508734860 08/30/2024

PATENT ASSIGNMENT COVER SHEET

Electronic Version v1.1
Stylesheet Version v1.2

Assignment ID: PATI465467

SUBMISSION TYPE:

NEW ASSIGNMENT

Phone:

Email:
Correspondent Name:
Address Line 1:
Address Line 2:
Address Line 4:

NATURE OF CONVEYANCE: ASSIGNMENT
CONVEYING PARTY DATA
Name Execution Date
Mansour Jad Karam 08/23/2024
Aleksandar Luka Ratkovic 04/25/2023
RECEIVING PARTY DATA
Company Name: Apstra, Inc.
Street Address: 200 Middlefield Road
Internal Address: Suite 100
City: Menlo Park
State/Country: CALIFORNIA
Postal Code: 94025
PROPERTY NUMBERS Total: 1
Property Type Number
Patent Number: 10333776
CORRESPONDENCE DATA
Fax Number: 6517351102

6517351100
pairdocketing@ssiplaw.com
Shumaker & Sieffert, P.A.

1625 Radio Drive

Suite 300

Woodbury, MINNESOTA 55125

Correspondence will be sent to the e-mail address first; if that is unsuccessful, it will be sent
using a fax number, if provided; if that is unsuccessful, it will be sent via US Mail.

ATTORNEY DOCKET NUMBER: 2014-380US02
NAME OF SUBMITTER: Ashley Rees
SIGNATURE: Ashley Rees
DATE SIGNED: 08/30/2024

Total Attachments: 26

source=JNA0181-US-CON1_Confirmatory Assignment#page .iff
source=JNA0181-US-CON1_Confirmatory Assignment#page?2.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page3.tiff

508734860

PATENT

REEL: 068820 FRAME: 0552

source=JNA0181-US-CON1_Confirmatory Assignment#page4.tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page5.tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page6.tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page?7 .tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page8.tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page9.tiff

source=JNA0181-US-CON1_Confirmatory Assignment#page10.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page11.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page12.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page13.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page14.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page15.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page16.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page17.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page18.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page19.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page20.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page21.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page22.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page23.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page24.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page25.tiff
source=JNA0181-US-CON1_Confirmatory Assignment#page26.tiff

PATENT
REEL: 068820 FRAME: 0553

Docusign Envelope ID: 3EB1AD3D-2F85-4C7C-9D94-08DBAD413454

CONFIRMATORY ASSIGNMENT

For good and valuable consideration, the receipt of which is hereby acknowledged, the
person(s) named below (referred to as "INVENTOR" whether singular or plural) has sold,
assigned, and transferred and does hereby confirm the sale, assignment, and transfer to Apstra,
Inc., having a place of business at 200 Middlefield Road Suite 110, Menlo Park, CA 94025,
United States of America ("ASSIGNEE"), for itself and its successors, transferees, and
assignees, the following:

1. The entire worldwide right, title, and interest in all inventions and
improvements (“SUBJECT MATTER™) that are disclosed in the following provisional
application filed under 35 U.S.C. § 111(b), non-provisional application filed under 35
U.S.C. § 111(a), international application filed according to the Patent Cooperation
Treaty (PCT), or U.S. national phase application filed under 35 U.S.C. § 371
(“APPLICATION™):

Application No. 16/042,624, entitled “SELECTABLE DECLARATIVE
REQUIREMENT LEVELS” filed on July 23, 2018 which is a
continuation of co-pending U.S. Patent Application No. 14/755,153
entitted SELECTABLE DECLARATIVE REQUIREMENT LEVELS
filed June 30, 2015. (I hereby authorize the Assignee and its representative
to hereafter add herein such application number(s) and/or filing date(s)
when known.)

2. The entire worldwide right, title, and interest in and to:

(a) the APPLICATION; (b) all applications claiming priority from the APPLICATION;
(¢) all provisional, utility, divisional, continuation, substitute, renewal, reissue, and other
applications related thereto which have been or may be filed in the United States or
elsewhere in the world; (d) all patents (including reissues and re-examinations) which
may be granted on the applications set forth in (a), (b), and (¢) above; and (e) all right of
priority in the APPLICATION and in any underlying provisional or foreign application,
together with all rights to recover damages for infringement of provisional rights.

3. The entire worldwide right, title, and interest in and to (including all
claims of):

U.S. Patent No. 10,333,776 issued June 25, 2019, which i1s included as an
Appendix to this Assignment.

INVENTOR agrees that ASSIGNEE may apply for and receive patents for SUBJECT
MATTER in ASSIGNEE’s own name.

INVENTOR agrees to do the following, when requested, and without further
consideration, in order to carry out the intent of this Assignment: (1) execute all oaths,
assignments, powers of attorney, applications, and other papers necessary or desirable to fully
secure to ASSIGNEE the rights, titles and interests herein conveyed; (2) communicate to
ASSIGNEE all known facts relating to the SUBJECT MATTER; and (3) generally do all lawtul
acts that ASSIGNEE shall consider desirable for securing, maintaining, and enforcing worldwide
patent protection relating to the SUBJECT MATTER and for vesting in ASSIGNEE the rights,
titles, and interests herein conveyed. INVENTOR further agrees to provide any successor,

Attorney Docket No.: 2014-380U502 1 PATENT
REEL: 068820 FRAME: 0554

Docusign Envelope ID: 3EB1AD3D-2F85-4C7C-9D94-08DBAD413454

Title: SELECTABLE DECLARATIVE
REQUIREMENT LEVELS

Date Filed: July 23, 2018

Application No.: 16/042.624

assign, or legal representative of ASSIGNEE with the benefits and assistance provided to
ASSIGNEE hereunder.

INVENTOR represents that INVENTOR has the rights, titles, and interests to convey as
set forth herein, and covenants with ASSIGNEE that the INVENTOR has not made and will not
hereafter make any assignment, grant, mortgage, license, or other agreement affecting the rights,
titles, and interests herein conveyed.

INVENTOR grants the attorney of record the power to insert on this Assignment any
further identification that may be necessary or desirable in order to comply with the rules of the
United States Patent and Trademark Office for recordation of this document.

This Assignment may be executed in one or more counterparts, each of which shall be
deemed an original and all of which may be taken together as one and the same Assignment.

Name and Signature Date of Signature

[Mavsowr Jad karam 8/23/2024

ARUBZTETBD6RATE

Mansour Jad Karam

Name and Signature Date of Signature

Aleksandar Ratkovic

Apr 25,2023

Aleksandar Luka Ratkovic

Attorney Docket No.: 2014-3800 802 2 PATENT
REEL: 068820 FRAME: 0555

Docusign Envelope ID: 3EB1AD3D-2F85-4C7C-9D94-08DBAD413454

Title: SELECTABLE DECLARATIVE
REQUIREMENT LEVELS

Date Filed: July 23, 2018

Application No.: 16/042.624

APPENDIX

Attorney Docket No.: 2014-3800U 502 3 PATENT
REEL: 068820 FRAME: 0556

a2 United States Patent

Karam et al.

US010333776B2

US 10,333,776 B2
*Jun. 25, 2019

(10y Patent No.:
45) Date of Patent:

(54)

)
72)

(73)
(*)

@

22)

(65)

(63)

(1)

(52)

(58)

SELECTABLE DECLARATIVE
REQUIREMENT LEVELS

Applicant: Apstra, Inc., Menlo Park, CA (US)

Mansour Jad Karam, San Francisco,
CA (US); Aleksandar Luka Ratkevic,
Palo Alto, CA (US); Andrew
Samoylov, San Jose, CA (US)

Inventors:

Assignee: Apstra, Inc., Menlo Park, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.8.C. 154(b) by O days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 16/042,624

Filed: Jul. 23, 2018

Prior Publication Data
US 2018/0351827 Al Dec. 6, 2018
Related U.S. Application Data

Continuation of application No. 14/755,153, filed on
Jun. 30, 2015, now Pat. No. 10,063,428.

Int. CL.

HO4L 12/24 (2006.01)

HO4L 1226 (2006.01)

U.s. Cl

CPC ... HO4L 41/0803 (2013.01); HO4L 41/046

(2013.01); HO4L 43/0817 (2013.01)
Field of Classification Search
CPC HO4L 49/70; HO4L 41/12; HOAL 41/22;
HOAL 12/46; HO4AL 12/4641; HO4L
41/0803; HO4L 63/0263; H04Q
2213/1304
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
8,259,713 B2 9/2012 Lawrence
8,392,575 Bl 3/2013 Marr
9,363,208 B1* 6/2016 Judgecccooevnnene HO4L 49/15
9,419,842 Bl 8/2016 Galliher, I
9,047,882 Bl 5/2017 Whittaker
10,003,527 B1* 6/2018 Sorenson, I HO4L 45/28
2002/0107953 Al* &2002 Ontiveros HO4L 43/06
709/224
2002/0133586 Al* 9/2002 Shanklin HO4L 43/00
709/224
2004/0190502 Al1* 9/2004 Sharma HO04Q 3/54583
370/360
2009/0070549 Al 3/2009 Solomon
2009/0307166 Al* 12/2009 Routray GO6N 5/04
706/46
2010/0165876 Al1* 7/2010 Shukla HO4L 41/0806
370/254
2010/0165877 Al1* 7/2010 Shukla HO4L 41/0843
370/254
(Continued)

Primary Examiner — Sargon N Nano

(74) Attorney, Agent, or Firm — Van Pelt, Yi & James
LLP

(57) ABSTRACT

A network is configured. Constraints are stored. A plurality
of processing stages is processed. For at least one of the
plurality of processing stages, an application agent utilizes
an input declarative requirement with at least some of the
constraints to determine an output declarative requirement
that is at a lower level than a level of the input declarative
requirement. Each processing stage corresponds to an inter-
action agent that is able to specify the input declarative
requirement for that stage.

