PATENT ASSIGNMENT COVER SHEET Electronic Version v1.1 Stylesheet Version v1.2 EPAS ID: PAT8305831 | SUBMISSION TYPE: | NEW ASSIGNMENT | |-----------------------|----------------| | NATURE OF CONVEYANCE: | ASSIGNMENT | ## **CONVEYING PARTY DATA** | Name | Execution Date | | |-------------------|----------------|--| | XEROX CORPORATION | 08/11/2023 | | ## **RECEIVING PARTY DATA** | Name: | ELEM ADDITIVE, LLC | |-----------------|----------------------------------| | Street Address: | 3252 SOUTH MIAMI BLVD, SUITE 120 | | City: | DURHAM | | State/Country: | NORTH CAROLINA | | Postal Code: | 27703 | ## **PROPERTY NUMBERS Total: 33** | Property Type | Number | |---------------------|----------| | Application Number: | 16816853 | | Application Number: | 16845312 | | Application Number: | 16945509 | | Application Number: | 18321509 | | Application Number: | 17155455 | | Application Number: | 18318974 | | Application Number: | 17140954 | | Application Number: | 17163355 | | Application Number: | 17163363 | | Application Number: | 17085557 | | Application Number: | 17147773 | | Application Number: | 17319830 | | Application Number: | 17143378 | | Application Number: | 17400916 | | Application Number: | 17393115 | | Application Number: | 17353555 | | Application Number: | 17360515 | | Application Number: | 17412399 | | Application Number: | 17163368 | | Application Number: | 16412801 | | | | PATENT REEL: 065734 FRAME: 0413 508258639 | Property Type | Number | |---------------------|----------| | Application Number: | 17339969 | | Application Number: | 17451501 | | Application Number: | 17391265 | | Application Number: | 17457346 | | Application Number: | 17455785 | | Application Number: | 17649393 | | Application Number: | 17648490 | | Application Number: | 17455590 | | Application Number: | 17457966 | | Application Number: | 17652911 | | Application Number: | 17652914 | | Application Number: | 17664470 | | Application Number: | 17935691 | #### **CORRESPONDENCE DATA** **Fax Number:** (317)638-2139 Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail. **Phone:** 3176382922 **Email:** msdoyle@maginot.com Correspondent Name: MAGINOT, MOORE & BECK, LLP Address Line 1: 150 WEST MARKET STREET, SUITE 800 Address Line 4: INDIANAPOLIS, INDIANA 46204 | ATTORNEY DOCKET NUMBER: | 2682-0000 | |-------------------------|------------------------| | NAME OF SUBMITTER: | RUSSELL E. FOWLER II | | SIGNATURE: | /Russell E. Fowler II/ | | DATE SIGNED: | 12/01/2023 | #### **Total Attachments: 18** source=Xerox to Elem Patent Assignment Agreement with double signature#page1.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page2.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page3.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page4.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page5.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page6.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page7.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page8.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page9.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page10.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page11.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page12.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page13.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page14.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page15.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page16.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page17.tif source=Xerox to Elem Patent Assignment Agreement with double signature#page18.tif ### Patent Assignment Agreement WHEREAS Xerox Corporation, a corporation incorporated under the laws of New York with offices at 201 Merritt 7, Norwalk CT 06851-1056 ("Assignor") agreed to assign or cause to be assigned to Elem Additive LLC, a corporation organized under the laws of Delaware with offices at 3252 South Miami Blvd, Suite 120, Durham, NC 27703 ("Assignee") all of Assignor's right, title and interest in and to the patent rights listed on Exhibit A1 hereto (the "Assigned Patents"). NOW, THEREFORE, for good and valuable consideration, receipt and sufficiency of which are hereby acknowledged, effective as of August 11, 2023 (the "Effective Date"): - 1. Assignor hereby grants, conveys and assigns to Assignee all its right, title and interest in and to (a) Assigned Patents and the inventions and improvements disclosed therein; (b) all reissues, divisionals, continuations, extensions, renewals, reexaminations and foreign counterparts thereof; and (c) all patents and applications which claim priority to or have common priority with any such patents or patent applications, or are linked with any such patents or patent applications by terminal disclaimer. - Assignor further grants, conveys and assigns to Assignee all its right, title and interest in and to any and all proceeds, causes of action and rights of recovery for past and future infringement or misappropriation of any of the Assigned Patents. - 3. Assignor further grants, conveys and assigns to Assignee all its right, title and interest in and to any and all rights of Assignor to obtain reissues, reexaminations, continuations, continuations-in-part, divisions, extensions or other legal protections arising solely from the Assigned Patents that are or may be secured in any relevant jurisdiction anywhere in the world, including but not limited to the United States, its territories and possessions, as of the Effective Date or hereinafter in effect. - 4. The Assigned Patents are conveyed subject to any and all licenses, permissions, consents or other rights that may have been granted by Assignor or its predecessors-in-interest with respect thereto prior to the Effective Date, or by Assignee to Assignor as of the Effective Date. - 5. Assignor agrees that Assignee shall have the right to file or record this Patent Assignment with the United States Patent and Trademark Office or other such entities throughout the world, and Assignor authorizes and requests the relevant authorities to record Assignee as the assignee and owner of the Assigned Patents. Assignor shall execute and deliver to Assignee such documents and take such actions as requested by Assignee to register, evidence or perfect Assignee's rights under this Patent Assignment. In addition, Assignor hereby irrevocably designates and appoints Assignee and its duly authorized officers and agents as its agents and attorneys in fact, to act for and on their behalf and stead to execute and file any such documents and to do all other lawfully permitted acts to register, evidence or perfect Assignee's rights under this Patent Assignment