (collectively, “data centers
10”) interconnected with one another and with customer
networks associated with customers 11 via a service pro-
vider network 7. FIG. 1 illustrates one example implemen-
tation of computer network system 8 and a data center 10A
that hosts one or more cloud-based computing networks,
computing domains or projects, generally referred to herein
as cloud computing cluster. The cloud-based computing
clusters may be co-located in a common overall computing
environment, such as a single data center, or distributed
across environments, such as across different data centers.
Cloud-based computing clusters may, for example, be dif-
ferent cloud environments, such as various combinations of

35

40

45

4

OpenStack cloud environments, Kubernetes cloud environ-
ments or other computing clusters, domains, networks and
the like. Other implementations of computer network system
8 and data center 10A may be appropriate in other instances.
Such implementations may include a subset of the compo-
nents included in the example of FIG. 1 and/or may include
additional components not shown in FIG. 1. Data centers
10B-10X may include the same or similar features and be
configured to perform the same or similar functions as
described herein with respect to data center 10A.

In the example shown in FIG. 1, data center 10A provides
an operating environment for applications and services for
customers 11 coupled to data center 10A by service provider
network 7 through gateway 108. Although functions and
operations described in connection with computer network
system 8 of FIG. 1 may be illustrated as being distributed
across multiple devices in FIG. 1, in other examples, the
features and techniques attributed to one or more devices in
FIG. 1 may be performed internally, by local components of
one or more of such devices. Similarly, one or more of such
devices may include certain components and perform vari-
ous techniques that may otherwise be attributed in the
description herein to one or more other devices. Further,
certain operations, techniques, features, and/or functions
may be described in connection with FIG. 1 or otherwise as
performed by specific components, devices, and/or modules.
In other examples, such operations, techniques, features,
and/or functions may be performed by other components,
devices, or modules. Accordingly, some operations, tech-
niques, features, and/or functions attributed to one or more
components, devices, or modules may be attributed to other
components, devices, and/or modules, even if not specifi-
cally described herein in such a manner.

Data center 10A hosts infrastructure equipment, such as
networking and storage systems, redundant power supplies,
and environmental controls. Service provider network 7 may
be coupled to one or more networks administered by other
providers, and may thus form part of a large-scale public
network infrastructure, e.g., the Internet. In some examples,
data center 10A may represent one of many geographically
distributed network data centers. As illustrated in the
example of FIG. 1, data center 10A is a facility that provides
network services for customers 11. Customers 11 may be
collective entities such as enterprises and governments or
individuals. For example, a network data center may host
web services for several enterprises and end users. Other
example services may include data storage, virtual private
networks, traffic engineering, file service, data mining, sci-
entific, or super-computing, and so on. In some examples,
data center 10A is an individual network server, a network
peer, or otherwise.

In the example of FIG. 1, data center 10A includes a set
of storage systems and application servers, including server
12A through server 12X (collectively “servers 12”) inter-
connected via high-speed switch fabric 20 provided by one
or more tiers of physical network switches and routers.
Servers 12 function as physical compute nodes of the data
center. For example, each of servers 12 may provide an
operating environment for execution of one or more appli-
cation workloads. As described herein, the terms “applica-
tion workloads™ or “workloads” may be used interchange-
ably to refer to application workloads. Workloads may
execute on a virtualized environment, such as a virtual
machine 36, a container, or some of type of virtualized
instance, or in some cases on a bare metal server that
executes the workloads directly rather than indirectly in a
virtualized environment. Each of servers 12 may be alter-

PATENT

REEL: 065721 FRAME: 0752

US 11,394,663 Bl

5

natively referred to as a host computing device or, more
simply, as a host. A server 12 may execute one or more of
workloads 37 on one or more virtualized instances, such as
virtual machines 36, containers, or other virtual execution
environment for running one or more services (such as
virtualized network functions (VNFs)). Some or all of the
servers 12 can be bare metal servers (BMS). A BMS can be
a physical server that is dedicated to a specific customer or
tenant.

Switch fabric 20 may include top-of-rack (TOR) switches
16A-16N coupled to a distribution layer of chassis switches
18A-18M, and data center 10A may include one or more
non-edge switches, routers, hubs, gateways, security devices
such as firewalls, intrusion detection, and/or intrusion pre-
vention devices, servers, computer terminals, laptops, print-
ers, databases, wireless mobile devices such as cellular
phones or personal digital assistants, wireless access points,
bridges, cable modems, application accelerators, or other
network devices. Data center 10A includes servers 12A-12X
interconnected via the high-speed switch fabric 20 provided
by one or more tiers of physical network switches and
routers. Switch fabric 20 is provided by the set of intercon-
nected top-of-rack (TOR) switches 16 A-16N (collectively,
“TOR switches 16”) coupled to the distribution layer of
chassis switches 18A-18M (collectively, “chassis switches
18”). In some examples, chassis switches 18 may operate as
spine nodes and TOR switches 16 may operate as leaf nodes
in data center 10A. Although not shown, data center 10A
may also include, for example, one or more non-edge
switches, routers, hubs, gateways, security devices such as
firewalls, intrusion detection, and/or intrusion prevention
devices, servers, computer terminals, laptops, printers, data-
bases, wireless mobile devices such as cellular phones or
personal digital assistants, wireless access points, bridges,
cable modems, application accelerators, or other network
devices.

In this example, TOR switches 16 and chassis switches 18
provide servers 12 with redundant (multi-homed) connec-
tivity to gateway 108 and service provider network 7.
Chassis switches 18 aggregate traffic flows and provide
high-speed connectivity between TOR switches 16. TOR
switches 16 may be network devices that provide layer 2
(MAC) and/or layer 3 (e.g., IP) routing and/or switching
functionality. TOR switches 16 and chassis switches 18 may
each include one or more processors and a memory, and that
are capable of executing one or more software processes.
Chassis switches 18 are coupled to gateway 108, which may
perform layer 3 routing to route network traffic between data
center 10A and customers 11 by service provider network 7.