20 Claims, 8 Drawing Sheets

330~
7 Device | [AssignDevice | |AdjustPortMaps | |Assign Resource | |Extend config Physlcal Device
Profiles| |Namesand Types| |v SpeciicPorts | (Pools, Extend v Add Config Lings| {Allocafien
Constains |—= ¢ Choose Specific| | For Various Roles| | Config ¢ Substiutef ¥ Adomatic
Devices and &Sﬁer Faing, | |, (ASNs P ¥ Compute Regisiraton
Device Names Edge, efc,)| |* Ranges, efc) Parameters from | | Through Auto-
Context Provisioning

Sewefeasad Logieal Cahllng Candldate Rendered Validated
Connectivity Comectrvrfg Dlagram Requuemem Reqmrem Requirement
ngamm J%Awhl J”%hm J(ljablinSgMa\gcI émCandbEMe
v i opology ' Uses Spec v Uses Specifie ; 1 + Readyto
Relo Doicsad Pors vCalngep v FdlCorigs pvet o
i Physical Devices
Requirements
oan be
Provided | _ (Ineracion | | Intoraction Intecaction Interaction Interaction Inferaction Interaction
for Any Agent Agent Agent Agent Agent Agent
Processing
Stagelevel

PATENT

REEL: 068820 FRAME: 0557

US 10,333,776 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0169467 A1* 7/2010 Shukla ... HO4L 41/12
709/220
2011/0314233 Al 12/2011 Yan
2012/0260237 Al 10/2012 Duddles
2013/0166712 Al 6/2013 Chandramoutli
2014/0064269 A1* 3/2014 Hamdi HO4L 49/25
370/355
2014/0177470 Al 6/2014 Roitshtein
2016/0092173 Al 3/2016 Rodrigues
2016/0140259 Al 5/2016 Ponamgi
2016/0330125 A1 11/2016 Mekkattuparamban
2017/0026263 Al 1/2017 Gell
2017/0324664 A1* 112017 Xu .covvvvnninene HO4L 12/4633
2017/0331679 Al 11/2017 Whittaker
2017/0346684 A1* 11/2017 Ratkovic HO4L 41/0803

* cited by examiner

PATENT
REEL: 068820 FRAME: 0558

U.S. Patent Jun. 25, 2019 Sheet 1 of 8 US 10,333,776 B2

102~
Management Server 104
112~
l ion A
nteraction Agent Data Store
114~
Application Agent
110 Network
106~ 108~
Network Device Network Device
116~ 118~ ° e s
Proxy Agent Proxy Agent
FIG. 1

PATENT
REEL: 068820 FRAME: 0559

U.S. Patent Jun. 25, 2019 Sheet 2 of 8 US 10,333,776 B2

202~

Receive a Set of Network
Requirements at an Interaction Agent

204~ v

Publish At Least a Portion of the Set
of Network Requirements to a System
Data Store

FIG. 2A

PATENT
REEL: 068820 FRAME: 0560

U.S. Patent

Jun, 25, 2019 Sheet 3 of 8

212~

US 10,333,776 B2

Receive Constraints

214~

Store the Received
Constraints

FIG. 2B

PATENT
REEL: 068820 FRAME: 0561

U.S. Patent Jun. 25, 2019 Sheet 4 of 8 US 10,333,776 B2

302~

Receive a Set of Network Requirements
at an Application Agent

304~ ‘

Receive One or More Constraints
Associated with the Set of Network
Requirements

306~ !

Utilize the Received Set of Network
Requirements and the Received One or
More Constraints to Determine a Set of

Output Requirements

308~ {

Publish the Set of Output Requirements
Corresponding to the Received
Requirements to a System Data Store

FIG. 3A

PATENT
REEL: 068820 FRAME: 0562

U.S. Patent Jun. 25, 2019 Sheet 5 of 8 US 10,333,776 B2

310~

Perform Processing for a Logical
Connectivity Processing Stage/level to
Determine an Output Defining Logical

Connectivity

312\ L]

Perform Processing for a Physical
Connectivity Processing Stage/level to
Determine an Output Defining a
Physical Connectivity

314~ '

Perform Processing for a Cabling
Diagram Processing Stage/level to
Determine an Output Defining
a Cabling Map

316\]

Perform Processing for a Candidate
Requirement Processing Stage/level to
Determine an Output Defining Soft
Resource Assignments

318~ ‘

Perform Processing for a Rendered
Requirement Processing Stage/level to
Determine an Output Defining any
Extended/optional Requirements

320~ '

Perform Processing for a Validated
Requirement Processing Stage/level to
Determine an Output Including Specific

Device Requirements

FIG. 3B

PATENT
REEL: 068820 FRAME: 0563

US 10,333,776 B2

Sheet 6 of 8

Jun. 25, 2019

U.S. Patent

¢ "Old
ioAs)jabelg
Buissaooiq
Jueby Juaby Jusby JuaBy Juaby JueBy T O
UOBIBJU| UOROBAYU| UolIRIB)Y| UoeIEIY TR uojoRlsju] | | uonoRBly| POpIAOIG
80 UB
SuaLalnbay
S30INS(] _mm_gf SeleN 8oaq]
0} pakoydag S0 DUB $301AS(] oley
ofpesy o OWOORUL A CRNOURRDA ponedosssy » pausedgses) » Aboodo] Londiosqrsien)
alepipuer) yeig A deyy Buigen » ABojodoy ysajy USOW ~ SIBMBS #XE A
Juswaunbay Jawalnbay Justaanbay weibeig fyinpoauuoy funposuuon| | enuuo4 | NS
pajepieA pasapuay ajepipuen Burgen eaIsd a7 | [Peseg senag|
8
Jueby | | juaby l_ ﬁ Juaby t% M) Jaby | Juaby Juaby ! uou
ddy & ddy & ddy ddy Wd
& & 8 2 Y &
Buluoisinoq Jxajuo)
-0y ybnoay) Woy Sigjolele (10 ‘sobuey A (10 ‘aBp3 ‘suidg SOWEN 301n8Q
uonessibey andwoy A dl 'SNY) ‘Buioe Jonag) PU $3J1A8(] | seasuon
afewolny A [inasang A Byuon| [sejoy Snowepdo] | [auoeds asooyy A :
uorpeaoyfy| (seurbyuog ppy pulx3 ‘s|00d SH0q auwadg | | sadAy pue soweN| |sjuosd
aalaq [eaishud Byuod puapxg| | aounosay ubissy| | sdeyy Hod snipy a0laq ubissy| | somaq
*—og¢g

PATENT
068820 FRAME

0564

REEL

U.S. Patent

Jun. 25,2019 Sheet 7 of 8 US 10,333,776 B2

402~

Receive Device Requirements
at a Proxy Agent

Generate Native Hardware
Instructions at the Proxy
Agent to Configure a Device

of the Proxy Agent

406 ~ v

Provide a Status of the
Device

FIG. 4

PATENT
REEL: 068820 FRAME: 0565

U.S. Patent Jun. 25, 2019 Sheet 8 of 8 US 10,333,776 B2

502~

Receive a Status of a Device

504~ {

Verify an Expectation Associated with the
Received Status

506\ ¥

Perform an Action, if Applicable, Based on
the Verification of the Expectation

FIG.5

PATENT
REEL: 068820 FRAME: 0566

US 10,333,776 B2

1
SELECTABLE DECLARATIVE
REQUIREMENT LEVELS

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 14/755,153 entitled SELECT-
ABLE DECLARATIVE REQUIREMENT LEVELS filed
Jun. 30, 2015 which is incorporated herein by reference for

all purposes.
BACKGROUND OF THE INVENTION

In order to configure a network, a network administrator
may specity a declarative requirement of a desired network
configuration. For example, the network administrator may
specify a declarative requirement of what the final network
configuration should be rather than the mechanics of how to
accomplish the network configuration. Often these declara-
tive requirements must include very specific types of
requirements. However, in many instances, the network
administrator may desire flexibility in being able to specify
different levels and types of declarative requirements rather
than the traditional single type of declarative requirement
understood by a traditional system. For example, for certain
configurations, the network administrator may want to
specify high level declarative requirements while for other
configuration instances, the network administrator may want
to specify lower and more specific declarative requirements.
In other cases, the network administrator may want to mix
different types of desired requirements by specifying
declarative requirements at a high level along with specific
requirements for specific aspects of the declarative require-
ments. Therefore, there exists a need for a more flexible way
to specify declarative requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG. 1 is a diagram illustrating an embodiment of a
network management environment.

FIG. 2A is a flowchart illustrating an embodiment of a
process for publishing network requirements.

FIG. 2B is a flowchart illustrating an embodiment of a
process for processing requirements.

FIG. 3A is a flowchart illustrating an embodiment of a
process for publishing device requirements.

FIG. 3B is a flowchart illustrating an embodiment of an
example process for automatically configuring a network
using received declarative requirements.

FIG. 3C is a block diagram illustrating processing stages/
levels of an example process for automatically configuring
an L3 Clos network.

FIG. 4 is a flowchart illustrating an embodiment of a
process for generating native hardware instructions.

FIG. 5 is a flowchart illustrating an embodiment of a
process for verifying an expectation.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process; an apparatus; a system; a composi-
tion of matter; a computer program product embodied on a
computer readable storage medium; and/or a processor, such

10

15

20

25

30

35

40

45

50

55

60

65

2

as a processor configured to execute instructions stored on
and/or provided by a memory coupled to the processor. In
this specification, these implementations, or any other form
that the invention may take, may be referred to as tech-
niques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.
Unless stated otherwise, a component such as a processor or
a memory described as being configured to perform a task
may be implemented as a general component that is tem-
porarily configured to perform the task at a given time or a
specific component that is manufactured to perform the task.
As used herein, the term “processor’ refers to one or more
devices, circuits, and/or processing cores configured fo
process data, such as computer program instructions.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying fig-
ures that illustrate the principles of the invention. The
invention is described in connection with such embodi-
ments, but the invention is not limited to any embodiment.
The scope of the invention is limited only by the claims and
the invention encompasses numerous alternatives, modifi-
cations and equivalents. Numerous specific details are set
forth in the following description in order to provide a
thorough understanding of the invention. These details are
provided for the purpose of example and the invention may
be practiced according to the claims without some or all of
these specific details. For the purpose of clarity, technical
material that is known in the technical fields related to the
invention has not been described in detail so that the
invention is not unnecessarily obscured.

Configuring network devices is disclosed. In some
embeodiments, constraints are received. For example, infor-
mation about network resources and/or one or more policies
that define how to determine an output from an input
requirement are received and/or automatically determined.
In some embodiments, there exists a plurality of processing
stages in determining device requirements. Each stage cor-
responds to one or more input declarative requirements that
can be specified using an interaction agent. An application
agent of each stage merges an input declarative requirement
with at least some of the constraints to determine a lower
level of output requirement than the level of the input
declarative requirement for that level. The lower level output
requirement may be utilized as the input declarative require-
ment for a subsequent lower level processing stage.

In some embodiments, the network may be a collection of
one or more devices that are able to be connected together.
In some embodiments, at least three components work
together to manage, configure, and/or monitor a network.
For example, an interaction agent interacts with a user fo
receive and provide desired requirements, specifications,
and status updates; an application agent implements and
manages the desired requirements and status updates across
various network devices; and a proxy agent of each network
component implements and manages device specific con-
figurations and status updates of its network device. In some
embeodiments, a set of network requirements is received at
an interaction agent. For example, desired requirements of a
network configuration are received from a user via the
interaction agent. At least a portion of the network require-
ments is published to a system data store. For example,
rather than maintaining state information and managing
communication between agent components directly at each
agent component, the system data store is utilized to track
and provide state and communications of agent components.
The published network requirements may be received at an
application agent. For example, the application agent has

PATENT

REEL: 068820 FRAME: 0567

US 10,333,776 B2

3

subscribed to the network requirements stored in the system
data store and is notified when the set of network require-
ments is stored in the system data store. Device requirements
may be published by the application agent to the system data
store for a plurality of devices. For example, the application
agent has identified the plurality of devices to be utilized to
implement the published network requirements and has
generated specific device requirements for each of the
plurality of identified devices. The applicable device
requirements may be received at a proxy agent of a network
device. For example, each proxy agent of each of the
identified devices has subscribed to and receives the corre-
sponding device requirements of its network device. Native
hardware instructions are generated by the proxy agent to
configure an individual network device. For example, the
proxy agent translates the received device requirements to
generate the hardware instructions to implement the
received device requirements.