with the same legal force and effect as if executed by Assignor. This includes, but is not limited to, the power to insert on this Patent Assignment any further identification that may be necessary to comply with the rules of the United States Patent and Trademark Office, or rules of other entities throughout the world, for recordation of this document. IN WITNESS WHEREOF, the undersigned Assignor has caused this Patent Assignment to be executed by its authorized representative and the undersigned Assignee has caused this Patent Assignment to be acknowledged by its authorized representative. For XEROX CORPORATION By: Heidi Martinez Signature Title: Chief IP Counsel, Associate General Counsel Date: 20-Sept. - 23 For ELEM ADDITIVE, LLC By: Brian Matthews Signature Title: CEO Date: 04-Sep-23 # Assigned Patents # Assigned Utility Patents | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------|-----------|--|-----------------------|-----------------------|------------| | 20190068US02 | United States
of Americs | Granted | METAL POWDER MANUFACTURE
USING A LIQUID METAL EJECTOR | 16/412801 | 2019-0351488 | 11607727 | | 20190138US02 | United States
of America | Granted | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3B) OBJECT PRINTER TO COMPENSATE FOR GEOMETRIC VARIATIONS THAT OCCUR DURING AN ADDITIVE MANUFACTURING PROCESS | 16/845312 | 2020-0324486 | 11565475 | | 20190139US02 | United States of Americs | Published | NOZZLE CLEANING IN JETTING OF
METAL ALLOYS | 16/844524 | 2020-0324341 | | | 20190378US01 | United States
of America | Granted | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 16/808266 | 2021-8276881 | 11358215 | | 20190378CN01 | China | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 2021101388
53.1 | CN113414403
A | | | 20190378JP01 | Japan | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 2021-013236 | 2021-138136 | | | 20190378EP01 | European
Patent | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 21157957.8 | 3875188 | | | 20190378KR01 | Korea,
Republic of
(KR) | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 10-2021-
0017941 | 10-2021-
0111675 | | | 20190403US01 | United States
of America | Granted | A THREE-DIMENSIONAL PRINTING
SYSTEM AND
METHOD OF THREE-
DIMENSIONAL PRINTING | 16/808285 | 2021-0276082 | 11260449 | | 20190403CN01 | China | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 2021101367
01.8 | 113333776 | | | 20190403JP01 | Japan | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 2021-013083 | 2021-138135 | | | 20190403EP01 | European
Patent | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 21157968.5 | 3875189 | | | 20190403KR01 | Korea,
Republic of
(KR) | Published | A THREE-DIMENSIONAL PRINTING
SYSTEM AND METHOD OF THREE-
DIMENSIONAL PRINTING | 10-2021-
0017942 | 10-2021-
0111676 | | | 20190413US02 | United States
of America | Granted | ATMOSPHERE AND PART FORMATION IN A LIQUID METAL DROP-ON-DEMAND PRINTER | 16/991159 | 2021-0046541 | 11607724 | | 20190413US03 | United States
of America | Published | ATMOSPHERE AND PART
FORMATION IN A LIQUID METAL
BROP-ON-DEMAND PRINTER | 18/166104 | | | | 20190455US01 | United States
of America | Granted | VENTURI INLET PRINTHEAD | 16/712725 | 2021-0178751 | 11220102 | | 20190455CN01 | China | Allowed | VENTURI INLET PRINTHEAD | 2020112384
58,2 | CN112976810
A | | | 20190455JP01 | Japan | Published | VENTURI INLET PRINTHEAD | 2020-192843 | 2021-094849 | | | 20190455KR01 | Korea,
Republic of
(KR) | Published | VENTURI INLET PRINTHEAD | 10-2020-
0157668 | 10-2021-
0075003 | | | 20190464US01 | United States
of America | Granted | GAS EXPANSION MATERIAL JETTING ACTUATOR | 16/712618 | 2021-0178763 | 11440321 | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------|-----------|---|-----------------------|-----------------------|------------| | 20190464CN01 | China | Published | GAS EXPANSION MATERIAL JETTING
ACTUATOR | 2020112371
85.X | CN112976809
A | | | 20190464JP01 | Japan | Published | GAS EXPANSION MATERIAL JETTING ACTUATOR | 2020-192811 | 2021-095634 | | | 20190464EP01 | European
Patent | Published | GAS EXPANSION MATERIAL JETTING
ACTUATOR | 20210488.1 | 3835068 | | | 20190464KR01 | Korea,
Republic of
(KR) | Published | GAS EXPANSION MATERIAL JETTING
ACTUATOR | 10-2020-
0157669 | 10-2021-
0075004 | | | 20190503US01 | United States
of America | Allowed | SURFACE TREATED ADDITIVE MANUFACTURING PRINTHEAD NOZZLES AND METHODS FOR THE SAME | 17/017392 | 2021-0069972 | | | 20190503¥JS02 | United States
of America | Published | SURFACE TREATED ADDITIVE MANUFACTURING PRINTHEAD NOZZLES AND METHODS FOR THE SAME | 17/817447 | 2021-0069778 | | | 20190579US01 | United States
of America | Granted | METHOD AND SYSTEM FOR
OPERATING A MODULAR HEATER TO
IMPROVE LAYER BONDING IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 16/816853 | 2021-0283853 | 11485089 | | 20190579CN01 | China | Allowed | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER | 2021101732
47.3 | CN113458414
A | | | 20190579JP01 | Japan | Published | METHOD AND SYSTEM FOR OPERATING
A MODULAR HEATER TO IMPROVE
LAYER BONDING IN A METAL DROP
EJECTING THREE-DIMENSIONAL (3D)
OBJECT PRINTER | 2021-025207 | 2021-143420 | | | 20190579EP01 | European
Patent | Published | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER | 21159105.2 | 3878581 | | | 20190579KR01 | Korea,
Republic of
(KR) | Published | METHOD AND SYSTEM FOR OPERATING A MODULAR HEATER TO IMPROVE LAYER BONDING IN A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER | 10-2021-
0022258 | 10-2021-
0116231 | | | 20190840US01 | United States
of America | Granted | SYSTEM AND METHOD FOR
DETERMINING A TEMPERATURE OF
AN OBJECT | 16/903813 | 2021-0394448 | 11478991 | | 20190840US02 | United States
of America | Granteč | AN OBJECT PRINTED BY A JD PRINTER AND A METHOD FOR DETERMINING THE TEMPERATURE OF THE OBJECT | 16/903835 | 2821-8396593 | 11307099 | | 20190840US03 | United States
of America | Granted | A SYSTEM AND METHOD FOR
DETERMINING A TEMPERATURE
DIFFERENTIAL BETWEEN PORTIONS
OF AN OBJECT PRINTED BY A 3D
PRINTER | 16/903855 | 2021-0396591 | 11499873 | | 20190840US04 | United States
of America | Published | AN OBJECT PRINTED BY A 3D PRINTER AND A METHOD FOR DETERMINING THE TEMPERATURE OF THE OBJECT | 17/655246 | 2022-0205845 | | | 20190840CN01 | China | Published | SYSTEM AND METHOD FOR DETERMINING A TEMPERATURE OF AN | 2021105268
191 | CN113997395
A | | | 20190840JP01 | Japan | Granted | OBJECT SYSTEM AND METHOD FOR DETERMINING A TEMPERATURE OF AN OBJECT | 2021-092998 | 2021-195620 | 7238017 | | 20190840EP01 | European
Patent | | SYSTEM AND METHOD FOR DETERMINING A TEMPERATURE OF AN OBJECT | 21177430.2 | 3926314 | | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|---|-------------|--|------------------------------|-----------------------|------------| | 20190840KR01 | Korea,