Switch fabric 20 may perform layer 3 routing to route
network traffic between data center 10A and customers 11 by
service provider network 7. Gateway 108 acts to forward
and receive packets between switch fabric 20 and service
provider network 7. Data center 10A includes an overlay
network that extends switch fabric 20 from physical
switches 18, 16 to software or “virtual” switches. For
example, virtual routers 30A-30X located in servers 12A-
12X, respectively, may extend the switch fabric 20 by
communicatively coupling with one or more of the physical
switches located within the switch fabric 20. Virtual
switches may dynamically create and manage one or more
virtual networks usable for communication between appli-
cation instances. In one example, virtual routers 30A-30X
execute the virtual network as an overlay network, which
provides the capability to decouple an application’s virtual
address from a physical address (e.g., IP address) of the one
of servers 12A-12X on which the application is executing.

20

30

35

40

45

6

Each virtual network may use its own addressing and
security scheme and may be viewed as orthogonal from the
physical network and its addressing scheme. Various tech-
niques may be used to transport packets within and across
virtual network(s) over the physical network.

Software-Defined Networking (“SDN”) controller 132
provides a logically and in some cases physically centralized
controller for facilitating operation of one or more virtual
networks within data center 10A in accordance with one or
more examples of this disclosure. The terms SDN controller
and Virtual Network Controller (“VNC”) may be used
interchangeably throughout this disclosure. In some
examples, SDN controller 132 operates in response to con-
figuration input received from orchestration engine 130 via
a northbound API 131, which in turn operates in response to
configuration input received from an administrator 24 oper-
ating user interface device 129. In some aspects, the SDN
controller 132 may be part of a high availability (HA) cluster
and provide HA cluster configuration services. Additional
information regarding SDN controller 132 operating in
conjunction with other devices of data center 10A or other
software-defined networks is found in International Appli-
cation Number PCT/US2013/044378, filed Jun. 5, 2013, and
entitled “PHYSICAL PATH DETERMINATION FOR VIR-
TUAL NETWORK PACKET FLOWS,” and in U.S. patent
application Ser. No. 15/476,136, filed Mar. 31, 2017 and
entitled, “SESSION-BASED TRAFFIC STATISTICS LOG-
GING FOR VIRTUAL ROUTERS,” wherein both applica-
tions are incorporated by reference in their entirety as if fully
set forth herein.

For example, SDN platforms may be used in data center
10 to control and manage network behavior. In some cases,
an SDN platform includes a logically centralized and physi-
cally distributed SDN controller, such as SDN controller
132, and a distributed forwarding plane in the form of virtual
routers 30 that extend the network from physical routers and
switches in the data center switch fabric into a virtual
overlay network hosted in virtualized servers.

In some examples, SDN controller 132 manages the
network and networking services such load balancing, secu-
rity, network configuration, and allocation of resources from
servers 12 to various applications via southbound API 133.
That is, southbound API 133 represents a set of communi-
cation protocols utilized by SDN controller 132 to make the
actual state of the network equal to the desired state as
specified by orchestration engine 130. One such communi-
cation protocol may include a messaging communications
protocol such as XMPP, for example. For example, SDN
controller 132 implements high-level requests from orches-
tration engine 130 by configuring physical switches, e.g.,
TOR switches 16, chassis switches 18, and switch fabric 20;
physical routers; physical service nodes such as firewalls
and load balancers; and virtual services such as virtual
firewalls in a virtualized environment. SDN controller 132
maintains routing, networking, and configuration informa-
tion within a state database. SDN controller 132 communi-
cates a suitable subset of the routing information and con-
figuration information from the state database to virtual
routers (VRs) 30A-30X or agents 35A-35X (“AGENT” in
FIG. 1) on each of servers 12A-12X.

As described herein, each of servers 12 include a respec-
tive forwarding component 39A-39X (hereinafter, “forward-
ing components 39) that performs data forwarding and
traffic statistics collection functions for workloads executing
on each server 12. In the example of FIG. 1, each forwarding
component is described as including a virtual router (“VR
30A-VR 30X” in FIG. 1) to perform packet routing and

PATENT

REEL: 065721 FRAME: 0753

US 11,394,663 Bl

7

overlay functions, and a VR agent (“VA 35A-35X” in FIG.
1) to communicate with SDN controller 132 and, in
response, configure the virtual routers 30.

In this example, each virtual router 30A-30X implements
at least one routing instance for corresponding virtual net-
works within data center 10A and routes the packets to
appropriate virtual machines, containers, or other workloads
executing within the operating environment provided by the
servers. Packets received by the virtual router of server 12A,
for instance, from the underlying physical network fabric
may include an outer header to allow the physical network
fabric to tunnel the payload or “inner packet” to a physical
network address for a network interface of server 12A that
executes the virtual router. The outer header may include not
only the physical network address of the network interface
of the server but also a virtual network identifier such as a
VxLAN tag or Multiprotocol Label Switching (MPLS) label
that identifies one of the virtual networks as well as the
corresponding routing instance executed by the virtual
router. An inner packet includes an inner header having a
destination network address that conform to the virtual
network addressing space for the virtual network identified
by the virtual network identifier.

In the example of FIG. 1, SDN controller 132 learns and
distributes routing and other information (such as configu-
ration) to all compute nodes in the data center 10. The VR
agent 35 of a forwarding component 39 running inside the
compute node, upon receiving the routing information from
SDN controller 132, typically programs the data forwarding
element (virtual router 30) with the forwarding information.
SDN controller 132 sends routing and configuration infor-
mation to the VR agent 35 using a messaging communica-
tions protocol such as XMPP protocol semantics rather than
using a more heavy-weight protocol such as a routing
protocol like BGP. In XMPP, SDN controller 132 and agents
communicate routes and configuration over the same chan-
nel. SDN controller 132 acts as a messaging communica-
tions protocol client when receiving routes from a VR agent
35, and the VR agent 35 acts as a messaging communica-
tions protocol server in that case. Conversely, SDN control-
ler 132 acts as a messaging communications protocol server
to the VR agent 35 as the messaging communications
protocol client when the SDN controller sends routes to the
VR agent 35. SDN controller 132 may send security policies
to VR agents 35 for application by virtual routers 30.