FIG. 1 is a diagram illustrating an embodiment of a
network management environment. Management server 102
is connected to data store 104, network device 106, and
network device 108 via network 110. In some embodiments,
management server 102 provides a network configuration,
monitoring, and management solution. For example, a user
may utilize a solution at least in part provided by manage-
ment server 102 to setup a network configuration, setup a
network device, monitor performance of a network, monitor
devices of a network, automate tasks, and otherwise perform
management of devices of the network. In the example
shown, management server 102 is utilized to manage at least
network device 106 and network device 108. Management
server 102 includes interaction agent 112 and application
agent 114. For example, interaction agent 112 and applica-
tion agent 114 are software components and/or hardware
components of management server 102. In some embodi-
ments, management server 102 is specialized custom hard-
ware. In some embodiments, management server 102 is
utilized to configure hardware network switches.

Interaction agent 112 facilitates interaction with users to
receive and provide desired requirements, specifications,
and status updates. For example, a user accesses interaction
agent 112 via a user interface (e.g., web interface, applica-
tion interface, command line interface, application program-
ming interface (API), configuration file interface, etc.) pro-
vided directly and/or remotely (e.g., via display, wired
connection, network, etc.). Using the user interface, a user
may provide high level requirements that specify a desired
configuration of a desired network/device and/or receive
information regarding status of devices/components of the
desired network and/or an implementation status regarding
the desired configuration requirements. Interaction agent
112 may manage a plurality of application agents. For
example, interaction agent 112 selects an application agent
among a plurality of applications to achieve/complete a
desired network requirement. In some embodiments, inter-
action agent 112 is accessed by a user via a RESTful APIL
For example, HTTP methods (e.g., GET, PUT, POST,
DELETE, etc.) are utilized to access and manage informa-
tion via the API. URI may be utilized to reference state and
resources. In some embodiments, a user specifies one or
more declarative requirements of a desired network con-
figuration using interaction agent 112. The declarative
requirements may be specified at one or more selected
stages/levels among a plurality of stages/levels. In some
embodiments, a user specifies one or more constraints (e.g.,
resources, policies, etc.) of a desired network configuration
using interaction agent 112.

10

15

20

25

30

35

40

45

50

55

60

65

4

Application agent 114 implements and manages the
desired network requirements, configurations, and status
updates across various network devices. In some embodi-
ments, application agent 114 provides device requirement
instructions to and receives status information from various
devices of a network being managed. For example, using
desired network requirements, application agent 114 deter-
mines individual device requirements to implement the
desired network requirements. The device requirements
determined by application agent 114 may be declarative
device requirements such that the device requirements may
be translated to any of a number of different native device
instructions (e.g., native instructions of devices of different
vendors, device versions, device operating systems, pro-
gramming interfaces, etc.) to implement the device require-
ments. In the example shown, application agent 114 has
selected network devices 106 and 108 to implement the
desired network requirements and generates unique device
requirements for each network device 106 and 108.

In some embodiments, in translating the desired network
requirements to the device requirements, a plurality of
different successive processing stages/levels may be uti-
lized. The network requirements may be specified for any of
the different processing stage levels. For example, network
requirements may be specified at the most general and
highest level and/or at a lower and more specific stage/level.
Each processing stage/level may translate an input declara-
tive requirement to an output declarative requirement that
may be utilized as the input declarative requirement for the
next subsequent lower processing stage/level. For each
processing stage/level, the application agent merges an input
declarative requirement with one or more constraints (e.g.,
resources available, policies to follow, etc.) to determine the
output requirement. By being able to provide desired
declarative network requirements of any selected stage/level
of a plurality of different processing stages/levels, a user is
given the option to tune the level/amount of control desired
by the user in configuring the network. For example, a
network administrator who desires to quickly setup a default
configuration network may specify declarative requirements
at the highest stage/level while a network administrator who
desires to setup a more customized and specific network
may specify declarative requirements at a lower stage/level.
In some embodiments, each processing stage/level performs
a different function. For example, one processing stage/level
determines a logical connectivity in its output declarative
requirements, another processing stage/level determines
physical connectivity in its output declarative requirements,
and another processing stage/level determines a cabling in
its output declarative requirements.

Proxy agent 116 receives its device requirements for
network device 106 and proxy agent 118 receives its device
requirements for network device 108. Each proxy agent may
generate native hardware instructions implementing its
device requirements to configure its associated individual
network device. In some embodiments, each proxy agent
reports information about a status, an operation, and/or other
information of its associated device(s). Application agent
114 may then collect and process the reported information to
report the information and/or to perform a responsive action.
For example, when a proxy agent provides a status update
that its associated device is overloaded, the application agent
may add a new device to a network to offload processing
and/or to move a processing task of the overloaded device to
another network device. The collected status information
may be provided by application agent 114 to interaction
agent 112 as a report and/or a request for action.

PATENT

REEL: 068820 FRAME: 0568

US 10,333,776 B2

5

Communication between interaction agent 112, applica-
tion agent 114, and proxy agents 116 and 118 are facilitated
via data store 104. In some embodiments, interaction agent
112, application agent 114, and proxy agents 116 and 118 do
not directly communicate with each other. For example,
rather than maintaining state information and managing
communication between agent components directly at each
agent component, the data store 104 is utilized to track and
provide state information and communications of agent
components. All state information (e.g., state of device,
requirements, configurations, etc.} of the agents may be
stored in data store 104 rather than storing state information
in the agents. When data is to be communicated between the
agents, a sending agent publishes/stores the data to be
communicated to data store 104. The agent receiving the
data may read the data from data store 104 and/or may be
pushed the data. For example, an agent subscribes to be
notified when a certain type of data is stored in data store 104
and the agent is notified when a new or a modification to the
certain type of data is received at data store 104. In some
embodiments, an agent periodically polls/checks data store
104 for data. Data store 104 may be included in a networked
storage service. In the example shown, the agents access
data store 104 via network 110. In some embodiments, data
store 104 is directly connected to management server 102
via a non-shared connection. In various embodiments, data
store 104 is included in any of the components shown in
FIG. 1. For example, data store 104 is included in server
102. Data store 104 may include a server that manages data
stored in data store 104 (e.g., manages data subscriptions).
Examples of data store 104 include a database, a highly
available storage, a distributed storage, a cloud storage, a
data service, or any other type of data storage.

Network device 106 and network device 108 may be any
type of device connected to network 110. Examples of
network device 106 and network device 108 include a
server, a network switch, a network router, a cache server, a
storage device, a hypervisor switch, virtual router, a load
balancer, a firewall, a network fabric device, a virtual
network device, a software device, a software component, or
any type of computer or networking device that may be
physical or virtual. Proxy agent 116 is a software and/or
hardware component included in network device 106. Proxy
agent 116 manages network device 106. Proxy agent 118 is
a software and/or hardware component included in network
device 108. Proxy agent 118 manages network device 108.
Examples of network 110 include one or more of the
following: a direct or indirect physical communication con-
nection, a mobile communication network, Internet,
intranet, Local Area Network, Wide Area Network, Storage
Area Network, and any other form of connecting two or
more systems, components, or storage devices together.
Other communication paths may exist and the example of
FIG. 1 has been simplified to illustrate the example clearly.

Although single instances of many of the components
shown in FIG. 1 have been shown to simplify the diagram,
additional instances of any of the components shown in FIG.
1 may exist. For example, any number of management
servers, storages, and network devices may exist. Manage-
ment server 102 may be a cluster of servers and storage 104
may be a distributed storage. Any number of interaction
agents, application agents, and/or proxy agents may exist. A
single server/device may include any number of interaction
agents, application agents, and/or proxy agents. A single
interaction agent, application agent, and/or proxy agent may
provide a service for a plurality of services/devices. A single
interaction agent may interact with a plurality of application

25

30

40

45

6

agents. For example, different types of network require-
ments and status updates may be handled by different
application agents that all interface with a single interaction
agent. Although the example shown in FIG. 1 shows appli-
cation agent and interaction agent included/installed on the
same management server, they may be included in different
servers/devices. Although the example shown in FIG. 1
shows each proxy agent included/installed in their respective
associated network device, the proxy agents may be
included in different servers/devices. For example, the proxy
agents are included in management server 102. Although the
example shown in FIG. 1 shows that a single proxy agent is
only assigned to manage a single associated network device,
in some embodiments, a single proxy agent may be assigned
to manage a plurality of network devices. Components not
shown in FIG. 1 may also exist. In some embodiments, each
resource {e.g., each agent, server, and network device) of
FIG. 1 may belong to a domain. For example, resources
belonging to the same domain are interoperable and may
function together to perform a network configuration and/or
management task. In some embodiments, each resource may
only belong to one domain and only resources within the
same domain are guaranteed to be interoperable to perform
a network configuration and/or management task. Certain
resources may belong to a plurality of domains. A plurality
of domains may be utilized to manage a single network. The
components shown in FIG. 1 may be components of one or
more domains. Any of the components shown in FIG. 1 may
be a physical or a virtual component.

FIG. 2A is a flowchart illustrating an embodiment of a
process for publishing network requirements. The process of
FIG. 2A may be implemented on management server 162 of
FIG. 1. In some embodiments, the process of FIG. 2A is
performed by interaction agent 112 of FIG. 1.

At 202, a set of network requirements is received at an
interaction agent. In some embodiments, the interaction
agent is an interaction agent such as interaction agent 112 of
FIG. 1. The interaction agent may interface with a user
and/or a user system. The interaction agent may be a
software and/or hardware component and may be included
in a server utilized to manage a network (e.g., manage
network devices). In some embodiments, the interaction
agent manages one or more application agents. For example,
the interaction agent selects one or more application agents
that will be implemeunting the set of network requirements
and/or reporting on their status. A user or a user system may
access the interaction agent via a user interface (e.g., web
interface, visual display interface, application interface,
command line interface, application programming interface
(API), RESTHful API, configuration file interface, etc.) pro-
vided directly and/or remotely (e.g., via display, wired
connection, network, etc.).