Republic of
(KR) | Granted | SYSTEM AND METHOD FOR
DETERMINING A TEMPERATURE OF AN
OBJECT | 10-2021-
0075857 | 10-2021-
0156224 | 10-2478412 | | 20200125US01 | United States
of America | Granted | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THREE-DIMENSIONAL (3B) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 16/945509 | 2022-0032550 | | | 20200125US02 | United States
of America | Application | METHOD FOR OPERATING A METAL
DROP EJECTING THREE-
DIMENSIONAL (3B) OBJECT PRINTER
TO FORM ELECTRICAL CIRCUITS ON
SUBSTRATES | 18/321509 | | | | 20200125CN01 | China | Published | METROD AND SYSTEM FOR OPERATING
A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER TO
FORM ELECTRICAL CIRCUITS ON
SUBSTRATES | 2021107321
\$6.9 | CN114054779
A | | | 20200125JP01 | Japan | Published | METHOD AND SYSTEM FOR OPERATING A METAL DROP EJECTING THERE- DIMENSIONAL (3D) OBJECT PRINTER TO FORM ELECTRICAL CIRCUITS ON SUBSTRATES | 2021-120199 | 2022-027546 | | | 20200125EP01 | European
Patent | Published | METHOD AND SYSTEM FOR OPERATING
A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER TO
FORM ELECTRICAL CIRCUITS ON
SUBSTRATES | 21182997.3 | 3944912 | | | 20200125KR01 | Korea,
Republic of
(KR) | Published | METHOD AND SYSTEM FOR OPERATING
A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER TO
FORM ELECTRICAL CIRCUITS ON
SUBSTRATES | 10-2021-
00974 8 9 | 10-2022-
0015955 | | | 20200232US01 | United States
of America | Allowed | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 17/060600 | 2022-0105684 | | | 20200232US02 | United States of America | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 17/060825 | 2022-0105673 | | | 20200232US03 | United States
of America | Granted | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 17/061213 | 2022-0105561 | 11594766 | | 20200232CN01 | China | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021110735
75.2 | CN114273758
A | | | 20200232CN02 | China | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021110782
768 | CN114273669
A | | | 20200232CN03 | China | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021111290
794 | CN114273670
A | | | 20200232JP01 | Japan | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021-159865 | 2022-059583 | | | 20200232JP02 | Japan | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021-153707 | 2022-059578 | | | 20200232JP03 | Japan | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 2021-159903 | 2022-059584 | | | 20200232DE01 | Germany
(Federal
Republic of) | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 1020211249
90.2 | 102021124990.
2 | | | 20200232DE02 | Germany
(Federal | Published | MICRO-WELDING USING A THREE
DIMENSIONAL FRINTER | 1020211249
91.0 | 102021124991.
0 | | | 20200232DE03 | Republic of)
Germany
(Federal
Republic of) | Published | MICRO-WELDING USING A THREE
DIMENSIONAL PRINTER | 1020211233
01.1 | 102021123301. | | | 'atent
leference | Constry | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------------|-----------|--|-----------------------|--------------------------------|------------| | 0100349US01 | United States
of Americs | Published | METHOD AND SYSTEM FOR
OPERATING A METAL DROP
EJECTING THREE-DIMENSIONAL (3B)
OBJECT FRINTER TO SHORTEN
OBJECT FORMATION TIME | 17/154963 | 2022-0226888 | | | 8280418US01 | United States
of America | Granted | REMOVABLE INNER SHELL FOR
DROSS CONTROL AND/OR REMOVAL
FOR METAL PRINTER | 17/131372 | 1011-0193780 | 11618086 | | 20200410CN01 | China | Published | REMOVABLE INNER SHELL FOR DROSS
CONTROL AND/OR REMOVAL FOR
METAL PRINTER | 2021113726
83X | CN114653969
A | | | 20200410JP01 | Japan | Published | REMOVABLE INNER SHELL FOR DROSS
CONTROL AND/OR REMOVAL FOR
METAL PRINTER | 2021-202829 | 2022-099280 | | | 20200410DE01 | Germany
(Federal
Republic of) |
Published | REMOVABLE INNER SHELL FOR DROSS
CONTROL AND/OR REMOVAL FOR
METAL PRINTER | 1020211341
62.0 | 102021134162.
0 | | | 10200410KR01 | Kores,
Republic of
(KR) | Published | REMOVABLE INNER SHELL FOR DROSS
CONTROL AND/OR REMOVAL FOR
METAL PRINTER | 10-2021-
0166828 | 10-2022-
0090412 | | | 0200411US01 | United States of America | Granted | METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEADNOZZLE REUSE | 17/131402 | 2022-0194082 | 11408714 | | 0200411US02 | United States
of America | Published | METHOD FOR MAGNETOHYDRODYNAMIC (MHD) PRINTHEAD/NOZZLE REUSE | 17/850526 | 2022-0332116 | | | 0200411US03 | United States
of America | Published | SYSTEM AND METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEAD/NOZZLE | 17/851551 | 2022-0324031 | | | 0200411CN01 | China | Published | METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEAD/NOZZLE REUSE | 2021113762
037 | CN114653964
A | | | 20200411.PP01 | Japan | Published | METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEAD/NOZZLE REUSE | 2021-202851 | 2022-099281 | | | 0200411DE01 | Germany
(Federal
Republic of) | Published | METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEAD/NOZZLE REUSE | 1020211339
45.6 | 102021133945 _.
6 | | | 0200411KR01 | Korea,
Republic of
(KR) | Published | METHOD FOR
MAGNETOHYDRODYNAMIC (MHD)
PRINTHEADNOZZLE REUSE | 10-2021-
0166829 | 10-2022-
0090413 | | | 0200412US01 | United States
of America | Published | RESISTIVE LIQUID METAL LEVEL
SENSING IN A
MAGNETOHYDRODYNAMIC (MHD)
JETTING SYSTEM | 17/131498 | 2022-0194088 | | | 0200420US01 | United States
of America | Published | FABRICATION OF LATTICE
STRUCTURES WITH THREE
DIMENSIONAL PRINTER | 17/143007 | 2022-0212249 | | | 0200420US02 | United States
of America | Published | FABRICATION OF LATTICE
STRUCTURES WITH A THREE-
DIMENSIONAL PRINTER | 18/301100 | 2023-0249247 | | | 20200420JP01 | Japan | Published | Fabrication of Lattice
Structures with three
DIMENSIONAL PRINTER | 2021-206519 | 2022-106284 | | | 10200420DE01 | Germany
(Federal
Republic of) | Published | FABRICATION OF LATTICE
STRUCTURES WITH THREE
DIMENSIONAL PRINTER | 1020221001
53.9 | 102022100153.
9 | | | 0200422US01 | United States
of America | Published | BUILDING AN OBJECT WITH A
THREE-DIMENSIONAL PRINTER
USING VIBRATIONAL ENERGY | 17/144910 | 2022-0219381 | | | 202004225P01 | Japan | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING
VIBRATIONAL ENERGY | 2021-207640 | 2022~107516 | | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |-----------------------|-------------------------------------|-------------|--|-----------------------|-----------------------|------------| | 20200422DE01 | Germany
(Federal
Republic of) | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING
VIBRATIONAL ENERGY | 1020221001
54.7 | 102022100154.