User interface device 129 may be implemented as any
suitable computing system, such as a mobile or non-mobile
computing device operated by a user and/or by administrator
24. User interface device 129 may, for example, represent a
workstation, a laptop or notebook computer, a desktop
computer, a tablet computer, or any other computing device
that may be operated by a user and/or present a user interface
in accordance with one or more aspects of the present
disclosure.

In some examples, orchestration engine 130 manages
functions of data center 10A such as compute, storage,
networking, and application resources. For example, orches-
tration engine 130 may create a virtual network for a tenant
within data center 10A or across data centers. Orchestration
engine 130 may attach workloads (WLs) to a tenant’s virtual
network. Orchestration engine 130 may connect a tenant’s
virtual network to an external network, e.g., the Internet or
a VPN. Orchestration engine 130 may implement a security
policy across a group of workloads or to the boundary of a
tenant’s network. Orchestration engine 130 may deploy a
network service (e.g., a load balancer) in a tenant’s virtual
network.

10

15

20

25

30

35

40

45

50

55

60

65

8

In some examples, SDN controller 132 manages the
network and networking services such load balancing, secu-
rity, and allocate resources from servers 12 to various
applications via southbound API 133. That is, southbound
API 133 represents a set of communication protocols uti-
lized by SDN controller 132 to make the actual state of the
network equal to the desired state as specified by orches-
tration engine 130. For example, SDN controller 132 imple-
ments high-level requests from orchestration engine 130 by
configuring physical switches, e.g., TOR switches 16, chas-
sis switches 18, and switch fabric 20; physical routers;
physical service nodes such as firewalls and load balancers;
and virtual services such as virtual firewalls in a virtual
machine (VM). SDN controller 132 maintains routing, net-
working, and configuration information within a state data-
base.

Typically, the traffic between any two network devices,
such as between network devices (not shown) within switch
fabric 20 or between servers 12 and customers 11 or between
servers 12, for example, can traverse the physical network
using many different paths. For example, there may be
several different paths of equal cost between two network
devices. In some cases, packets belonging to network traffic
from one network device to the other may be distributed
among the various possible paths using a routing strategy
called multi-path routing at each network switch node. For
example, the Internet Engineering Task Force (IETF) RFC
2992, “Analysis of an Equal-Cost Multi-Path Algorithm,”
describes a routing technique for routing packets along
multiple paths of equal cost. The techniques of RFC 2992
analyze one particular multipath routing strategy involving
the assignment of flows to bins by hashing packet header
fields that sends all packets from a particular traffic flow over
a single deterministic path.

Virtual routers (virtual router 30A to virtual router 30X,
collectively “virtual routers 30” in FIG. 1) execute multiple
routing instances for corresponding virtual networks within
data center 10A and routes the packets to appropriate
workload executing within the operating environment pro-
vided by servers 12. Each of servers 12 may include a virtual
router. Packets received by virtual router 30A of server 12A,
for instance, from the underlying physical network fabric
may include an outer header to allow the physical network
fabric to tunnel the payload or “inner packet” to a physical
network address for a network interface of server 12A. The
outer header may include not only the physical network
address of the network interface of the server but also a
virtual network identifier such as a VXLAN tag or Multi-
protocol Label Switching (MPLS) label that identifies one of
the virtual networks as well as the corresponding routing
instance executed by the virtual router. An inner packet
includes an inner header having a destination network
address that conform to the virtual network addressing space
for the virtual network identified by the virtual network
identifier. One or more of the virtual routers 30 shown in
FIG. 1 may implement techniques described herein to per-
form run-to-completion operations.

FIGS. 2A-2C are block diagrams illustrating example
implementations of virtual routers 30 of FIG. 1 in further
detail and in accordance with techniques described herein.
The examples illustrated in FIGS. 2A-2C illustrate various
aspects of run-to-completion operations and pipeline opera-
tions in a virtual router 222 of a server 220. Virtual router
222 may use techniques described below to select the packet
processing mode to utilize when processing a network
packet. In some aspects, server 220 can be one or more of
servers 12A-12X (FIG. 1) and virtual router 222 can be one

PATENT

REEL: 065721 FRAME: 0754

US 11,394,663 Bl

9

or more of virtual routers 30A-30X. Virtual machines 214A-
214B (generically, “virtual machine 214”) can be virtual
machines 36 (FIG. 1).

FIG. 2A is a block diagram illustrating a virtual router that
can be configured to dynamically select a packet processing
mode for network packets. In the example illustrated in FIG.
2A, server 220 can include virtual router 222, physical
network interface 202, and virtual machines 214. Server 220
may be part of an SDN. An SDN typically includes control
plane components and data plane components. Data plane
components include components that forward network pack-
ets from one interface to another. Control plane components
can be components that determine which path to use in
forwarding a network packet. For example, routing proto-
cols (such as OSPF, ISIS, EIGRP, MPLS etc.) are control
plane protocols. In some aspects, server 220 includes a Data
Plane Development Kit (DPDK) 235. DPDK 235 provides
a set of data plane libraries and network interface controllers
that offload drivers for network packet processing from an
operating system Kkernel to processes running in user space.
Thus, in some aspects, virtual routers 222 may incorporate
DPDK 235 components and may operate in user space along
with virtual machines 214. DPDK 235 provides a polling
mode for polling a network interface for network packets
that can be more efficient and provide higher throughput
than the interrupt-driven processing typically provided by
network device drivers in an operating system kernel.

Server 220 has multiple CPU cores. Each of the CPU
cores may be capable of running two or more threads
simultaneously (e.g., a “hyperthreaded” CPU core). The
CPU cores of server 220 may correspond to logical cores
208A-208N (generically referred to as “Icore 208). An
Icore 208 can be a logical execution unit that can be an
abstraction representing a physical CPU core or hardware
thread of a CPU core. Thus, the term “Icore” can refer to a
CPU core or hardware thread of server 220. An lcore 208
may be bound to a particular CPU core or configured to have
an affinity for a CPU core or set of CPU cores of server 220.