In some embodiments, the set of network requirements
includes a specification of a desired configuration, setting,
topology, and/or other specifications of a network/service
and/or one or more devices connected or able to be con-
nected to the network. In some embodiments, the set of
network requirements includes a set of declarative require-
ments. For example, declarative requirements express a
desired configuration of network components without speci-
fying an exact native device configuration and control flow.
By utilizing declarative requirements, what should be
accomplished may be specified rather than how it should be
accomplished. Declarative requirements may be contrasted
with imperative instructions that describe the exact device
configuration syntax and control flow to achieve the con-
figuration. By utilizing declarative requirements rather than

PATENT

REEL: 068820 FRAME: 0569

US 10,333,776 B2

7

imperative instructions, a user and/or user system is relieved
of the burden of determining the exact device configurations
required to achieve a desired result of the user/system. For
example, it is often difficult and burdensome to specify and
manage exact imperative instructions to configure each
device of a network when various different types of devices
from different vendors are utilized. The types and kinds of
devices of the network may dynamically change as new
devices are added and device failures occur. Managing
various different types of devices from different vendors
with different configuration protocols, syntax, and sofiware
versions to configure a cohesive network of devices is often
difficult to achieve. Thus, by only requiring a user/system to
specify declarative requirements that specify a desired result
applicable across various different types of devices, man-
agement and configuration of the network devices becomes
more efficient.

In various embodiments, the set of network requirements
specifies a desired configuration, a desired action, a com-
mand, or any other instruction or desired result of one or
more devices. One example of the set of network require-
ments is a set of requirements to establish a network
topology. For example, a mesh network (e.g., Layer 3 Clos
Network) is desired to be established and the set of network
requirements specifies desired parameters of the desired
mesh network. In a Clos Network, every lower-tier switch
(e.g., leaves) is connected to each of the top-tier switches
(e.g., spines) in a full-mesh topology. A portion of an
example set of requirements that specify an instruction to
establish an L3 Clos network configuration received via a
received requirements file is below:

Network topology type=Clos

of spines=16

of leaves=128

IP address pooi=10.0.0.0/24
The above requirements specify that a Clos network with 16
spine network switches and 128 leaf network switches
should be established and the switches of the Clos network
should be assigned an IP address from the range 10.0.0.1
through 10.0.0.255.

In some embodiments, the set of requirements is verified
for validity and correctness. For example, it is verified that
the set of network requirements has been received from an
authorized and validated source, the provided requirement
specification syntax is correct, valid requirements have been
provided, all required parameters for a desired result have
been specified, and provided requirements are able to be
achieved via available hardware/software resources/devices.

In some embodiments, the set of requirements is a set of
declarative requirements that specify a desired configura-
tion, a desired action, a desired mapping result, a command,
or any other desired result of one or more declarative
requirement processing stages/levels. In some embodiments,
the set of requirements may be specified for one or more
selected processing stages/levels of successive declarative
requirement processing stages/levels. For example, there
exists a plurality of processing successive stages/levels that
successively require more specific/lower stage/level declara-
tive requirements at each lower stage/level and a user may
specify declarative requirements for any one of the stages/
levels. In some embodiments, each of the processing stages/
levels determines additional aspects of a network to be
configured. For example, the output of each processing
stageflevel includes additional declarative requirements that
further define additional aspects of the desired network.

In some embodiments, the set of declarative requirements
is specified for a selected processing stage/level. For

30

35

40

45

50

8

example, network declarative requirements can be specified
for the most general and highest processing stage/level or for
a lower and more specific processing stage/level based on
the amount of customization and detail desired to be con-
trolled when automatically setting up a network defined by
the specified declarative requirements. Each processing
stage/level may translate an input requirement to an output
requirement that may be utilized as the input requirement for
the next processing stage/level, if applicable. For example,
by successively converting declarative requirements to a
lower stage/level declarative requirement with more speci-
ficity at each of the plurality of processing levels/stages,
declarative requirements for each specific device to be
configured by each proxy agent of each specific device are
determined.

In some embodiments, rather than requiring a user to
specify declarative requirements that conform to a single
specificity level, the user is able to specify declarative
requirements at any of a plurality of different specificity
levels corresponding to the plurality of processing levels/
stages. Thus, by being able to provide desired network
declarative requirements at any of a plurality of different
selected levels, a user is given the option to specify the
level/amount of control desired by the user in configuring
the network. For example, a network administrator who
desires to quickly setup a default configuration network may
specify declarative requirements at the highest stage/level
(e.g., number of servers to be supported) while a network
administrator who desires to setup a more customized and
specific network may specify declarative requirements at a
lower stage/level (e.g., specific cable connection mapping
between network switches).

In some embodiments, each stage processes an input
requirement using one or more constraints {e.g., resources
available, policies to follow, etc.) to determine the output
requirement. In some embodiments, constraints are received
at the interaction agent. For example, a user provides the
constraints (e.g., resources available, policies to follow, etc.)
for storage in a data store for use in one or more processing
stages. In some embodiments, if a required declarative
requirement has not been specified by a user, a default
declarative requirement that is consistent with the specified
declarative requirement is utilized. In some embodiments,
declarative requirements may be specified for a plurality of
different processing stages/levels. For example, a user may
specify a high level declarative requirement for the starting
processing stage/level but also for another lower processing
stage/level to customize a desired aspect. In some embodi-
ments, the declarative requirements are specified in
JavaScript Object Notation (i.e., JSON) format.

At 204, at least a portion of the set of network require-
ments is published to a system data store. For example, the
set of network requirements is published to data store 104 of
FIG. 1. In some embodiments, one or more received con-
straints are published to a system data store. In some
embeodiments, one or more constraints may be automatically
determined. In some embodiments, the interaction agent is
stateless. For example, the interaction agent does not main-
tain its own storage that tracks states of requirement pro-
cessing and communication. Rather than store and keep
track of its state data, the state data is stored/published to a
remote network data store (e.g., data store 104 of FIG. 1). By
being stateless, the interaction agent may be quickly
replaced/restarted when it encounters an error without the
need to restore state information in the replaced component.

In some embodiments, publishing the set of network
requirements and/or constraints includes storing the set of

PATENT

REEL: 068820 FRAME: 0570

US 10,333,776 B2

9

network requirements and/or constraints in the system data
store to allow an application agent to read and access the
published set of requirements and/or constraints. Thus,
rather than directly communicating the set of network
requirements to the application agent, the interaction agent
publishes the set of requirements to the storage to commu-
nicate the information to the application agent. In some
embodiments, publishing the set of requirements includes
selecting one or more application agents that are to receive
appropriate network requirements. For example, there exists
a plurality of different application agents and each applica-
tion agent performs a different type of processing and/or
processing for a different set of one or more network
devices. In another example, the same and/or different
application agents may perform each processing stage/level
of a plurality of different processing stages/levels. In order
to achieve/complete the set of network requirements, the set
of network requirements may need to be routed to the
appropriate application agent for further processing. In some
embodiments, the set of network requirements is processed
to identify which application agent should receive which
portion (or all) of the set of requirements and the require-
ment(s) to be received by each appropriate application agent
is published to a different storage location or identified by a
different identifier of the system data store corresponding to
the appropriate application agent. For example, the data
store includes different data records corresponding to each
different application agent and requirement(s) may be com-
municated to an application agent by publishing require-
ments to the corresponding data record of the desired
application agent. In another example, an identifier included
in the published data identifies which application agent
should receive the published data. In some embodiments,
one or more other network requirements associated with the
received set of network requirements are determined and
published. For example, a default network requirement for
one or more associated processing stages/levels of the
received set of network requirements is antomatically deter-
mined and published for processing.

In some embodiments, the received set of requirements
and/or constraints is modified prior to being published. For
example, the received set of network requirements is trans-
lated into a form that can be published to a data store. In
another example, additional requirements determined to be
required to achieve the received set of requirements are
added. In another example, one or more requirements deter-
mined to be not required to achieve the received set of
requirements are removed. In another example, one or more
requirements of the received set of requirements are modi-
fied.

In some embodiments, publishing the set of requirements
includes storing/creating an identifier in the system data
store that identifies the status of one or more requirements of
the set of network requirements. For example, an identifier
is stored in the system data store that identifies that the set
of network requirements has been published in the system
data store and is ready to be processed by one or more
application agents. As the set of network requirements is
processed by an application agent and other agents, the
status identifier may be updated by an application agent or
other agents to provide an update of the status of achieving/
completing the corresponding requirements.

FIG. 2B is a flowchart illustrating an embodiment of a
process for processing requirements. The process of FIG. 2B
may be implemented on management server 102 of FIG. 1.
In some embodiments, the process of FIG. 2B is performed
by interaction agent 112 of FIG. 1.

35

40

45

50

10

At 212, constraints are received. In some embodiments,
one or more constraints are received from a user via an
interface. For example, constraints (e.g., resources available,
policies to follow, etc.) are received at the interaction agent
via a user interface (e.g., web interface, application inter-
face, command line interface, application programming
interface (API), RESTful API, configuration file interface,
etc.). In some embodiments, the constraints have been
automatically determined. For example, the constraints
include a list of network switches available and the available
resources have been automatically discovered. In some
embeodiments, the constraints include information identify-
ing resources. For example, identification information about
hardware and/or software resources available to be utilized
to determine an output declarative requirement is received.
In some embodiments, the constraints include specification
of one or more policies. For example, a policy specification
of how to determine an output requirement is specified by a
policy constraint (e.g., how to assign device names, how to
assign port mappings, etc.). In some embodiments, the
policy constraint may include one or more rules, logic,
program code, and/or mappings that at least in part specify
how to determine an output from an input declarative
requirement. In some embodiments, the constraints may be
utilized together with an input declarative requirement by an
application agent to determine an output requirement for at
least one processing stage/level of a plurality of processing
stages/levels of the application agent. In some embodiments,
the received constraint is associated with at least one specific
processing stage/level.

At 214, the received constraints are stored. In some
embeodiments, storing the received constraints includes pub-
lishing the constraints to a system data store. For example,
the constraints are published to data store 104 of FIG. 1. In
some embodiments, publishing the constraints includes stor-
ing the constraints in the system data store to allow an
application agent to read and access the published con-
straints for use during one or more processing stages/levels.
Thus rather than directly communicating the constraints to
the application agent, the interaction agent publishes the set
of requirements to the storage to communicate the informa-
tion to the application agent. In some embodiments, pub-
lishing the constraints includes selecting one or more appli-
cation agents that are to receive appropriate constraints. For
example, there exists a plurality of different application
agents and each application agent performs a different type
of processing and/or processing for a different processing
stage/level. In another example, the same and/or different
application agents may perform each processing stage/level
of a plurality of linked processing stages/levels. In some
embeodiments, publishing the constraints includes selecting
one or more processing stages/levels that will be utilizing
one or more appropriate constraints. In some embodiments,
the received constraints are modified prior to being pub-
lished. For example, the received constraints are translated
into a form that can be published to a data store. In another
example, additional constraints determined to be required
for processing are added. In another example, one or more
constraints determined to be not required are removed.

FIG. 3A is a flowchart illustrating an embodiment of a
process for publishing device requirements. The process of
FIG. 3A may be implemented on management server 162 of
FIG. 1. In some embodiments, the process of FIG. 3A is
performed by application agent 114 of FIG. 1. In some
embeodiments, the process of FIG. 3A is performed for each
set of network requirements to be processed by one or more
application agents. In some embodiments, the process of

PATENT

REEL: 068820 FRAME: 0571

US 10,333,776 B2

11

FIG. 3A is performed for each declarative requirement
processing stage/level of a plurality of successive processing
stages/levels.