7 | | | 20200423US01 | United States
of America | Published | BUILDING AN OBJECT WITH A
THREE-DIMENSIONAL PRINTER
USING BURST MODE JETTING | 17/121197 | 2022-0184708 | | | 20200423CN91 | China | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING BURST
MODE JETTING | 2021114469
33X | CN114619046
A | | | 20200423JP01 | Japan | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING BURST
MODE JETTING | 2021-201354 | 2022-094339 | | | 20200423DE01 | Germany
(Federal
Republic of) | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING BURST
MODE JETTING | 1020211290
30.9 | 102021129030.
9 | | | 20200423KR01 | Korea,
Republic of
(KR) | Published | BUILDING AN OBJECT WITH A THREE-
DIMENSIONAL PRINTER USING BURST
MODE JETTING | 10-2021-
0175691 | 10-2022-
0085015 | | | 20200427US01 | United States
of America | Granted | METAL DROP EJECTING THREE-
DIMENSIONAL (JD) OBJECT PRINTER | 17/155455 | 2022-0240387 | 11737216 | | 20200427US02 | United States
of America | Application | METHOD FOR OPERATING A METAL
DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
TO FORM VIAS IN PRINTED CIRCUIT
BOARDS WITH CONDUCTIVE METAL | 18/318974 | | | | 20200430US01 | United States
of America | Publisked | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
HAVING AN INCREASED MATERIAL
DEPOSITION RATE | 17/140954 | 2022-0212265 | | | 20200430CN01 | China | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
HAVING AN INCREASED MATERIAL
DEPOSITION RATE | 2022100013
07.8 | CN114713856
A | | | 20200430JP01 | Japan | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
HAVING AN INCREASED MATERIAL | 2021-206176 | 2022-105475 | | | 20200430EP01 | European
Patent | Published | DEPOSITION RATE METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER HAVING AN INCREASED MATERIAL DEPOSITION RATE | 22150083.8 | 4023369 | | | 20200430 KR 01 | Korea,
Republic of
(KR) | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
HAVING AN INCREASED MATERIAL
DEPOSITION BATE | 10-2022-
0000840 | 10-2022-
0098695 | | | 20200438US01 | United States
of America | Allowed | SYSTEM AND METHOD FOR
CALIBRATING LAG TIME IN A THREE-
DIMENSIONAL OBJECT PRINTER | 17/163355 | 2022-0242048 | | | 20200439US01 | United States
of Americs | Granted | SYSTEM AND METHOD FOR
REDUCING DROP PLACEMENT
ERRORS AT PERIMETER FEATURES
ON AN OBJECT IN A THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 17/163363 | 2022-0241865 | 11701712 | | 20200439{ \$02 | United States
of America | Granted | SYSTEM AND METHOD FOR
REDUCING DROP PLACEMENT
ERRORS AT PERIMETER FEATURES
ON AN OBJECT IN A THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 17/163368 | 2022-0241866 | 11673198 | | 20200450US01 | United States
of America | Granted | THREE-DIMENSIONAL PRINTER WITH
NITROGEN ATMOSPHERE | 17/109800 | 2022-0168817 | 11666975 | | 202004691/S01 | United States
of America | Granted | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
WITH A THERMALLY INSULATED
BUILD PLATFORM TRANSLATIONAL
MECHANISM | 17/085557 | 2022-0134418 | 11684972 | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------------|------------|---|-----------------------|-----------------------|------------| | 20200506US01 | United States
of America | Allowed | MELTED METAL LEVEL SENSOR FOR
A METAL DROP EJECTING THREE-
DIMENSIONAL (3B) OBJECT PRINTER | 17/319830 | 2022-0362858 | | | 20200506CN01 | China | Published | MELTED METAL LEVEL SENSOR FOR A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 2022103710
191 | CN115338431
A | | | 20200506JP01 | Japan | Published | MELTED METAL LEVEL SENSOR FOR A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 2022-065121 | 2022-176099 | | | 20200506DE01 | Germany
(Federal
Republic of) | Priblished | MELTED METAL LEVEL SENSOR FOR A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 1020221118
50.9 | 102022111850.
9 | | | 0200585US01 | United States
of Americs | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
WITH A THERMALLY INSULATED
BUILD PLATFORM TRANSLATIONAL
MECHANISM | 17/143378 | 1011-0212257 | | | :0200601US01 | United States
of America | Published | CLAMPING MECHANISM FOR 3D
PRINTING BUILD PLATE | 17/400916 | 2023-0049328 | | | 20200640US01 | United States
of America | Allowed | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD FOR PREPARING THE
METAL DROP EJECTING 3D OBJECT
PRINTER FOR PRINTING | 17/147773 | 2022-0219238 | | | 20200640US02 | United States
of Americs | Published | A REMOVABLE VESSEL AND METAL
INSERT FOR PREPARING A METAL
DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
FOR PRINTING | 17/147818 | 2022-8219240 | | | 20200640CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD FOR PREPARING THE
METAL DROP EJECTING 3D OBJECT | 2022100144
13.X | CN114309663
A | | | 20200640CN02 | China | Published | PRINTER FOR PRINTING A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 2022100340
41.7 | CN114762899
A | | | 20200640.7901 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD FOR PREPARING THE
METAL DROP EJECTING 3D OBJECT
PRINTER FOR PRINTING | 2021-214100 | 2022-108720 | | | 20200640JP02 | Japan | Published | A REMOVABLE VESSEL AND METAL
INSERT FOR PREPARING A METAL
DROP EJECTING THREE-DIMENSIONAL
(3D) OBJECT PRINTER FOR PRINTING | 2021-214153 | 2022-108721 | | | 20200640EP01 | European
Patent | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD FOR PREPARING THE
METAL DROP EJECTING 3D OBJECT
MEDITED FOR INSTRUCTION | 22150215.6 | 4029631 | | | 20200640EP02 | European
Patent | | PRINTER FOR PRINTING A REMOVABLE VESSEL AND METAL INSERT FOR PREPARING A METAL DROP EJECTING THREE-DIMENSIONAL (3D) OBJECT PRINTER FOR PRINTING | 22150218.0 | 4029632 | | | 20200640KR01 | Korea,
Republic of
(KR) | | A METAL DROP EJECTING THREE-
DIMENSIONAL (JD) OBJECT PRINTER
AND METHOD FOR PREPARING THE
METAL DROP EJECTING 3D OBJECT
PRINTER FOR PRINTING | 10-2022-
0001952 |
10-2022-
0102571 | | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | |---------------------|-------------------------------------|-----------|--|-----------------------|----------------------------------| | 20200646KR02 | Kores,
Republic of
(KR) | Published | A REMOVABLE VESSEL AND METAL
INSERT FOR PREPARING A METAL
DROP EJECTING THREE-DIMENSIONAL
(3D) OBJECT FRINTER FOR PRINTING | 10-2022-
0001953 | 10-2022-
0102572 | | :0200663US02 | United States
of America | Published | METHOD FOR HIGH TEMPERATURE
HEAT TREATING OF METAL OBJECTS
FORMED IN A METAL DROP
EJECTING THREE-DIMENSIONAL (3D)
OBJECT PRINTER | 17/451591 | 2022-0126371 | | 0100693US01 | United States
of America | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 17/457966 | 2823-8173585 | | 20200693CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022113726
016 | | | 20200693JP01 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022-176834 | | | 20200693EP01 | European
Patent | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 22208366.9 | | | 20200693KR01 | Korea,
Republic of
(KR) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 10-2022-
0165588 | | | 20280720US01 | United States
of America | Allowed | METAL DROP EJECTING THREE-
DIMENSIONAL (3B) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 17/393115 | 2023-0037539 | | 20200720CN01 | China | Published | METAL DROP EJECTING THIREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022108498
60.7 | CN115703154
A | | 20200720JP01 | Japan | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022-112509 | 2023-022818 | | 20200720DE01 | Germany
(Federal
Republic of) | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 1020221187
48.9 | | | 10200723US81 | United States
of America | Publishec | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 17/353555 | 2922-0402060 | | 20200723CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022105613
25.1 | CN115570152
A | | elerence | Cosstry | Status | Title | Application
Number | Publication
Number | Patent No. | |-----------------------|-------------------------------------|-------------|---|-----------------------|--------------------------------|------------| | 20200723JP01 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022-083261 | 2023-001876 | | | 0200723DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 1020221145
96.4 | 102022114596 _.