Virtual machines 214 may implement virtual routers,
VNFs, etc. A virtual machine can have a virtual network
interface card (VNIC) 212. VNIC 212 can be a software or
implementation of the functions of a physical network
interface card that a corresponding virtual machine 214 uses
to send and receive network packets. In some aspects, a
VNIC 212 may implement a single interface queue 210. In
the example illustrated in FIG. 2A, VNIC 212A and VNIC
212B each implement a single interface queue 210A and
210B, respectively. In some aspects, a VNIC 212 may
implement multiple interface queues 210. In the example
illustrated in FIG. 2A, VNIC 212C implements two interface
queues 210C and 210D.

Physical network interface 202 may be a network inter-
face card (NIC), line card, physical port etc. Physical
network interface 202 can send and receive network packets
to and from other network interfaces. Physical network
interface 202 can be a wired network interface or a wireless
network interface. Physical network interface 202 places
received network packets on one of device queues 204A-
204D (generically referred to as a “device queue 204”).
Device queue 204 can be a First-Out (FIFO) queue (also
referred to as a “ring buffer”). Physical network interface
202 may load balance network packets by distributing
incoming network packets across device queues 204A-
204D. In some aspects, physical network device 202 hashes
packet header information of a network packet to determine
a device queue 204 to receive the network packet. For
example, physical network device 202 may perform receive

10

15

20

25

30

35

40

45

50

60

65

10

side scaling (RSS) hashing on a 5-tuple comprising the
source address, source port, destination address, destination
port, and protocol identifier included in a header of a
network packet. RSS hashing can perform load balancing by
randomly distributing network packets to device queues
204 A-204D according to the results of the hashing function.

In some aspects, physical network interface 202 may hash
certain header fields of incoming network packets in order to
load balance distribution of network packets across device
queues 204A-204D. For example, physical network inter-
face 202 may perform RSS hashing on header fields of
incoming network packets. RSS hashing can be desirable
when the networking protocol in use has header fields whose
data can provide sufficient entropy such that the hashing
algorithm in use by physical network interface 202 can
produce output useful for load balancing (e.g., a relatively
even distribution of packets across the device queues 204A-
204D). For example, Multiprotocol Label Switching over
User Datagram Protocol (MPLSoUDP) and Virtual Exten-
sible Local Area Network (VXLAN) packets have packet
headers that include data fields that can be used to form a
S-tuple comprising source IP address, source port, destina-
tion IP address, destination port, and protocol. This 5-tuple
has reasonable entropy allowing the 5-tuple to be the basis
for physical network interface 202 to perform load distri-
bution using RSS hashing.

Other protocols, such as MPLS over Generic Routing
Encapsulation (MPLSoGRE), may have headers that do not
include a protocol field. Tuples formed using MPLSoGRE
header information may have less entropy with respect to
hashing algorithms and thus hashing may not be a suitable
mechanism for load balancing. In some aspects, physical
network interface 202 can support the use of a Dynamic
Device Personalization (DDP) profile 234. A DDP profile
can be used to specify filters that physical network interface
202 applies to an incoming network packets to determine a
device queue 204 to receive the network packet. Physical
network interface 202 can use such filters to load balance
incoming network packets across device queues 204A-
204D.

In the example illustrated in FIG. 2A, DPDK application
236 can initialize (e.g., instantiate) virtual machine 214 and
virtual router 222 in a user space memory portion of server
220. Once initialized, virtual router 222 can begin process-
ing network packets. In some aspects, virtual router 222 can
process network packets using run-to-completion operations
232 or pipeline operations 230 based on a packet processing
mode. Run-to-completion operations 232 and pipeline
operations 230 both enqueue and dequeue network packets
to and from device queues 204 and interface queues 210. In
run-to-completion mode, run-to-completion operations 232
are performed by a single lcore 208 (e.g., one of Icores
208M-208N in the example shown in FIG. 2A). That is, the
same lcore 208 that dequeues a network packet from device
queue 204 also processes the packet to determine a desti-
nation for the packet and enqueues the network packet onto
a destination interface queue 210. In pipeline processing
230, different lcores 208A-208] process a network packet as
it passes through virtual router 222. Further details on
run-to-completion processing 232 and pipeline processing
are provided below with respect to FIGS. 2B and 2C.

Mode controller 207 of virtual router 222 can determine
the packet processing mode to use for processing network
packets. In some aspects, mode controller 207 determines a
latency profile 211 that can be used to select the packet
processing mode. Latency profile 211 can include various

PATENT

REEL: 065721 FRAME: 0755

US 11,394,663 Bl

11

characteristics of physical router 202, characteristics of
virtual network interfaces 212, and characteristics of the
network packet.

Characteristics of the network packet that may be used by
mode controller 207 to determine latency profile 211 can
include the network protocol used to transport the network
packet. As noted above, MPLSoUDP and VXL AN packets
have packet headers that can be hashed to determine a
destination device queue 204 to receive the network packet.
The packet headers used by the hashing algorithm (e.g., RSS
hashing) on such packet headers have sufficient entropy to
ensure that network packets are efficiently load balanced
across device queues 204. However, other protocols, such as
MPLSoGRE have header fields where hashing does not
produce an efficient load balance across device queues 204
because the resulting hash values tend to direct network
packets to the same device queue.

Characteristics of physical network interface 202 that may
be used by mode controller 207 to determine latency profile
211 can include whether or not physical network interface
202 supports multiqueue (e.g., physical network interface
202 provides multiple device queues 204 for sending and
receiving network packets). If physical interface 202 does
not support multiqueue, then mode selector 207 may set the
packet processing mode to pipeline processing for the net-
work packet.

A further characteristic of physical network interface that
can be used by mode controller 207 to determine latency
profile 211 includes whether or not physical network inter-
face 202 is configured with a DDP profile 234. Mode
controller 207 can use information in DDP profile 234 to
determine if physical network interface 202 can efficiently
load balance network packets across device queues 204. For
example, as noted above hashing the header fields of MPL-
SoGRE is not typically useful in efficiently load balancing
network packets across device queues 204. However, DDP
profile 234 can configure physical network interface 202
with a packet filter that can apply heuristics to MPLSoGRE
network packets that can load balance the network packets
across device queues 204.

Characteristics of virtual network interface 212 that may
be used by mode controller 207 to determine latency profile
211 can include whether or not virtual network interface 212
supports multiqueue (e.g., virtual network interface 212
provides multiple interface queues 210 for sending and
receiving network packets). If a virtual network interface
212 does not support multiqueue, mode controller 207 can
determine that the packet processing mode is the pipeline
mode.