At 302, a set of network requirements is received at an
application agent. In some embodiments, the application
agent is application agent 114 of FIG. 1. In some embodi-
ments, the application agent is a sofiware and/or hardware
component that manages desired requirements, configura-
tions, and status updates across various network devices. For
example, the application agent provides instructions to and
receives status information from various devices of a net-
work being managed. In some embodiments, different types
of application agents that perform different functions may
exist. For example, network requirements are provided to a
specific application agent by matching the requirements to
the specific functionality of the specific application agent.

In some embodiments, the received set of requirements is
the set of requirements published in 204 of FIG. 2A. In some
embodiments, receiving the set of network requirements
includes receiving an indication that the set of requirements
has been stored in a data store for the application agent. For
example, a system data store such as data store 104 of FIG.
1 includes a data record where data for the application agent
can be published and/or the system data store recognizes
where a published data should be routed based on an
included identifier. Each different application agent may
subscribe to one or more data records of the system data
store and/or subscribe to one or more identifiers that identify
content to be routed to the subscribed application agent. In
one example, the system data store includes a different data
record for each different application agent and the each
application agent subscribes to at least its corresponding
data record. In another example, each application agent
subscribes to an identifier and the system data store routes
published data with the identifier to the subscribed applica-
tion agent.

In some embodiments, by subscribing to a data record, the
application agent may be provided a notification by the data
storage in the event data is published to a subscribed data
record and/or includes a subscribed data identifier. In some
embodiments, by subscribing to a data record and/or a data
identifier, the application agent may be automatically pro-
vided/sent any data published to the subscribed data record
and/or identified by the data identifier. In some embodi-
ments, the receiving the set of network requirements
includes receiving an indication that the set of network
requirements of interest has been stored in the data store and
the application agent requests and obtains the set of network
requirements of interest. For example, the set of network
requirements for a specific processing stage/level to be
processed by the application agent is received. In some
embodiments, the receiving the set of network requirements
includes automatically receiving content of the set of net-
work requirements subscribed by the application agent. In
some embodiments, receiving the set of requirements
includes directly receiving the set of requirements from an
interaction agent.

In some embodiments, the set of requirements is a set of
declarative requirements that specifies a desired configura-
tion, a desired action, a desired mapping result, a command,
or any other desired result of a declarative requirement
processing stage/level. In some embodiments, the set of
declarative requirements has been specified for a selected
processing stage/level. For example, there exists a plurality
of successive processing stages/levels that successively
require more specific/lower level declarative requirements at
each lower level and a user may specify declarative require-

10

15

20

25

30

35

40

45

50

55

60

65

12

ments for any one of the stages/levels. In some embodi-
ments, the set of requirements was not completely specified
by a user and the received set of requirements includes a
default declarative requirement that is consistent with user
specified declarative requirements.

At 304, one or more constraints associated with the set of
network requirements are received. For example, constraints
(e.g., resources available, policies to follow, etc.) that are to
be utilized with the received set of requirements to deter-
mine an output are identified and received. In some embodi-
ments, the one or more constraints have been identified
based at least in part on a processing stage/level associated
with the set of network requirements to be processed by the
application agent. In some embodiments, the received set of
constraints is the set of constraints stored in 214 of FIG. 2B.

At 306, the received set of network requirements and the
received one or more constraints are utilized to determine a
set of output requirements. For example, the received set of
input requirements and the received one or more applicable
constraints are utilized to determine a lower level of output
declarative requirements. In some embodiments, the
received set of network requirements is a set of declarative
requirements that are to be processed using the one or more
constraints to ultimately determine a set of declarative
device requirements for one or more devices to be config-
ured to implement a desired network. In some embodiments,
a linear progression of one or more processing stages/levels
is followed to determine a final output set of declarative
requirements. In some embodiments, a directed graph pro-
gression of one or more processing stages/levels is utilized
determine a final output set of declarative requirements. For
example, a workflow processing order of a directed acyclic
graph of one or more processing stages/levels is followed to
determine the final output set of declarative requirements.

In one example, the set of requirements to establish the L3
Clos network configuration described previously is received
at the application agent and the application agent analyzes
the received requirements and determines and identifies
devices that will be utilized to implement the desired net-
work configuration of the received network requirements.
The example L3 Clos network requirements specify the
number of spine network switch devices to be 16 and the
number of leaf network switch devices to be 128. In total,
the application agent will determine and identify 144
devices that will need to be configured to implement the
desired Clos network. For each of the devices that are to be
utilized, the application agent determines the individual
device requirements in implementing the desired Clos net-
work. The individual device requirements may be stored in
a corresponding system data store entry for each device. For
example, the application agent publishes the individual
device requirements in 144 different data entries of the data
store and each proxy agent of each device accesses these
data entries to receive the corresponding device require-
ments. For the L3 Clos network example, below is one
example of device requirements for one of the 144 different
device requirements.

Role=spine

1P address=10.0.0.3

Neighbors=[(Leaf-1, 10.0.0.7), (Leaf-2, 10.0.0.15), . . .

(Leaf-128, 10.0.0.176)]

Status=defined
The above device requirements specify that in a Clos
network, one network switch device is to be a spine switch
with IP address 10.0.0.3. The leaf switches connected to this
spine switch device have been also identified.

PATENT

REEL: 068820 FRAME: 0572

US 10,333,776 B2

13

In some embodiments, the processing performed in 306
includes performing processing for at least one processing
stageflevel of a plurality of successive declarative require-
ment processing stages/levels. For example, a processing for
one processing stage/level is performed using the applica-
tion agent and the output declarative requirement of this
process level is published to a data store for use as an input
declarative requirement for the next processing stage, if
applicable. In another example, the application agent per-
forms processing for a processing stage/level that utilizes the
received set of network requirements as an input and also
performs processing for subsequent lower level processing
stages/levels that each utilize output declarative require-
ments of a previous higher level processing stage/level as its
input declarative requirements until a last processing stage/
level determines a set of declarative device requirements for
one or more devices to be configured to implement a desired
network. If a declarative requirement is not specified for a
particular processing stage/level, the required input declara-
tive requirement for the processing stage/level may be
determined automatically based on the received declarative
requirements (e.g., to be consistent) and/or a default declara-
tive requirement for the processing stage/level is utilized.

In some embodiments, utilizing the one or more con-
straints includes utilizing information identifying resources
to assign a configuration to/from hardware/sofiware
resources. For example, devices to be configured are
selected from a list of device resources. In another example,
a configuration parameter is selected from a list of available
configuration parameter ranges. In some embodiments, uti-
lizing the constraint includes utilizing a specification of one
or more policies. For example, a policy specification of how
to determine the output requirement from the input require-
ments is specified by a policy (e.g., how to assign device
names, how to assign port mappings, etc.). In some embodi-
ments, a policy includes one or more rules, logic, program
code, and/or mappings that at least in part specity how to
determine the output declarative requirements from the input
declarative requirements.

In some embodiments, the application agent utilized to
determine the output requirements is configurable/customi-
zable. For example, a user may modify, extend, and/or
configure the processing performed by the application agent
and/or define the entire application agent. The application
agent may be configurable/customizable via an interface
such as an API.

In some embodiments, the set of output requirements is
verified. In some embodiments, verifying the set of output
requirements includes performing one or more tests to
determine whether the set of output requirements is valid
and matches an intent of input requirement(s). In some
embodiments, the test to be performed may depend on the
processing stage/level of the set of output requirements,
content of the input requirements, content of the output
requirements, the application agent utilized, one or more
constraints utilized, and/or processing performed to deter-
mine the output declarative requirements.

In some embodiments, the final processing stage/level of
the plurality of processing stages/levels generates the set of
output requirements that includes requirements for one or
more devices (e.g., devices determined and selected by
device type, capability, quantity required, processing capa-
bility, etc. required to implement received requirements) that
will be utilized to implement the desired network of the
input requirements. For each of the one or more devices that
are to be configured, individual device requirements may be
determined. In some embodiments, the device requirements

20

35

40

45

50

55

60

65

14

for each individual device are declarative requirements. For
example, the device requirements include a specification of
a desired configuration, setting, and/or other specifications
of a network device.

At 308, the set of output requirements corresponding fo
the received requirements are published to a system data
store. In some embodiments, the set of output requirements
is to be utilized as input requirements for a next processing
level and is published to be provided to an application agent
to process the next processing stage/level. In some embodi-
ments, the set of output requirements includes device
requirements for one or more devices that are to be config-
ured to implement the received network requirements. For
example, the application agent analyzes the received net-
work requirements and determines (e.g., using one or more
processing stages/levels) one or more devices (e.g., devices
determined and selected by device type, capability, quantity
required, processing capability, etc. required to implement
received requirements) that will be utilized to implement the
received network requirements. For each of the one or more
devices that are to be configured, the application agent
determines its individual device requirements.

In some embodiments, the device requirements for each
individual device are declarative requirements. For example,
the device requirements include a specification of a desired
configuration, setting, and/or other specifications of a net-
work device. The declarative requirements express a desired
configuration of a network device without specifying an
exact native device configuration and control flow instruc-
tions. By utilizing declarative requirements, what should be
accomplished in the network device is specified rather than
exact native hardware instructions. By utilizing declarative
requirements rather than imperative instructions, the appli-
cation agent is relieved of the burden of determining the
exact device programming and configuration syntax
required to achieve a desired result. For example, it is often
difficult and burdensome for a user to know the exact
imperative syntax and configuration paradigm to configure
each device of a network when various different types of
devices from different vendors may be utilized and inter-
changed dynamically on the network.

In some embodiments, publishing the set of output
requirements includes storing the output requirements in a
system data store (e.g., data store 104 of FIG. 1) to allow one
or more application agents and/or proxy agents to read and
access the published set of requirements. Thus rather than
directly communicating the device requirements to another
application agent or one or more selected devices that will
be utilized to implement the desired network, the application
agent publishes the device requirements to the system stor-
age to communicate the information.

In some embodiments, publishing the set of output
requirements includes selecting one or more application/
proxy agents that are to receive applicable requirements. For
example, there exists a plurality of different proxy agents
that are each assigned to a different device of the network.
In order to achieve and implement the desired network
requirements, the corresponding device requirements may
need to be routed to the appropriate proxy agents for further
processing. The device requirements to be received by each
appropriate application/proxy agent may be published to
different storage locations of the system data store corre-
sponding to the appropriate application/proxy agent. For
example, the system data store includes different data
records corresponding to each different application/proxy
agent and appropriate requirements may be communicated
to a corresponding proxy agent by publishing the appropri-

PATENT

REEL: 068820 FRAME: 0573

US 10,333,776 B2

15

ate requirements to the corresponding data record of the
desired application/proxy agent.