4 | | | 10200723K861 | Korea,
Republic of
(KR) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 10-2022-
0073300 | 10-2022-
0169910 | | | 10200731US01 | United States
of America | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING RELEASE OF A METAL
OBJECT FROM A BUILD PLATFORM | 17/360515 | 2022-0410302 | | | 20200731CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING RELEASE OF A METAL
OBJECT FROM A BUILD PLATFORM | 2022105982
947 | CN115592138
A | | | 20200731 <i>JP</i> 01 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING RELEASE OF A METAL
OBJECT FROM A BUILD PLATFORM | 2022-085029 | 2023-007414 | | | 20200731DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING RELEASE OF A METAL
OBJECT FROM A BUILD PLATFORM | 1020221148
71.8 | 102022114871, | | | 20200731KR01 | Korea,
Republic of
(KR) | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING RELEASE OF A METAL
OBJECT FROM A BUILD PLATFORM | 10-2022-
0076025 | | | | 02007331/501 | United States
of America | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 17/412399 | 2023-8863183 | | | 10200733CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022108847
30.7 | CN115722686
A | | | 20200733JP01 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 2022-118699 | 2023-033137 | | | 20200733DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FORMING METAL SUPPORT
STRUCTURES | 1020221192
70.9 | | | | 80218801US61 | United States
of America | Granted | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
WITH DOUBLE THERMAL LAYER
INSULATION FOR THE BUILD
PLATFORM TRANSLATIONAL
MECHANISM | 17/339969 | 2822-0388063 | 11731199 | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------------|-------------|--|-----------------------|-----------------------|------------| | 20210036US01 | United States
of America | Granted | Liquid metal ejector level
sensing system and methods
thereof | 17/367991 | 2023-0008592 | 11654482 | | 20210036U502 | United States of America | Published | LIQUID METAL EJECTOR LEVEL
SENSING SYSTEM AND METHODS
THEREOF | 18/198847 | 2023-0241670 | | | 20210125US01 | United States
of America | Published | VESSEL FOR MELTING METAL IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 17/391265 | 2023-0034213 | | | 20210125CN01 | China | Published | VESSEL FOR MELTING METAL IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 2022108498
59.4 | CN115701367
A | | | 20210125JP01 | nstar | Published | VESSEL FOR MELTING METAL IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 2022-112445 | 2023-021931 | | | 20210125DE01 | Germany
(Federal
Republic of) | Published | VESSEL FOR MELTING METAL IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 1020221176
91.6 | | | | 20210125KRG1 | Korea,
Republic of
(KR) | Application | VESSEL FOR MELTING METAL IN A
METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER | 10-2022-
0093679 | | | | 20210127US01 | United States
of America | Published | dross abatement system and
methods thereof | 17/348908 | 2022-0402023 | | | 20210127CN01 | China | Published | DROSS ABATEMENT SYSTEM AND METHODS THEREOF | 2022105223
28.4 | CN115475966
A | | | 202101273P01 | Japan | Published | DROSS ABATEMENT SYSTEM AND
METHODS THEREOF | 2022-083230 | 2022-192013 | | | 20210127DE01 | Germany
(Federal
Republic of) | Published | DROSS ABATEMENT SYSTEM AND
METHODS THEREOF | 1020221143
15.5 | 102022114315
5 | | | 20210137US01 | United States
of America | Published | System and method for
Controlling temperature in a
Three-dimensional (3B) printer | 17/371391 | 2023-0012088 | | | 20210137US02 | United States
of America | Published | System and method for
Controlling temperature in a
Three-dimensional (3D) printer | 17/371478 | 2023-0011639 | | | 20210137CN01 | China | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 2022106761
97.5 | CN115647384
A | | | 20210137CN02 | China | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 2022106605
93.9 | CN115592134
A | | | 20210137JP01 | Japan | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 2022-097900 | 2023-010605 | | | 20210137JP02 | Japan | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 2022-097917 | 2023-010606 | | | 20210137DE01 | Germany
(Federal
Republic of) | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 1020221151
46.8 | | | | 20210137DE02 |
Germany
(Federal
Republic of) | Published | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 1020221154
73.4 | | | | 20210137KR01 | Korea,
Republic of
(KR) | | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 10-2022-
0081307 | | | | 20210137KR02 | Korea,
Republic of
(KR) | | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 10-2022-
0081281 | | | | Palent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-------------------------------------|-------------|--|------------------------------|-----------------------|------------| | 20210168US01 | United States
of America | Published | MODIFICATION OF THE METAL JETTING COMPOSITIONS AND METHODS THEREOF | 17/462804 | 2023-0066534 | | | 20210168US02 | United States
of America | Published | EJECTOR FOR MODIFICATION OF
METAL JETTING COMPOSITIONS AND
METHODS THEREOF | TAL JETTING COMPOSITIONS AND | | | | 20210168CN01 | China | Published | MODIFICATION OF THE METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 2022109196
22.9 | CN115722679
A | | | 20210168CN02 | China | Published | EJECTOR FOR MODIFICATION OF
METAL JETTING COMPOSITIONS AND
METHODS THEREOF | 2022108899
96.0 | CN115722646
A | | | 20210168JP01 | Japan | Published | MODIFICATION OF THE METAL JETTING COMPOSITIONS AND METHODS THEREOF | 2022-124730 | 2023-035880 | | | 20210168FP02 | Japan | Published | EJECTOR FOR MODIFICATION OF
METAL JETTING COMPOSITIONS AND
METHODS THEREOF | 2022-126107 | 2023-035885 | | | 20210168DE01 | Germany
(Federal
Republic of) | Published | MODIFICATION OF THE METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 1020221202
24.0 | | | | 20210168DE02 | Germany
(Federal
Republic of) | Published | EJECTOR FOR MODIFICATION OF
METAL JETTING COMPOSITIONS AND
METHODS THEREOF | 1020221202
23.2 | | | | 20210168KR01 | Korea,
Republic of
(KR) | Application | MODIFICATION OF THE METAL JETTING COMPOSITIONS AND METHODS THIEREOF | 10-2022-
0106921 | | | | 20210168KR02 | Korea,
Republic of
(KR) | Application | EJECTOR FOR MODIFICATION OF METAL JETTING COMPOSITIONS AND METHODS THEREOF | 10-2022-
0106922 | | | | 10210193US01 | United States
of America | Published | DROSS EXTRACTION SYSTEM AND METHODS THEREOF | 17/374762 | 2023-0015142 | | | 0210382US01 | United States