Mode controller 207 can use any or all of the aforemen-
tioned characteristics to determine latency profile 211. If
latency profile 211 indicates that network packets received
by physical network interface 202 can be efficiently load
balanced across device queues 204, mode controller 207 can
set the packet processing mode to run-to-completion mode
indicating that virtual router 222 is to perform run-to-
completion processing 232 on the network packets. If
latency profile 211 indicates that packets cannot be effi-
ciently load balanced across device queues 204, mode
controller 207 can set the packet processing mode to pipe-
line mode indicating that virtual router 222 is to perform
pipeline processing 230 on the network packets.

Additionally, physical network interface 202 may perform
run-to-completion processing 232 if configuration data indi-
cates such processing is to be performed. In some aspects,
the configuration data may indicate that the virtual router
should be configured to perform pipeline processing only,

30

40

45

12

run-to-completion processing only, or a hybrid of both
pipeline and run-to-completion processing. Virtual router
222 may use various combinations of some or all of the
above-mentioned criteria to determine that run-to-comple-
tion processing 232 is to be performed with respect to
network packets.

In some aspects, virtual router 222 may dynamically
change packet processing modes. For example, virtual router
222 may query physical network interface 202 to determine
if physical network 202 has been efficiently load balancing
incoming network packets. If the physical network interface
has been efficiently load balancing incoming network pack-
ets, virtual router 222 may set the packet processing mode
to run-to-completion mode if the packet processing mode is
not currently set to run-to-completion. Similarly, if the
physical network interface has not been efficiently load
balancing incoming network packets, virtual router 222 may
set the packet processing mode to pipeline mode (if not
already set to pipeline mode).

FIG. 2B illustrates further details of run-to-completion
processing 232. In the example illustrated in FIG. 2B, virtual
router 222 executes on four Ilcores 208A-208D. For
example, a different instance of a packet processing thread
of virtual router 222 may execute on each of the four Ilcores
208A-208D. Each of lcores 208A-208D is assigned to
process a corresponding device queue 204A-204D respec-
tively. For example, a packet processing thread of virtual
router 222 may execute on an lcore 208 and may be assigned
to a specific one of device queues 204A-204D. In some
aspects, an lcore 208 may poll its assigned device queue 204
to determine if any network packets are available for pro-
cessing by the lcore 208.

When a network packet becomes available on a device
queue 204, the lcore 208 assigned to the device queue
removes (i.e., dequeues) the network packet from the device
queue 208 and processes the network packet to determine a
destination for the network packet. In the example illustrated
in FIG. 2B, lcore 208A has dequeued an available network
packet from its assigned device queue 204 A and determined
that the destination for the network packet is virtual machine
214. Lcore 208A inserts (i.e., enqueues) the network packet
onto an interface queue 210 of virtual network interface 212
of virtual machine 214. In some aspects, an interface queue
210 is assigned to a particular lcore 208. For example, a
packet processing thread of virtual router 222 executing on
an lcore 208 may be assigned to a specific one of interface
queues 210A-210D. An interface queue 210 assigned to an
Icore 208 may not be assigned to other Icores. In some
aspects, an interface queue can be a virtio ring shared by the
virtual router 222 and virtual network interface 212. In the
example illustrated in FIG. 2B, interface queue 210A is
assigned to Icore 208A and interface queues 210B-210D are
assigned to lcores 208B-208D.

The above-described processing can be referred to as
“run-to-completion” processing because once a network
packet has been dequeued from a device queue 204, the
same lcore 208 processes the packet until it is delivered to
an interface queue 210 of a destination device. Further, as
discussed above, in some aspects a device queue 204 is
assigned to a single lcore 208. A device queue 204 assigned
to an lcore 208 is not assigned to any other lcores 208.
Similarly, an interface queue 210 may be assigned to a single
Icore 208. An interface queue 210 assigned to an Icore 208
is not assigned to any other lcores 208. In the example
illustrated in FIG. 2B, lcores 208A-208D are assigned
respectively to device queues 204A-204D and interface
queues 210A-210D.

PATENT

REEL: 065721 FRAME: 0756

US 11,394,663 Bl

13

FIG. 2C illustrates a virtual router 222 that is configured
for both pipeline processing 230 and run-to-completion
processing 232. For example, virtual router 222 may be
configured to determine a packet processing mode for pack-
ets arriving via physical network interface 202. The packet
processing mode can include a run-to-completion mode and
a pipeline mode. Upon determining that an arriving network
packet is to be processed in pipeline mode, virtual router 222
is configured to perform pipeline processing 230 of the
network packet. In such pipeline processing 230, an lcore
208 (also referred to as a “polling lcore”) can remove
(dequeue) available network packets from device queues
204. In some aspects, a polling lcore 208 polls device queues
204 for the presence of network packets to be dequeued. In
the example illustrated in FIG. 2C, either or both polling
Icores 208A and 208B can poll either or both device queues
204A and 204B. In some aspects, software locking mecha-
nisms may be used to prevent two Icores from attempting to
access a device queue 204 at the same time. Such locking
mechanisms can introduce processing overhead when pro-
cessing network packets in pipeline mode. In the example
illustrated in FIG. 2C, polling lcore 208A has determined
that a network packet is available on device queue 204A.
Lcore 208A dequeues the available network packet from
device queue 204A.

A polling Icore 208 that removes a network packet from
a device queue may place the dequeued network packet on
an internal queue 209 for subsequent processing by a
different lcore 208 (referred to as a processing lcore). In
some aspects, a processing lcore 208 may attempt to load
balance placement of network packets onto queues 209. As
with device queues 204, software locking mechanisms may
be used to prevent more than one lcore from attempting to
access an internal queue 209 at the same time. In the
example illustrated in FIG. 2C, lcore 208A inserts (en-
queues) the network packet removed from device queue
204A onto internal queue 209B.