In some embodiments, requirements for an application
agent are published using an identifier that identifies the
application agent that is receiving the requirements. In some
embodiments, publishing the requirements includes storing/
creating an identifier in the system data store. In some
embodiments, a status identifier may be updated by the
application agent as the requirements are achieved/com-
pleted. For example, an identifier is stored in the system data
store that identifies that the requirements for an application
agent have been published in the system data store and are
ready to be processed by an appropriate application agent
(e.g., set in “defined” state). As the requirements are pro-
cessed by the application agent, the status identifier may be
updated by the application agent to provide an update of the
status of completing the processing stage of the require-
ments.

In some embodiments, device requirements for each
device/proxy agent are published using an identifier that
identifies the device/proxy agent that is receiving the cor-
responding device requirements. In some embodiments,
publishing the device requirements includes storing/creating
an identifier in the system data store for each device require-
ment of devices to be utilized to implement the received
network requirements. The published “Status” device
requirement in the previous L3 Clos network example
specifies a status of achieving the device requirement. This
status identifier may be updated by a proxy agent of the
network switch device as the device requirements are
achieved/completed. For example, an identifier is stored in
the system data store that identifies that the device require-
ments for a device have been published in the system data
store and are ready to be processed by an appropriate proxy
agent (e.g., set in “defined” state). As the device require-
ments are processed by the proxy agent, the status identifier
may be updated by the proxy agent to provide an update of
the status of achieving the device requirements.

FIG. 3B is a flowchart illustrating an embodiment of an
example process for automatically configuring a network
using received declarative requirements. The process of
FIG. 3B may be implemented on management server 102 of
FIG. 1. In some embodiments, the process of FIG. 3B is
performed at least in part by one or more different applica-
tion agents such as application agent 114 of FIG. 1. For
example, each processing stage/level may be performed by
the same application agent or by different application agents.
In some embodiments, at least a portion of the process of
FIG. 3B is included in 306 of FIG. 3A. In some embodi-
ments, the process of FIG. 3B is utilized to automatically
configure an L3 ClosClos network. For example, the process
of FIG. 3B is utilized to configure an 1.3 ClosClos network
for a specific network domain and network point of delivery
(i.e., PoD).

In some embodiments, the process of FIG. 3B may be
flexibly started/entered at any of the steps of the process
depending upon a level of input declarative requirements
provided by a user. In some embodiments, after declarative
requirements to configure a network are received (e.g.,
received at 202 of FIG. 2A), the processing stage/level of the
declarative requirement processing stages/levels corre-
sponding to the received declarative requirements is deter-
mined {e.g., declarative requirements are published in 204 of
FIG. 2A for the specific application agent to process the
declarative requirement for the identified processing stage/
level). For example, the received declarative requirements
are analyzed to determine the level/type of requirements

10

15

20

25

30

35

40

45

50

55

60

65

16

specified in the received declarative requirements and the
processing stage/level of a plurality of processing stages/
levels corresponding to the received declarative require-
ments is identified. In some embodiments, it is determined
which step (e.g., which one of steps 310 to 320) of the
process of FIG. 3B corresponds to the identified processing
stage/level and the process of FIG. 3B is entered/started at
the determined step.

At 310, processing for a logical connectivity processing
stage/level is performed to determine an output defining
logical connectivity. In some embodiments, the logical con-
nectivity is determined at a processing stage/level of a
plurality of declarative requirement processing stages/lev-
els. In some embodiments, processing the logical connec-
tivity processing stage/level includes determining output
declarative requirements using input declarative require-
ments. In some embodiments, the input declarative require-
ments are at least in part received in 302 of FIG. 3A. In some
embeodiments, processing the logical connectivity process-
ing stage/level includes determining output declarative
requirements identifying logical connections between leaf
network switches and spine network switches to implement
input declarative requirements defining a desired L3 Clos
network. The input declarative requirements of this process-
ing stageflevel may specify one or more of the following: the
number of servers to be connected using the L3 Clos
network to be established; and the oversubscription ratio
(e.g., maximum amount of bandwidth theoretically that
could be required for a network switch port vs. actual
maximum bandwidth capacity of the network switch port).
In some embodiments, constraints are obtained (e.g.,
obtained in 304 of FIG. 3A) and utilized (e.g., utilized in 306
of FIG. 3A) to determine the output declarative require-
ments. For example, profiles (e.g., number of up ports,
number of down ports, etc.) of devices (e.g., network
hardware switches) available to be utilized to create the L3
Clos network (e.g., without identifying specific exact
machine) are obtained and utilized in selecting the types of
devices to be utilized in the output declarative requirement
identifying the mesh network. In some embodiments, only
devices identified in the constraints may be the switches
identified in the output declarative requirements.

In some embodiments, the input declarative requirements
of the logical connectivity processing stage/level include
one or more declarative requirements provided by a user. For
example, the input declarative requirements of the logical
connectivity processing stage/level include declarative
requirements received in 202 of FIG. 2A. In some embodi-
ments, at least a portion of the input declarative require-
ments has not been directly specified by a user and a default
and/or dynamically determined declarative input require-
ment is utilized. The dynamically determined declarative
input requirement may be determined to be consistent with
at least in part a user provided input declarative requirement.
In some embodiments, step 310 is not performed in the event
a user provided a lower/later level/stage of input declarative
requirements. For example, the process of FIG. 3B is entered
at 312. In some embodiments, the output declarative require-
ments are verified to ensure performance expectations and/
or an intent of the input declarative requirements are met. In
some embodiments, the output declarative requirements are
verified to verify the number and/or type of network
switches utilized and/or devices utilized in the output
declarative requirements.

At 312, processing for a physical connectivity processing
stage/level is performed to determine an output defining a
physical connectivity. In some embodiments, the physical

PATENT

REEL: 068820 FRAME: 0574

US 10,333,776 B2

17

connectivity processing stage/level is one of a plurality of
declarative requirement processing stages/levels. In some
embodiments, processing the physical connectivity process-
ing stage/level includes determining output declarative
requirements using input declarative requirements. The
input declarative requirements of this processing stage/level
may be the output declarative requirements of the processing
stageflevel of 310. In some embodiments, the input declara-
tive requirements are at least in part received in 302 of FIG.
3A. In some embodiments, processing the physical connec-
tivity processing stage/level includes determining an output
declarative requirement identifying physical connections
between specific device types corresponding to logical con-
nections specified in the input declarative requirements. In
some embodiments, constraints are obtained (e.g., obtained
in 304 of FIG. 3A) and utilized (e.g., utilized in 306 of FIG.
3A) to determine the output declarative requirements. For
example, profiles (e.g., device names, etc.) of specific device
types {e.g., specific model/vendor of network hardware
switches) available to be utilized to create the L3 Clos
network are obtained and utilized in selecting the specific
device types and/or device names to be utilized in the output
declarative requirement identifying the .3 Clos mesh net-
work. In some embodiments, specific device names and
device types are assigned to logical devices of the input
declarative requirements to determine the output declarative
requirements for this processing stage.

In some embodiments, the input declarative requirements
of the physical connectivity processing stage/level include
one or more declarative requirements provided by a user. For
example, the input declarative requirements of the physical
connectivity processing stage/level include declarative
requirements received in 202 of FIG. ZA. In some embodi-
ments, at least a portion of the input declarative require-
ments has not been directly specified by a user and a default
and/or dynamically determined declarative input require-
ment is utilized. The dynamically determined declarative
input requirement may be determined to be consistent with
at least in part a user provided input declarative requirement.
In some embodiments, step 312 is not performed in the event
a user provided a lower/later level/stage of input declarative
requirements than the level of the physical connectivity
processing stage/level. For example, the process of FIG. 3B
is entered at 314. In some embodiments, the output declara-
tive requirements are verified to ensure correct route tables
are consistent with the input declarative requirements. In
some embodiments, the output declarative requirements are
verified to verify route tables, specific device types, and/or
device names included in the output declarative require-
ments.

At 314, processing for a cabling diagram processing
stageflevel is performed to determine an output defining a
cabling map. In some embodiments, the cabling diagram
processing stage/level is one of a plurality of declarative
requirement processing stages/levels. In some embodiments,
processing the cabling diagram processing stage/level
includes determining output declarative requirements using
input declarative requirements. The input declarative
requirements of this processing stage/level may be the
output declarative requirements of the processing stage/level
of 312. In some embodiments, the input declarative require-
ments are at least in part received in 302 of FIG. 3A. Insome
embodiments, processing the cabling diagram processing
stageflevel includes determining an output declarative
requirement identifying a cabling map defining connections
between ports of [.3 Clos switches specified in the input
declarative requirements. In some embodiments, constraints

10

15

20

25

30

35

40

45

50

55

60

65

18
are obtained (e.g., obtained in 304 of FIG. 3A) and utilized
(e.g., utilized in 306 of FIG. 3A) to determine the output
declarative requirements. For example, constraints of port
maps/identifications and port resources of specific devices
(e.g., network hardware switches) to be utilized to create the
L3 Clos network are obtained and utilized in determining the
specific cable connections between ports of the switches of
the L3 Clos mesh network. In some embodiments, various
roles (e.g., server facing, spine, edge, etc.) are assigned for
specific ports in determining the output declarative require-
ments for this processing stage. In some embodiments, one
or more policies/rules/code constraints are utilized in deter-
mining the cabling diagram output declarative requirement.

In some embodiments, the input declarative requirements
of the cabling diagram processing stage/level include one or
more declarative requirements provided by a user. For
example, the input declarative requirements of the cabling
diagram level include declarative requirements received in
202 of FIG. 2A. In some embodiments, at least a portion of
the input declarative requirements has not been directly
specified by a user and a default and/or dynamically deter-
mined declarative input requirement is utilized. The dynami-
cally determined declarative input requirement may be
determined to be consistent with at least in part a user
provided input declarative requirement. In some embodi-
ments, step 314 is not performed in the event a user provided
a lower/later level/stage of input declarative requirements
than the level of the physical connectivity processing stage/
level. For example, the process of FIG. 3B is entered at 316.
In some embodiments, the output declarative requirements
are verified to ensure correct cabling and/or port (e.g., port
function) mappings.

At 316, processing for a candidate requirement processing
stage/level is performed to determine an output defining soft
resource assignments. In some embodiments, the candidate
requirement processing stage/level is one of a plurality of
declarative requirement processing stages/levels. In some
embodiments, processing the candidate requirement pro-
cessing stage/level includes determining output declarative
requirements using input declarative requirements. The
input declarative requirements of this processing stage/level
may be the output declarative requirements of the processing
stage/level of 314. In some embodiments, the input declara-
tive requirements are at least in part received in 302 of FIG.
3A. In some embodiments, processing the candidate require-
ment processing stage/level includes determining an output
declarative requirement identifying assigned soft resources
of connections identified in the input declarative require-
ments. In some embodiments, constraints are obtained (e.g.,
obtained in 304 of FIG. 3A) and utilized (e.g., utilized in 306
of FIG. 3A) to determine the output declarative require-
ments. For example, constraints including a listing of soft
resources {e.g., IP address ranges, autonomous system num-
ber (ASN) ranges, etc.) available to be assigned are utilized
in assigning soft resources to the network switch connec-
tions. In some embodiments, one or more policies/rules/code
constraints are utilized in assigning soft resources specified
in the output declarative requirements.