of America | Published | ALLOYING OF METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 17/448948 | 2023-8097037 | | | 20210382CN01 | China | Published | ALLOYING OF METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 2022110719
87.7 | | | | 20210382JP01 | Japan | Published | ALLOYING OF METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 2022-145568 | | | | 20210382EP01 | European
Patent | Published | ALLOYING OF METAL JETTING
COMPOSITIONS AND METHODS
THEREOF | 22194327.7 | 4155010 | | | 10210390US01 | United States of America | Published | LIQUID METAL DROP MASS
MEASUREMENTS AND METHODS
THEREOF | 17/447174 | 2023-0076563 | | | 20210390JP01 | Japan | Published | LIQUID METAL DROP MASS
MEASUREMENTS AND METHODS
THEREOF | 2022-135464 | 2023-039415 | | | 20210390DE01 | Germany
(Federal
Republic of) | Published | LIQUID METAL DROP MASS
MEASUREMENTS AND METHODS
THEREOP | 1020221202
25.9 | | | | :0210391US01 | United States
of America | Allowed | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING BUILD AND RELEASE
OF A METAL OBJECT FROM A BUILD
PLATFORM | 17/457346 | 1823-0076563 | | | 20210391CN01 | China | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT FRINTER
AND METHOD OF OPERATION FOR
FACILITATING BUILD AND RELEASE OF
A METAL OBJECT FROM A BUILD
PLATFORM | 2022113592
647 | | | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | |---------------------|-------------------------------------|-------------|--|-----------------------|----------------------------------| | 20210391JP01 | Japan | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING BUILD AND RELEASE OF
A METAL OBJECT FROM A BUILD
PLATFORM | 2022-176832 | | | 20210391DE01 | Germany
(Federal
Republic of) | Published | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING BUILD AND RELEASE OF
A METAL OBJECT FROM A BUILD
PLATFORM | 1020221316
39.4 | | | 20210411US01 | United States
of Americs | Published | METAL DROP EJECTING THREE-
DIMENSIONAL (3B) OBJECT PRINTER
HAVING AN IMPROVED HEATED
BUILD PLATFORM | 17/455785 | 2023-0158573 | | 20210421US01 | United States
of America | Fublished | DEVICE AND METHOD OF OPERATION
FOR A METAL DROP EJECTING
THREE-DIMENSIONAL (3D) OBJECT
PRINTER THAT FACILITATES
REMOVAL OF SUPPORT STRUCTURES
FROM A METAL OBJECT | 17/649393 | 2023-0241680 | | 20210421CN01 | China | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 2023100307
945 | | | 20210421JP01 | Japan | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 2023-000506 | | | 20210421DE01 | Germany
(Federal
Republic of) | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 1020231001
95.7 | | | 20210421KR01 | Korea,
Republic of
(KR) | Application | DEVICE AND METHOD OF OPERATION FOR A METAL DROP EJECTING THREE- DIMENSIONAL (3D) OBJECT PRINTER THAT FACILITATES REMOVAL OF SUPPORT STRUCTURES FROM A METAL OBJECT | 10-2023-
0009930 | | | 20210430US01 | United States
of America | Published | DEVICE AND METHOD FOR
CLEANING AN ORIFICE IN A METAL
BROP EJECTING THREE-
DIMENSIONAL (3D) METAL OBJECT
PRINTER | 17/648490 | 2823-0226614 | | 20210458US01 | United States
of America | Published | EJECTOR FOR METAL JETTING BULK
METALLIC GLASS COMPOSITIONS
AND METHODS THEREOF | 17/554089 | 2023-0191487 | | 20210502US01 | United States
of America | Published | METAL DROP EJECTING THREE-
DIMENSIONAL(3D) OBJECT PRINTER
AND IMPROVED METHOD FOR
OPERATING THE PRINTER | 17/455598 | 2823-8158826 | | 20210502CN01 | China | Published | METAL DROP EJECTING THREE-
DIMENSIONAL(3D) OBJECT PRINTER
AND IMPROVED METHOD FOR
OPERATING THE PRINTER | 2022114239
328 | | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | |---------------------|-------------------------------------|-------------|---|-----------------------|----------------------------------| | 20210502JP01 | Iapan | Published | METAL DROP EJECTING THREE-
DIMENSIONAL(3D) OBJECT PRINTER
AND IMPROVED METHOD FOR
OPERATING THE PRINTER | 2022-175525 | | | 20210502IDE01 | Germany
(Federal
Republic of) | Published | METAL DROP EJECTING THREE-
DIMENSIONAL(3D) OBJECT PRINTER
AND IMPROVED METHOD FOR
OPERATING THE PRINTER | 1020221306
24.0 | | | 20210502KR01 | Korea,
Republic of
(KR) | Application | METAL DROP EJECTING THREE-
DIMENSIONAL(3D) OBJECT PRINTER
AND IMPROVED METHOD FOR
OPERATING THE PRINTER | 10-2022-
0151617 | | | 20210512US01 | United States of America | Published | LIQUID METAL EJECTOR DUAL
SENSOR SYSTEM AND METHODS
THEREOF | 17/454926 | 2823-0150033 | | 20210512CN01 | China | Published | LIQUID METAL EJECTOR DUAL SENSOR
SYSTEM AND METHODS THEREOF | 2022114374
65.4 | | | 20210512JP01 | Japan | Published | LIQUID METAL EJECTOR DUAL SENSOR
SYSTEM AND METHODS THEREOF | 2022-179183 | | | 20210512EP01 | European
Patent | Published | LIQUID METAL EJECTOR DUAL SENSOR
SYSTEM AND METHODS THEREOF | 22263929.9 | | | 20210512KR01 | Korea,
Republic of
(KR) | Application | LIQUID METAL EJECTOR DUAL SENSOR
SYSTEM AND METHODS THEREOF | 10-2022-
0149380 | | | 20210514U501 | United States
of America | Application | LIQUID METAL EJECTOR LEVEL
SENSE SYSTEM AND METHODS
THEREOF | 17/853676 | | | 20210514CN01 | China | Application | LIQUID METAL EJECTOR LEVEL SENSE
SYSTEM AND METHODS THEREOF | 2023106276
07:1 | | | 20210514ЛР01 | Japan | Application | LIQUID METAL EJECTOR LEVEL SENSE
SYSTEM AND METHODS THEREOF | 1020231150
41.3 | | | 20210514DE01 | Germany
(Federal
Republic of) | Application | LIQUID METAL EJECTOR LEVEL SENSE
SYSTEM AND METHODS THEREOF | 2023-
090719 | | | 20210514KR01 | Korea,
Republic of
(KR) | Application | LIQUID METAL EJECTOR LEVEL SENSE
SYSTEM AND METHODS THEREOF | 10-2023-
0080174 | | | 2021051717501 | United States
of America | Published | LIQUID METAL EJECTOR BUOYANT
SENSING SYSTEM AND METHODS
THEREOF | 17/534040 | 2023-0158575 | | 28218548US01 | United States
of America | Application | METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 17/652911 | | | 20210540CN01 | China | Application | A METAL DROP EJECTING
THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 2023101591
135 | | | 202105403P01 | Japan | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 2023-023408 | | | 20210540DE01 | Germany
(Federal
Republic of) | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 1020231017
32.2 | | | 20210540KR01 | Korea,
Republic of
(KR) | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 10-2023-
0023504 | | | Patent
Reference | Country | Status | Title | Application Publication Patent No.