A processing lcore 208 removes an available network
packet from one of queues 209 and determines a network
destination for the dequeued network packet. After deter-
mining the destination of the network packet, the processing
Icore 208 places the processed packet on an interface queue
210 of a network interface 212 of the destination device. In
the example illustrated in FIG. 2C, processing lcore 208D
dequeues the network packet from internal queue 209B and
processes the network packet. In this example, lcore 208D
determines that virtual machine 214B is the destination for
the network packet. Lcore 208D places the packet on
interface queue 210B associated with virtual network inter-
face 212B, the network interface of virtual machine 214B.
As with device queues 204 and internal queues 209, there
may be software locking mechanisms used to prevent more
than one lcore from accessing an interface queue 210 at the
same time.

Upon determining that an arriving network packet is to be
processed in run-to-completion mode, virtual router 222 is
configured to perform run-to-completion processing 232 of
the network packet. In run-to-completion mode, virtual
router 222 operates as described above with respect to FIG.
2B. In the example illustrated in FIG. 2C, physical network
interface 202 receives a network packet with a destination of
virtual machine 214C. Physical network interface 202 load
balances or otherwise determines to insert the incoming
packet onto device queue 204C, which has been assigned to
Icore 208E. Lcore 208E determines that the network packet
is available on its assigned device queue 204C and removes
the network packet from device queue 204C. After process-

10

15

20

25

30

35

40

45

50

55

60

65

14

ing the network packet, Icore 208E determines that the
destination of the network packet is virtual machine 214C.
Lcore 208E inserts the network packet onto interface queue
210C, which is the interface queue for virtual network
interface 212C of virtual machine 214C. Thus, lcore 208E
handles all processing of the network packet from when the
packet is dequeued from a device queue to when the network
packet is inserted onto an interface queue of a network
interface of a destination device.

The virtual router 222 and server 220 has been simplified
in the example shown in FIGS. 2A-2C in order to better
explain the techniques of the disclosure. For example, the
number of physical network interfaces 202, device inter-
faces 204, Icores 208, internal queues 209, interface queues
210, and virtual machines 214 illustrated in FIGS. 2A-2C
may be different and may be greater than or less than the
number of such components illustrated in FIGS. 2A-2C.

The examples illustrated in FIGS. 2A-2C have been
discussed in the context of a network packet being received
by physical network interface 202 and having a destination
of a virtual machine 214. The same techniques can be
applied to packets originating from a virtual machine 214
and having a destination via physical network interface 202.
In this case, in the example illustrated in FIG. 2C, Icores
208C and 208D are polling Icores and Icores 208 A and 208B
are processing cores. In some aspects, virtual router 222 may
perform hybrid processing by performing run-to-completion
processing on packets originating from physical network
interface 202 and performing pipeline processing on packets
originating from a virtual machine 214. Alternatively, virtual
router 222 may perform hybrid processing by performing
pipeline processing on network packets received via physi-
cal network interface 222 and perform run-to-completion
processing on network packets received from virtual net-
work interface 212.

FIG. 3 is a flowchart illustrating operations of a method
for selectively performing run-to-completion packet pro-
cessing in accordance with techniques described herein. A
server may instantiate a virtual router, the virtual router
executable by a plurality of Icores, each of the Icores
assigned to a core processor of a plurality of core processors
(305). Next, the virtual router may determine a latency
profile based on characteristics of a physical network device,
virtual network interface, or network protocol (310). Next,
the virtual router may select a packet processing mode based
on the latency profile (315). Next, the virtual router may
determine if the packet processing mode is a run-to-comple-
tion mode (320). If the packet processing mode is the
run-to-completion mode (“YES” branch of 320), the virtual
router may process network packets using run-to-comple-
tion operations (325). The run-to completion operations may
include an Icore reading a network packet from a device
queue (330). The same Icore processes the network packet to
determine a destination for the packet (e.g., a virtual device
or VNIC of a virtual device) (335). Next, the same lcore
inserts the network packet onto an interface queue of the
destination device (340). If the packet processing mode is
not the run-to-completion mode (“NO” branch of 320), the
virtual router may process network packets using pipeline
processing operations (345).

For processes, apparatuses, and other examples or illus-
trations described herein, including in any flowcharts or flow
diagrams, certain operations, acts, steps, or events included
in any of the techniques described herein can be performed
in a different sequence, may be added, merged, or left out
altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain

PATENT

REEL: 065721 FRAME: 0757

US 11,394,663 Bl

15

examples, operations, acts, steps, or events may be per-
formed concurrently, e.g., through multi-threaded process-
ing, interrupt processing, or multiple processors, rather than
sequentially. Further certain operations, acts, steps, or events
may be performed automatically even if not specifically
identified as being performed automatically. Also, certain
operations, acts, steps, or events described as being per-
formed automatically may be alternatively not performed
automatically, but rather, such operations, acts, steps, or
events may be, in some examples, performed in response to
input or another event.

The Figures included herein each illustrate at least one
example implementation of an aspect of this disclosure. The
scope of this disclosure is not, however, limited to such
implementations. Accordingly, other example or alternative
implementations of systems, methods or techniques
described herein, beyond those illustrated in the Figures,
may be appropriate in other instances. Such implementa-
tions may include a subset of the devices and/or components
included in the Figures and/or may include additional
devices and/or components not shown in the Figures.

The detailed description set forth above is intended as a
description of various configurations and is not intended to
represent the only configurations in which the concepts
described herein may be practiced. The detailed description
includes specific details for the purpose of providing a
sufficient understanding of the various concepts. However,
these concepts may be practiced without these specific
details. In some instances, well-known structures and com-
ponents are shown in block diagram form in the referenced
figures in order to avoid obscuring such concepts.