In some embodiments, the input declarative requirements
of the candidate requirement processing stage/level include
one or more declarative requirements provided by a user. For
example, the input declarative requirements of the candidate
requirement level include declarative requirements received
in 202 of FIG. 2A. In some embodiments, at least a portion
of the input declarative requirements has not been directly
specified by a user and a default and/or dynamically deter-
mined declarative input requirement is utilized. The dynami-

PATENT

REEL: 068820 FRAME: 0575

US 10,333,776 B2

19

cally determined declarative input requirements may be
determined to be consistent with at least in part a user
provided input declarative requirement. In some embodi-
ments, step 316 is not performed in the event a user provided
a lower/later level/stage of input declarative requirements
than the level of the physical connectivity processing stage/
level. For example, the process of FIG. 3B is entered at 318.
In some embodiments, the output declarative requirements
are verified to ensure correct IP assignments, ASNs, Border
Gateway Protocol (BGP) sessions, etc.

At 318, processing for a rendered requirement processing
stageflevel is performed to determine an output defining any
extended/optional requirements. In some embodiments, the
rendered requirement processing stage/level is one of a
plurality of declarative requirement processing stages/lev-
els. In some embodiments, processing the rendered require-
ment processing stage/level includes determining output
declarative requirements using input declarative require-
ments. The input declarative requirements of this processing
stageflevel may be the output declarative requirements of the
processing stage/level of 316. In some embodiments, the
input declarative requirements are at least in part received in
302 of FIG. 3A. In some embodiments, processing the
rendered requirement processing stage/level includes deter-
mining an output declarative requirement identifying final
configurations including any extended/optional require-
ments/configurations of the L3 Clos network to be estab-
lished. In some embodiments, constraints are obtained (e.g.,
obtained in 304 of FIG. 3A) and utilized {e.g., utilized in 306
of FIG. 3A) to determine the output declarative require-
ments. For example, a specification of extended/optional
configurations (e.g., configuration to be added/substituted
from candidate configurations, parameters, etc.) to be
assigned for specific types of devices is utilized in deter-
mining extended/optional requirements/configurations of
the final requirements specified in the output declarative
requirements. In some embodiments, one or more policies/
rulesfcode constraints are utilized in determining the ren-
dered requirement output declarative requirements.

In some embodiments, the input declarative requirements
of the rendered requirement processing stage/level include
one or more declarative requirements provided by a user. For
example, the input declarative requirements of the rendered
requirement level include declarative requirements received
in 202 of FIG. 2A. In some embodiments, at least a portion
of the input declarative requirements has not been directly
specified by a user and a default and/or dynamically deter-
mined declarative input requirement is utilized. The dynami-
cally determined declarative input requirement may be
determined to be consistent with at least in part a user
provided input declarative requirement. In some embodi-
ments, step 318 is not performed in the event a user provided
a lower/later level/stage of input declarative requirements
than the level of the physical connectivity processing stage/
level. For example, the process of FIG. 3B is entered at 320.
In some embodiments, the output declarative requirements
are verified to ensure correct final configurations.

At 320, processing for a validated requirement processing
stageflevel is performed to determine an output including
specific device requirements. In some embodiments, the
validated requirement processing stage/level is the final
processing stage/level of a plurality of declarative require-
ment processing stages/levels. In some embodiments, pro-
cessing the validated requirement processing stage/level
includes determining output declarative requirements using
input declarative requirements. The input declarative
requirements of this processing stage/level may be the

10

20

25

40

45

55

20

output declarative requirements of the processing stage/level
ot 318. In some embodiments, the input declarative require-
ments are at least in part received in 302 of FIG. 3A. In some
embeodiments, processing the validated requirement process-
ing stageflevel includes determining an output declarative
requirement assigning final configurations to specific net-
work devices to be configured to implement the L3 Clos
network. In some embodiments, constraints are obtained
(e.g., obtained in 304 of FIG. 3A) and utilized (e.g., utilized
in 306 of FIG. 3A) to determine the output declarative
requirements. For example, constraints including a specifi-
cation of specific device profiles, availability of specific
actual devices, and/or unique identifiers of (e.g., serial
numbers) of specific devices are received to determine
specific device/switch assignments to be specified in the
output declarative requirements. In some embodiments, one
or more policies/rules/code constraints are utilized in assign-
ing specific devices assigned in the validated requirement
output declarative requirements.

In some embodiments, the input declarative requirements
of the validated requirement processing stage/level include
one or more declarative requirements provided by a user. For
example, the input declarative requirements of the rendered
requirement level include declarative requirements received
in 202 of FIG. 2A. In some embodiments, at least a portion
of the input declarative requirements has not been directly
specified by a user and a default and/or dynamically deter-
mined declarative input requirement is utilized. The dynami-
cally determined declarative input requirements may be
determined to be consistent with at least in part a user
provided input declarative requirement. In some embodi-
ments, step 320 is not performed in the event a user provides
final validated requirements identifying specific devices. In
some embodiments, the output declarative requirements are
verified to ensure correct specific device assignments. In
some embodiments, the output declarative requirements are
to be pushed to specific proxy agents to configure specific
devices/switches. For example, the output declarative
requirements of this stageflevel are received at 402 of FIG.
4.

Although a simple liner progression of processing stages/
levels have been shown in the example of FIG. 3B, in a
different example, a directed graph progression of one or
more processing stages/levels is utilized determine final
output declarative requirements. For example, a workflow
processing order of a directed acyclic graph of one or more
processing stages/levels is followed to determine the final
output set of declarative requirements.

FIG. 3C is a block diagram illustrating processing stages/
levels of an example process for automatically configuring
an L3 Clos network. The processing shown in FIG. 3C may
be implemented on management server 102 of FIG. 1. In
some embodiments, the processing shown in FIG. 3C is
performed at least in part by one or more different applica-
tion agents such as application agent 114 of FIG. 1. In some
embeodiments, the processing shown in FIG. 3C is included
in 306 of F1IG. 3A. In some embodiments, FIG. 3C illustrates
the process of FIG. 3B. In some embodiments, a user is able
to flexibly enter the processing shown in FIG. 3C at any one
of the successive processing stages/levels depending on a
level of input declarative requirements provided by a user.
As shown in diagram 330, output declarative requirements
of'a previous/higher level stage are utilized by an application
agent of the next lower level as its input declarative require-
ments. The application agents utilize the input declarative
requirements along with predefined input constraints to
determine the output declarative requirements.

PATENT

REEL: 068820 FRAME: 0576

US 10,333,776 B2

21

FIG. 4 is a flowchart illustrating an embodiment of a
process for generating native hardware instructions. The
process of FIG. 4 may be implemented on network device
106 and/or 108 of FIG. 1. In some embodiments, the process
of FIG. 4 is performed by proxy agent 116 and/or 118 of
FIG. 1.

At 402, device requirements are received at a proxy agent.
In some embodiments, the proxy agent is proxy agent 116 or
118 of FIG. 1. In some embodiments, the proxy agent is a
software and/or hardware component that manages and
implements device requirements for an associated/assigned
device. In some embodiments, different types/versions of
proxy agents exist for different network devices. For
example, a proxy agent provides conversion functionality
between a device requirement and implementing native
instructions specific to a device and the proxy agent that can
generate native instructions for a specific device (e.g., spe-
cific to vendor, operating system, protocol, version, etc. of
the device) is selected for the specific device. By separating
functionality between the interaction agent, application
agent, and proxy agent, only the proxy needs to handle
specific native instructions of a device. Thus, when a new
type or version of a device is added to a network, only a new
proxy agent for the new device is required while the inter-
action agent and application agent may remain unchanged.
This may allow simplified administration of various differ-
ent types of devices of a network. The proxy agent may be
installed on a device managed by the proxy agent. In some
embodiments, the proxy agent is remote from the managed
device. In some embodiments, one proxy agent may manage
a plurality of devices. For example, a single proxy agent may
manage a plurality of devices of the same type.

In some embodiments, the received device requirements
are the device requirements published in 308 of FIG. 3A for
adevice of the proxy agent. In some embodiments, receiving
the device requirements includes receiving an indication that
the device requirements have been stored in a system data
store for the proxy agent of a specific device. For example,
a system data store such as data store 104 of FIG. 1 includes
a data record where data for the proxy agent can be pub-
lished. Each different proxy agent may subscribe to one or
more data records of the system storage that correspond to
a device being managed by the respective proxy agent. For
example, the system data store includes a different data
record for each device of the network and the each proxy
agent subscribes to the corresponding data record of its
assigned device. In some embodiments, each different proxy
agent subscribes with the system data store one or more
identifiers that identify the device associated with the cor-
responding proxy agent. For example, any published data
identified by the subscribed identifier is notified to the
subscribed proxy agent. In some embodiments, by subscrib-
ing to a data record and/or an identifier, the proxy agent may
be provided a notification by the data store in the event data
is published to the subscribed data record and/or data
associated with the identifier has been published. In some
embodiments, by subscribing to a data record and/or an
identifier, the proxy agent may be automatically provided/
sent any data published to the subscribed data record and/or
identified by the identifier. In some embodiments, the receiv-
ing the device requirements includes receiving an indication
that the device requirements have been stored to a data store
due to a subscription and the proxy agent requests and
obtains the device requirements from the data store. In some
embodiments, the receiving the device requirements
includes automatically receiving content of device require-
ments from a data store due to a subscription. In some

10

15

20

25

30

35

40

45

50

55

60

65

22

embodiments, receiving the device requirements includes
directly receiving the device requirements from an applica-
tion agent.

At 404, native hardware instructions are generated at the
proxy agent to configure a device of the proxy agent. In
some embodiments, the device requirements received by the
proxy agent are processed by the proxy agent to generate the
native hardware instructions implementing the received
device requirements. For example, received declarative
instructions are converted to imperative instructions. In
some embodiments, the native hardware instructions are in
the native programming/configuration syntax of the device.
For example, the native hardware instructions are generated
in a format native to a configuration software interface of the
device. In some embodiments, the native hardware instruc-
tions are instructions that can be understood/processed by a
software component of the device to configure the device. In
some embodiments, the native hardware instructions are in
a form that can be directly utilized by the device to configure
the device. In some embodiments, the native hardware
instructions are executed by the device. For example, the
generated native hardware instructions are issued for execu-
tion on the device.

In one example, the device requirements to become a
spine switch of the [.3 Clos network configuration described
previously in the specification are received at the proxy
agent and the proxy agent analyzes the received device
requirements and generates native network switch device
instructions to configure the network switch device to
become a spine switch of a Clos network with the specified
IP address and specified neighbors.