Number Number | |---------------------|---|-------------|--|---| | 20210571US01 | United States
of America | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (JD) OBJECT PRINTER
AND METHOD OF OPERATION FOR
BUILDING SUPPORT STRUCTURES | 17/652914 | | 20210588US01 | United States
of America | Application | A METAL DROP EJECTING THREE-
DIMENSIONAL (3D) OBJECT PRINTER
AND METHOD OF OPERATION FOR
FACILITATING BUILD AND RELEASE
OF A METAL OBJECT FROM A BUILD
PLATFORM | 17/652919 | | 202105911/S01 | United States
of America | Application | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 17/653138 | | 20210591ЛРО1 | Japan | Application | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 2023-024915 | | 20210591DE01 | Germany
(Federal
Republic of) | Application | SYSTEM AND METHOD FOR
CONTROLLING TEMPERATURE IN A
THREE-DIMENSIONAL (3D) PRINTER | 1020231039
10.5 | | 20210604US01 | United States
of America | Application | DROSS EXTRACTION SYSTEM FOR AN MHD PRINTER AND METHODS THEREOF | 17/651248 | | 20210604JP01 | Japan | Application | DROSS EXTRACTION SYSTEM FOR AN MHD PRINTER AND METHODS THEREOF | 2023-016670 | | 20210604DE01 | Germany
(Federal | Application | DROSS EXTRACTION SYSTEM FOR AN MHD PRINTER AND METHODS THEREOF | 1020231017
31.4 | | 20210654US01 | Republic of)
United States
of Americs | Application | DROSS EXTRACTION IMPLEMENT
FOR AN MHD PRINTER AND METHODS
THEREOF | 17/652532 | | 20210654JP01 | Japan | Application | DROSS EXTRACTION IMPLEMENT FOR
AN MHD PRINTER AND METHODS
THEREOF | 2023-023202 | | 20210654DE01 | Germany
(Federal
Republic of) | Application | DROSS EXTRACTION IMPLEMENT FOR
AN MHD PRINTER AND METHODS
THEREOF | 1020231039
14.8 | | 20210679US01 | United States
of America | Application | THREE-DIMENSIONAL UNSUPPORTED
STRUCTURAL FEATURES AND
SYSTEM AND METHODS THEREOF | 17/843098 | | 20210679CN01 | China | Application | THREE-DIMENSIONAL UNSUPPORTED
STRUCTURAL FEATURES AND SYSTEM
AND METHODS THEREOF | 2023106300
47.5 | | 20210679JF01 | Japan | Application | THREE-DIMENSIONAL UNSUPPORTED
STRUCTURAL FEATURES AND SYSTEM
AND METHODS THEREOF | 23176187.5 | | 20210679EP01 | European
Patent | Application | THREE-DIMENSIONAL UNSUPPORTED
STRUCTURAL FEATURES AND SYSTEM
AND METHODS THEREOF | 2023-085820 | | 20210679KR01 | Korea,
Republic of
(KR) | Application | THREE-DIMENSIONAL UNSUPPORTED
STRUCTURAL FEATURES AND SYSTEM
AND METHODS THEREOF | 10-2023-
0074664 | | 20220022US01 | United States
of America | Application | METHOD AND APPARATUS FOR
FORMING OVERHANGING
STRUCTURES IN ADDITIVE
MANUFACTURED PARTS THAT HAVE
AN IMPROVED SURFACE ROUGHNESS | 17/664478 | | 20220022CN01 | China | Application | METHOD AND APPARATUS FOR FORMING OVERHANGING STRUCTURES IN ADDITIVE MANUFACTURED PARTS THAT HAVE AN IMPROVED SURFACE ROUGHNESS | 2023105137
071 | | Patent
Reference | Country | Status | Title | Application
Number | Publication Patent No.