Accordingly, although one or more implementations of
various systems, devices, and/or components may be
described with reference to specific Figures, such systems,
devices, and/or components may be implemented in a num-
ber of different ways. For instance, one or more devices
illustrated in the Figures herein (e.g., FIGS. 1, 2, 3A, 3B
and/or 4) as separate devices may alternatively be imple-
mented as a single device; one or more components illus-
trated as separate components may alternatively be imple-
mented as a single component. Also, in some examples, one
or more devices illustrated in the Figures herein as a single
device may alternatively be implemented as multiple
devices; one or more components illustrated as a single
component may alternatively be implemented as multiple
components. Each of such multiple devices and/or compo-
nents may be directly coupled via wired or wireless com-
munication and/or remotely coupled via one or more net-
works. Further, one or more modules or components may
interact with and/or operate in conjunction with one another
so that, for example, one module acts as a service or an
extension of another module. Also, each module, data store,
component, program, executable, data item, functional unit,
or other item illustrated within a storage device may include
multiple components, sub-components, modules, sub-mod-
ules, data stores, and/or other components or modules or
data stores not illustrated. Also, one or more devices or
components that may be illustrated in various Figures herein
may alternatively be implemented as part of another device
or component not shown in such Figures. In this and other
ways, some of the functions described herein may be per-
formed via distributed processing by two or more devices or
components.

Each module, data store, component, program, execut-
able, data item, functional unit, or other item illustrated
within a storage device may be implemented in various
ways. For example, each module, data store, component,

40

45

55

16

program, executable, data item, functional unit, or other item
illustrated within a storage device may be implemented as a
downloadable or pre-installed application or “app.” In other
examples, each module, data store, component, program,
executable, data item, functional unit, or other item illus-
trated within a storage device may be implemented as part
of an operating system executed on a computing device.

Further, certain operations, techniques, features, and/or
functions may be described herein as being performed by
specific components, devices, and/or modules. In other
examples, such operations, techniques, features, and/or
functions may be performed by different components,
devices, or modules. Accordingly, some operations, tech-
niques, features, and/or functions that may be described
herein as being attributed to one or more components,
devices, or modules may, in other examples, be attributed to
other components, devices, and/or modules, even if not
specifically described herein in such a manner.

Although specific advantages have been identified in
connection with descriptions of some examples, various
other examples may include some, none, or all of the
enumerated advantages. Other advantages, technical or oth-
erwise, may become apparent to one of ordinary skill in the
art from the present disclosure. Further, although specific
examples have been disclosed herein, aspects of this disclo-
sure may be implemented using any number of techniques,
whether currently known or not, and accordingly, the present
disclosure is not limited to the examples specifically
described and/or illustrated in this disclosure.

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any com-
bination thereof. If implemented in software, the functions
may be stored, as one or more instructions or code, on and/or
transmitted over a computer-readable medium and executed
by a hardware-based processing unit. Computer-readable
media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage
media, or communication media including any medium that
facilitates transfer of a computer program from one place to
another (e.g., pursuant to a communication protocol). In this
manner, computer-readable media generally may corre-
spond to (1) tangible computer-readable storage media,
which is non-transitory or (2) a communication medium
such as a signal or carrier wave. Data storage media may be
any available media that can be accessed by one or more
compuiers or one Or more processors to retrieve instructions,
code and/or data structures for implementation of the tech-
niques described in this disclosure. A computer program
product may include a computer-readable medium.

By way of example, and not limitation, such computer-
readable storage media can include RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk stor-
age, or other magnetic storage devices, flash memory, or any
other medium that can be used to store desired program code
in the form of instructions or data structures and that can be
accessed by a computer. Also, any connection is properly
termed a computer-readable medium. For example, if
instructions are transmitted from a website, server, or other
remote source using a coaxial cable, fiber optic cable,
twisted pair, digital subscriber line (DSL), or wireless tech-
nologies such as infrared, radio, and microwave, then the
coaxial cable, fiber optic cable, twisted pair, DSL, or wire-
less technologies such as infrared, radio, and microwave are
included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier
waves, signals, or other transient media, but are instead

PATENT

REEL: 065721 FRAME: 0758

US 11,394,663 Bl

17

directed to non-transient, tangible storage media. Disk and
disc, as used, includes compact disc (CD), laser disc, optical
disc, digital versatile disc (DVD), floppy disk and Blu-ray
disc, where disks usually reproduce data magnetically, while
discs reproduce data optically with lasers. Combinations of
the above should also be included within the scope of
computer-readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs),
general purpose microprocessors, application specific inte-
grated circuits (ASICs), field programmable logic arrays
(FPGAs), or other equivalent integrated or discrete logic
circuitry. Accordingly, the terms “processor” or “processing
circuitry” as used herein may each refer to any of the
foregoing structure or any other structure suitable for imple-
mentation of the techniques described. In addition, in some
examples, the functionality described may be provided
within dedicated hardware and/or software modules. Also,
the techniques could be fully implemented in one or more
circuits or logic elements.

The techniques of this disclosure may be implemented in
a wide variety of devices or apparatuses, including a wire-
less handset, a mobile or non-mobile computing device, a
wearable or non-wearable computing device, an integrated
circuit (IC) or a set of ICs (e.g., a chip set). Various
components, modules, or units are described in this disclo-
sure to emphasize functional aspects of devices configured
to perform the disclosed techniques, but do not necessarily
require realization by different hardware units. Rather, as
described above, various units may be combined in a hard-
ware unit or provided by a collection of interoperating
hardware units, including one or more processors as
described above, in conjunction with suitable software and/
or firmware.

What is claimed is:

1. A system comprising:

a plurality of logical cores (“Icores™), each of the lcores

comprising a CPU core or hardware thread;

a physical network interface configured to receive net-
work packets and distribute the received network pack-
ets across a plurality of device queues; and

a virtual router executable by the plurality of lcores, the
virtual router implementing a plurality of packet pro-
cessing modes, the packet processing modes including
a pipeline mode and a run-to-completion mode, the
virtual router configured to:
determine a latency profile,
select, based at least in part on the latency profile, a

packet processing mode from the plurality of packet

processing modes,

in response a determination that the packet processing

mode comprises the run-to-completion mode, an

Icore of the plurality of lcores is configured to:

read a network packet from a device queue of the
plurality of device queues,

process the network packet to determine a destina-
tion virtual device for the network packet, the
destination virtual device having a plurality of
interface queues, and

insert the network packet into an interface queue of
the plurality of interface queues.

2. The system of claim 1, wherein in response to the
determination that the packet processing mode comprises
the run-to-completion mode, the virtual router is configured
to:

assign the device queue to the lcore, wherein no other
Icores are assigned to the device queue; and

10

15

25

30

)

5

40

45

50

60

65

18

assign the interface queue to the Icore, wherein no other
Icores are assigned to the interface queue.