At 406, a status of the device is provided. In some
embodiments, step 406 is optional and may not be per-
formed. In some embodiments, providing the status includes
publishing an identifier of the status to a system data store
(e.g., data store 104 of FIG. 1). In some embodiments,
providing the status includes providing an indication of
status of achieving the received device requirements. For
example, a status indication of a stage of the processing of
the device requirements is provided. In some embodiments,
providing the status indication includes updating a status
identifier in a system data store. For example, a status
identifier is updated in data store 104 of FIG. 1 (e.g,
allowing the proxy agent to be stateless). In some embodi-
ments, the updated status identifier is the identifier corre-
sponding to the “Status=defined” published in the Clos
network device requirement example described previously.

In some embodiments, the status of the device indicates a
status of implementing device requirements on the device.
For example, the status may be one of six states. The initial
first example state is a “defined” state that indicates that the
device requirement has been successfully published to a
system data store by an application agent. A second example
state is a “staged” state that is indicated by a receiving proxy
agent that the proxy agent has received the device require-
ments and has allocated resources to implement the device
requirements. A third example state is a “rendered” state that
indicates that the proxy agent has generated native hardware
instructions corresponding to the device requirements. A
fourth example state is a “deployed” state that indicates that
the proxy agent has issued the generated native hardware
instructions for execution on the device. A fifth example
state is an operational state that indicates that the generated
native hardware instructions are successfully executed on
the device. However, when an error is encountered, a sixth
example “error” state may be indicated fo indicate that an
error has been encountered.

PATENT

REEL: 068820 FRAME: 0577

US 10,333,776 B2

23

In some embodiments, the status of the device indicates a
health state of the device. For example, indication of infor-
mation such as processing load, CPU utilization, storage
utilization, memory utilization, version identification, errors
encountered, network status, network bandwidth, network
latency, etc. may be provided. In some embodiments, the
status of the device indicates a packet drop rate. For
example, an indication of a Ternary Content Addressable
Memory (i.e., TCAM) utilization of the device is provided
by the proxy agent. In another example, an indication is
provided when a TCAM table is overflowed.

FIG. 5 is a flowchart illustrating an embodiment of a
process for verifying an expectation. The process of FIG. 5§
may be implemented on management server 102 of FIG. 1.
In some embodiments, the process of FIG. 5 is performed at
least in part by application agent 114 of FIG. 1.

At 502, a status of a device is received. In some embodi-
ments, the status of the device is a status of a resource of the
device. In some embodiments, the status of the device is a
status of device requirements being implemented by the
device. In some embodiments, the status of the device is a
status of any errors of the device. In some embodiments, the
status of the device is the status provided in 406 of FIG. 4.
In some embodiments, the received status is one of a
plurality of statuses received from the same proxy agent or
different proxy agents of one or more different devices.

In some embodiments, the status is received via a system
data store such as data store 104 of FIG. 1. For example, the
application agent has subscribed with the data store to
receive statuses published in the data store. In some embodi-
ments, rather than subscribing with the data records, the
application agent periodically polls/checks the data store. In
some embodiments, the status of the device is received by an
application agent directly from a proxy agent.

At 504, an expectation associated with the received status
is verified. For example, one or more rules or tests are
performed to verify that the status is as expected, specified,
and/or within a range. In some embodiments, the expecta-
tion includes one or more tests to be performed to verify that
a set of requirements provided by an interaction agent (e.g.,
published in 204 of FIG. 2A and received in 302 of FIG. 3A)
has been successfully achieved. For example, the received
set of network requirements in 202 of FIG. 2A specifies one
or more tests to be performed to verify that the set of
network requirements has been successfully achieved. For
example, in the L3 Clos network example discussed
throughout the specification, a test to verify that routing
tables have been successfully updated and leaf switch nodes
are aware of neighbors to reflect the Clos network configu-
ration is received along with the network requirements
received in 202 of FIG. 2A. This test may be published by
the interaction agent along with the requirements in 204 of
FIG. 2A and the application agent receives the test as the
expectation for verification. In some embodiments, the
expectation identifies an acceptable range for a resource
utilization indicator. In some embodiments, the expectation
identifies an error state of the received status.

At 506, an action, if applicable, is performed based on the
verification of the expectation. In some embodiments, no
action is performed if the received status is as expected,
specified, and/or within a range. In some embodiments, the
expectation identifies the responsive action to be performed
based on the received status. In some embodiments, per-
forming the action includes reporting the received status.
For example, a result of a test of the expectation and/or the
received status is reported (e.g., report that a test to verify
that the set of network requirements has been successfully

20

30

35

40

45

50

55

24

achieved has passed to indicate that the set of network
requirements have been achieved). In some embodiments,
reporting the received status includes summarizing a plu-
rality of received statuses. Reporting the status may include
providing the report/status to an interaction agent (e.g., the
interaction agent may provide the report/status to a user). In
some embodiments, reporting the status includes publishing/
updating a data record of a system data store such as data
store 104 of FIG. 1. For example, a status identifier is
published to a data record of the data store that is subscribed
by an interaction agent.

In some embodiments, performing the action includes
configuring, moving, removing, and/or adding a device of a
network and/or a process/program of a device of the net-
work. For example, the application agent generates instruc-
tions (e.g., publishes device requirements to a system data
store for a proxy agent to implement on a device) fo
automatically mitigate/fix an error indicated by the status
(e.g., repair/replace device that has encountered an error}). In
one example, when a proxy agent provides a status update
that its associated device is overloaded, the application agent
may add a new device to a network to offload processing
and/or move a processing task of the overloaded device to
another network device. The collected status information
may be provided by an application agent to an interaction
agent as a report and/or a request for action.

In some embodiments, performing the action includes
allowing another application agent that is configured to
perform the action to perform the action. For example, an
application agent that has determined that the received status
indicates that the action should be performed informs
another application agent (e.g., by publishing to a data store
subscribed by the second application agent) to perform the
action. In some embodiments, an interaction agent manages
which application agent is to perform the action. For
example, the interaction agent is informed of the status and
instructs {e.g., by publishing requirements to a data store) an
application agent that is able to perform responsive action to
perform the responsive action. In some embodiments, per-
forming the responsive action includes providing responsive
requirements in response to the status that is received in 302
of FIG. 3A. For example, the responsive requirements are
translated to device requirements that will be provided to
proxy agents to be implemented.

Although the foregoing embodiments have been
described in some detail for purposes of clarity of under-
standing, the invention is not limited to the details provided.
There are many alternative ways of implementing the inven-
tion. The disclosed embodiments are illustrative and not
restrictive.

What is claimed is:
1. A method for configuring a computer network, com-
prising:

storing constraints; and

using a processor to process a plurality of processing
stages, wherein for at least one of the plurality of
processing stages, an application agent utilizes an input
declarative requirement for configuring the computer
network to be established with at least some of the
constraints to determine an output declarative require-
ment for configuring the computer network to be estab-
lished, the input declarative requirement is to be uti-
lized to configure a computer network switch in
establishing the computer network, the output declara-
tive requirement is at a lower level than a level of the
input declarative requirement, and the input declarative

PATENT

REEL: 068820 FRAME: 0578

US 10,333,776 B2

25

requirement and the output declarative requirement are
different declarative requirements;

wherein an interaction agent is able to be utilized to

specify the input declarative requirement at an appro-
priate level for any of the plurality of processing stages;
and the plurality of processing stages are utilized to at
least in part automatically establish and configure the
computer network.

2. The method of claim 1, further comprising selecting a
processing stage of the plurality of processing stages corre-
sponding to the level of the input declarative requirement.

3. The method of claim 1, wherein for each of the plurality
processing stages, a corresponding input declarative require-
ment is processed using one or more corresponding con-
straints to determine a corresponding lower level of output
declarative requirement.

4. The method of claim 1, wherein the output declarative
requirement is utilized as a next input declarative require-
ment for another one of the plurality of processing stages.

5. The method of claim 1, wherein the output declarative
requirement includes a declarative requirement for a specific
network switch device.

6. The method of claim 1, further comprising receiving
the constraints.

7. The method of claim 1, further comprising receiving
the input declarative requirement from a user.

8. The method of claim 1, wherein the output declarative
requirement includes a more specific declarative require-
ment than the input declarative requirement.

9. The method of claim 1, wherein the constraints include
an identifier of a characteristic of a device of the network.

10. The method of claim 1, wherein the constraints
include an identifier of a device of the network determined
to be available.

11. The method of claim 1, wherein the constraints
include a policy.

12. The method of claim 1, wherein the input declarative
requirement includes an identification of a number of servers
to be connected using the network and an identification of an
oversubscription ratio.

13. The method of claim 1, wherein the input declarative
requirement includes a cabling mapping.

14. The method of claim 1, wherein utilizing the input
declarative requirement with at least some of the constraints
includes assigning a resource identified to be available by at
least one of the constraints to a connection identified by the
input declarative requirement.

15. The method of claim 1, wherein at least a portion of
the output declarative requirement is provided to a proxy
agent to configure a device of the network.

16. The method of claim 1, wherein the output declarative
requirement is validated.

17. The method of claim 1, wherein the output declarative
requirement is analyzed to verify that the output declarative
requirement matches an intent of the input declarative
requirement.

RECORDED: 08/30/2024

10

15

20

25

30

35

40

45

50

26

18. The method of claim 1, wherein the plurality of
processing stages are processed in a workflow order of a
directed acyclic graph.

19. A system for configuring a computer network, com-
prising:

a memory storing constraints; and

a processor coupled with the memory and configured to

process a plurality of processing stages, wherein for at
least one of the plurality of processing stages, an
application agent utilizes an input declarative require-
ment for configuring the computer network to be estab-
lished with at least some of the constraints to determine
an output declarative requirement for configuring the
computer network to be established, the input declara-
tive requirement is to be utilized to configure a com-
puter network switch in establishing the computer
network, the output declarative requirement is at a
lower level than a level of the input declarative require-
ment, and the input declarative requirement and the
output declarative requirement are different declarative
requirements;

wherein an interaction agent is able to be utilized to

specify the input declarative requirement at an appro-
priate level for any of the plurality of processing stages;
and the plurality of processing stages are utilized to at
least in part automatically establish and configure the
computer network.

20. A computer program product for configuring a com-
puter network, the computer program product being embod-
ied in a non-transitory computer readable storage medium
and comprising computer instructions for:

storing constraints; and

processing a plurality of processing stages, wherein for at

least one of the plurality of processing stages, an
application agent utilizes an input declarative require-
ment for configuring the computer network to be estab-
lished with at least some of the constraints to determine
an output declarative requirement for configuring the
computer network to be established, the input declara-
tive requirement is to be utilized to configure a com-
puter network switch in establishing the computer
network, the output declarative requirement is at a
lower level than a level of the input declarative require-
ment, and the input declarative requirement and the
output declarative requirement are different declarative
requirements;

wherein an interaction agent is able to be utilized to

specify the input declarative requirement at an appro-
priate level for any of the plurality of processing stages;
and the plurality of processing stages are utilized to at
least in part automatically establish and configure the
computer network.

Ed #* #* #* #*

PATENT

REEL: 068820 FRAME: 0579