Number | |---------------------|-------------------------------|--|--|-----------------------|----------------------------------| | 20220022JP01 | Јарал | Application | METHOD AND APPARATUS FOR
FORMING OVERHANGING STRUCTURES
IN ADDITIVE MANUFACTURED PARTS
THAT HAVE AN IMPROVED SURFACE
ROUGHNESS | 23171449.4 | | | 20220022EP01 | European
Patent | Application | METHOD AND APPARATUS FOR
FORMING OVERHANGING STRUCTURES
IN ADDITIVE MANUFACTURED PARTS
THAT HAVE AN IMPROVED SURFACE
ROUGHNESS | 2023-077801 | | | 20220022KR01 | Korea,
Republic of
(KR) | Application | METHOD AND APPARATUS FOR
FORMING OVERHANGING STRUCTURES
IN ADDITIVE MANUFACTURED PARTS
THAT HAVE AN IMPROVED SURFACE
ROUGHNESS | 10-2023-
0060889 | | | 20220047US01 | United States
of America | Application | BYNAMIC IN-FLIGHT
CHARACTERIZATION OF BUILD
MATERIAL IN A 3D PRINTER AND
SYSTEM AND METHODS THEREOF | 18/059638 | | | 20220053US01 | United States
of Americs | Application | PRINTING A THREE-DIMENSIONAL PART WITH ENHANCED DROP PLACEMENT AND SYSTEM AND METHODS THEREOF | 18/847359 | | | 20220054US01 | United States
of America | Application | PRINTING A THREE-DIMENSIONAL PART TO ENHANCE SEPARATION AND SYSTEM AND METHODS THEREOF | 18/047365 | | | 202200581/501 | United States
of America | Application | PRINTING A THREE-DIMENSIONAL
PART TO ENHANCE SEPARATION AND
SYSTEM AND METHODS THEREOF | 18/047371 | | | 20220063US01 | United States
of America | Application | HIGH-THROUGHPUT LIQUID METAL
INKJET NOZZLE WITH | 17/820468 | | | 20228063US02 | United States
of America | Application | POROUS LAYER FOR MENISCUS
DAMPING
HIGH-THROUGHPUT LIQUID METAL
INKJET NOZZLE WITH | 17/820481 | | | | | | POROUS LAYER FOR MENISCUS | | | | 20220063CN01 | China | Application | DAMPING HIGH-THROUGHPUT LIQUID METAL INKJET NOZZLE WITH POROUS LAYER FOR MENISCUS DAMPING | 2023109167
76,7 | | | 20220063JP01 | Japan | Currently
Designated
To Be Filed | HIGH-THROUGHPUT LIQUID METAL
INKJET NOZZLE WITH POROUS LAYER
FOR MENISCUS DAMPING | 2023-129202 | | | 20220063EP01 | European
Patent | Application | HIGH-THROUGHPUT LIQUID METAL
INKIET NOZZLE WITH POROUS LAYER
FOR MENISCUS DAMPING | 23188900.7 | | | 20220063KR01 | Korea,
Republic of
(KR) | Currently
Designated
To Be Filed | HIGH-THROUGHPUT LIQUID METAL
INKJET NOZZLE WITH POROUS LAYER
FOR MENISCUS DAMPING | 10-2023-
0104484 | | | 20220070US01 | United States
of America | Application | LEVERAGING PRINTING STANDOFF DISTANCE IN THREE-DIMENSIONAL PRINTING TO ENHANCE PART SEPARATION AND SYSTEM AND METHODS THEREOF | 17/883088 | | | 20220070JP01 | Japan | Currently
Designated
To Be Filed | LEVERAGING PRINTING STANDOFF
DISTANCE IN THREE-DIMENSIONAL
PRINTING TO ENHANCE PART
SEPARATION AND SYSTEM AND
METHODS THEREOF | 2023-126386 | | | 20220103US01 | United States
of Americs | Application | SYSTEM AND METHOD FOR
CONTROLLING FLOW THROUGH A 3D
PRINTER | 17/930226 | | | Patent
Reference | Country | Status | Title | Application
Number | Publication
Number | Patent No. | |---------------------|-----------------------------|-------------|--|-----------------------|-----------------------|------------| | 20220103US02 | United States
of America | Application | SYSTEM AND METHOD FOR CONTROLLING FLOW THROUGH A 3D PRINTER | 17/930233 | | | | 20220107US01 | United States
of America | Application | INSPECTION SYSTEM FOR THREE-
DIMENSIONAL PRINTER AND
METHODS THEREOF | 18/059643 | | | | 202201111/501 | United States
of Americs | Application | IMPROVED VESSEL FOR
ATTENUATING DROSS IN MELTED
METAL IN A METAL DROP EJECTING
THREE-DIMENSIONAL (3D) OBJECT
PRINTER | 17/935691 | | | | 20220182US01 | United States
of America | Application | METHOD OF CREATING BIMETALLIC
PARTS USING LIQUID METAL
ADDITIVE MANUFACTURING. | 18/213577 | | | | 20220184US01 | United States
of America | Application | LINE SPACING MODIFICATION TO
PRINT UNSUPPORTED STEP OUT IN 3D
METAL OBJECTS | 18/338998 | | | | 20220192US81 | United States
of America | Application | A NON-CONTACT METHOD FOR
CLEARING OCCLUSION FROM A
METAL JETTING PRINTHEAD NOZZLE | 18/307352 | | | | 20220195US01 | United States of America | Application | BRIDGING INTERNAL CHANNELS
BEYOND 1.75MM IN 3D METAL
OBJECTS | 18/233134 | | | | 20220410US01 | United States of America | Application | PERIMETER AND INFILL OPTIMIZATIONS FOR LIQUID METAL JETTING 3D PRINTING | 18/329259 | | | | 20220505US01 | United States
of America | Application | SPARSE FILL IN 3D METAL OBJECTS | 18/358369 | | | **REEL: 065734 FRAME: 0432** ## <u>Assigned Design Patents</u> | Patent Reference | Country | Status | Patent
Application Title | Application | Publication
Number | Patent No. | |------------------------------|---|------------------------|---|-----------------------------|-----------------------|----------------| | 20190681US01 | United States of
America | Granted | 3D PRINTER | 29/713686 | | D921718 | | 20190681KR01 | Korea, Republic
of (KR) | Granted | ALLOY | 30-2020-0019876 | | 30-1134267 | | 20190681JP01 | Japan | Granted | YOLLA | 2020-009624 | 2020-009624 | 1680603 | | 20190681EM01 | European Union | Granted | 3D PRINTER | 007954805-0001 | |
007954805-0001 | | 20190681CN01 | China | Granted | ALLOY | 202030223542 1 | | ZL202030223542 | | 20190681GB01
20210598US01 | United Kingdom
United States of
America | Granted
Application | 3D PRINTER
DISPLAY
SCREEN WITH
ICON | 90079548050001
29/828443 | | 90079548050001 | | 20210598CN01 | China | Application | ELEM X
NAMEPLATE
PRODUCT
IDENTITY -
BLACK | 202230381951.3 | | | | 20210598JP01 | Japan | Granted | ELEM X
NAMEPLATE
PRODUCT
EDENTITY -
BLACK | 2022-013393 | | 1732573 | | 20210598EM01 | European Union | Granted | ELEM X NAMEPLATE PRODUCT IDENTITY - BLACK | 9068208-0001 | | 9068208-0001 | | 20210598US02 | United States of
America | Application | RAISED
LABEL WITH
SURFACE
ORNAMENTAT
ION | 29/825001 | | | | 20210598GB01 | United Kingdom | Granted | ICONS FOR
DISPLAY
SCREENS | 6215380 | | 6215380 | | 20210598EM02 | European Union | Granted | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 9068216-0001 | | 9068216-0001 | | 20210598GB02 | United Kingdom | Granted | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 6215381 | | 6215381 | | 20210598CN02 | China | Application | RAISED LABEL
WITH SURFACE
ORNAMENTATI
ON | 202230381956.6 | | |