3. The system of claim 1, wherein the virtual router selects
the run-to-completion mode in response to a determination
that the latency profile indicates that the physical network
interface can load balance network packets across the plu-
rality of device queues.

4. The system of claim 3, wherein the determination that
the latency profile indicates that the physical network inter-
face can load balance network packets across the plurality of
device queues comprises a determination that the network
packet conforms to a network protocol that the physical
network interface can load balance across the plurality of
device queues.

5. The system of claim 4, wherein the determination that
the network packet conforms to the network protocol that
the physical network interface can load balance across the
plurality of device queues comprises a determination that the
physical network interface hashes the network packet,
wherein packet header data of the network packet includes
a protocol identifier.

6. The system of claim 3, wherein the determination that
the latency profile indicates that the physical network inter-
face can load balance network packets across the plurality of
device queues comprises a determination that the physical
network interface is associated with a Dynamic Device
Personalization (DDP) profile that indicates the physical
network interface implements a filter that load balances
across the plurality of device queues.

7. The system of claim 1, wherein the virtual router is
configured to select the run-to-completion mode as the
packet processing mode in response to a determination that
the latency profile indicates that a virtual network interface
card (VNIC) of the destination virtual device is configured
with the plurality of interface queues.

8. The system of claim 1, wherein the virtual router is
configured to select the pipeline mode as the packet pro-
cessing mode in response to a determination that the latency
profile indicates that a VNIC of the destination virtual device
is configured with a single interface queue.

9. The system of claim 1, wherein in response to the
determination that the packet processing mode comprises
the run-to-completion mode, the Icore of the plurality of
Icores is configured to:

read a second network packet from an interface queue

assigned to the lcore;

process the second network packet to determine a desti-

nation device that is accessible via the physical network
interface; and

insert the second network packet into the corresponding

device queue assigned to the Icore.

10. The system of claim 1, wherein the virtual device
comprises a virtual machine.

11. The system of claim 1, wherein in response to a
determination that the packet processing mode comprises
the pipeline mode, the Icore is configured to:

read the network packet from the device queue; and

insert the network packet into an internal queue of a

plurality of internal queues;

wherein a second lcore of the plurality of lcores is

configured to:

read the network packet from the internal queue,

determine a second destination virtual device, the sec-
ond destination virtual device supporting a single
interface queue, and

insert the network packet into the single interface
queue.

PATENT

REEL: 065721 FRAME: 0759

US 11,394,663 Bl

19

12. A virtual router comprising:

a plurality of logical cores (“Icores™), each of the lcores

comprising a CPU core or hardware thread;

wherein a first lcore of the plurality of lcores is configured

to:
determine a latency profile,
select, based at least in part on the latency profile, a
packet processing mode from the plurality of packet
processing modes,
in response to a determination that the packet process-
ing mode comprises a run-to-completion mode, a
second Icore of the plurality of lcores is configured
to:
read a network packet from a device queue of a
plurality of device queues of a physical network
interface,
process the network packet to determine a destina-
tion virtual device for the network packet, the
destination virtual device having a plurality of
interface queues, and
insert the network packet into an interface queue of
the plurality of interface queues.

13. The virtual router of claim 12, wherein in response to
the determination that the packet processing mode com-
prises the run-to-completion mode, the first lcore is config-
ured to:

assign the device queue to the second lcore, wherein no

other lcores are assigned to the device queue; and
assign the interface queue to the second lcore, wherein no
other lcores are assigned to the interface queue.

14. The virtual router of claim 12, wherein the first lcore
selects the run-to-completion mode in response to a deter-
mination that the latency profile indicates that the physical
network interface can load balance network packets across
the plurality of device queues.

15. The virtual router of claim 14, wherein the determi-
nation that the latency profile indicates that the physical
network interface can load balance network packets across
the plurality of device queues comprises a determination that
the network packet conforms to a network protocol that the
physical network interface can load balance across the
plurality of device queues.

16. The virtual router of claim 14, wherein the determi-
nation that the latency profile indicates that the physical
network interface can load balance network packets across
the plurality of device queues comprises a determination that
the physical network interface is associated with a Dynamic
Device Personalization (DDP) profile that indicates the
physical network interface implements a filter that load
balances across the plurality of device queues.

RECORDED: 11/30/2023

10

20

25

30

35

40

45

20

17. A method comprising:

instantiating a virtual router, the virtual router executable
by a plurality of logical cores (lcores), each of the
Icores comprising a CPU core or hardware thread,

determining, by a first lcore of the plurality of lcores, a

latency profile;

selecting, by the first Icore based at least in part on the

latency profile, a packet processing mode from a plu-
rality of packet processing modes;

in response to determining that the packet processing

mode comprises a run-to-completion mode:

reading, by a second Icore, a network packet from a
device queue of a plurality of device queues of a
physical network interface,

processing, by the second Icore, the network packet to
determine a deslination virtual device [or the net-
work packet, the destination virtual device having a
plurality of interface queues, and

inserting the network packet into an interface queue of
the plurality of interface queues.

18. The method of claim 17, wherein in response to the
determining that the packet processing mode comprises the
run-to-completion mode:

assigning the device queue to the second Icore, wherein

no other lcores are assigned to the device queue; and
assign the interface queue to the second Icore, wherein no
other lcores are assigned to the interface queue.
19. The method of claim 17, wherein selecting the run-
to-completion mode is in response to determining that the
latency profile indicates that the physical network interface
can load balance network packets across the plurality of
device queues.
20. The method of claim 19, wherein determining that the
latency profile indicates that the physical network interface
can load balance network packets across the plurality of
device queues comprises one or more of:
determining that the network packet conforms to a net-
work protocol that the physical network interface can
load balance across the plurality of device queues;

determining that the physical network interface is asso-
ciated with a Dynamic Device Personalization (DDP)
profile that indicates the physical network interface
implements a filter that load balances across the plu-
rality of device queues; or

determining that the latency profile indicates that a virtual

network interface card (VNIC) of the destination vir-
tual device is configured with the plurality of interface
queues.

PATENT

REEL: 065721 FRAME: 0760

